(2015-2017)三年高考真题专家解读精编解析一专题19 抛物线

合集下载

高考数学专题《抛物线》习题含答案解析

高考数学专题《抛物线》习题含答案解析

专题9.5 抛物线1.(2020·全国高考真题(理))已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【解析】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p.故选:C.2.(2020·北京高三二模)焦点在x 轴的正半轴上,且焦点到准线的距离为4的抛物线的标准方程是( ) A .x 2=4y B .y 2=4x C .x 2=8y D .y 2=8x【答案】D 【解析】根据题意,要求抛物线的焦点在x 轴的正半轴上, 设其标准方程为22(0)y px p =>, 又由焦点到准线的距离为4,即p =4, 故要求抛物线的标准方程为y 2=8x , 故选:D.3.(全国高考真题)设F 为抛物线2:4C y x =的焦点,曲线()0ky k x=>与C 交于点P ,PF x ⊥轴,则k =( )A .12B .1C .32D .2【答案】D 【解析】由抛物线的性质可得(1,2)221kP y k ⇒==⇒=,故选D. 4.(2020·全国高考真题(文))设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)练基础【答案】B 【解析】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.5.(2019·四川高三月考(文))若抛物线22y px =的准线为圆2240x y x ++=的一条切线,则抛物线的方程为( ) A.216y x =- B.28y x =-C.216y x =D.24y x =【答案】C 【解析】∵抛物线22y px =的准线方程为x=2p-,垂直于x 轴. 而圆2240x y x ++=垂直于x 轴的一条切线为4x =-, 则42p=,即8p =. 故抛物线的方程为216y x =. 故选:C .6.(2019·北京高考真题(文))设抛物线y 2=4x 的焦点为F ,准线为l .则以F 为圆心,且与l 相切的圆的方程为__________. 【答案】(x -1)2+y 2=4. 【解析】抛物线y 2=4x 中,2p =4,p =2, 焦点F (1,0),准线l 的方程为x =-1, 以F 为圆心,且与l 相切的圆的方程为 (x -1)2+y 2=22,即为(x -1)2+y 2=4.7.(2019·山东高三月考(文))直线l 与抛物线22x y =相交于A ,B 两点,当AB 4=时,则弦AB 中点M 到x 轴距离的最小值为______. 【答案】32【解析】由题意,抛物线22x y =的焦点坐标为(0,12),根据抛物线的定义如图,所求d=111A B AF BF 113M 2222A B AB M ++--==≥= 故答案为:32. 8.(2021·沙湾县第一中学(文))设过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,且直线AB 的倾斜角为4π,则线段AB 的长是____,焦点F 到A ,B 两点的距离之积为_________.【答案】8 8 【分析】由题意可得直线AB 的方程为1y x =-,然后将直线方程与抛物线方程联立方程组,消去y 后,利用根与系数的关系,结合抛物线的定义可求得答案 【详解】解:由题意得(1,0)F ,则直线AB 的方程为1y x =-,设1122(,),(,)A x y B x y ,由241y x y x ⎧=⎨=-⎩,得2610x x -+=, 所以12126,1x x x x +==, 所以12628AB x x p =++=+=,因为11221,122=+=+=+=+p pAF x x BF x x , 所以()()1212121116118AF BF x x x x x x ⋅=+⋅+=+++=++=, 故答案为:8,89.(2021·全国高三专题练习)已知抛物线顶点在原点,焦点在坐标轴上,又知此抛物线上的一点(),3A m -到焦点F 的距离为5,则m 的值为__________;抛物线方程为__________. 【答案】答案见解析 答案见解析 【分析】由于抛物线的开口方向未定,根据点(),3A m -在抛物线上这一条件,抛物线开口向下,向左、向右均有可能,以此分类讨论,利用焦半径公式列方程可得p 的值,根据点(),3A m -在抛物线上可得m 的值. 【详解】根据点(),3A m -在抛物线上,可知抛物线开口向下,向左、向右均有可能, 当抛物线开口向下时,设抛物线方程为22x py =-(0p >), 此时准线方程为2py =,由抛物线定义知(3)52p --=,解得4p =.所以抛物线方程为28x y ,这时将(),3A m -代入方程得m =±当抛物线开口向左或向右时,可设抛物线方程为22y ax (0a ≠),从p a =知准线方程为2ax =-,由题意知()25232am am⎧+=⎪⎨⎪-=⎩,解此方程组得11192a m =⎧⎪⎨=⎪⎩,22192a m =-⎧⎪⎨=-⎪⎩,33912a m =⎧⎪⎨=⎪⎩,44912a m =-⎧⎪⎨=-⎪⎩,综合(1)、(2)得92m =,22y x =; 92m =-,22y x =-;12m =,218y x =; 12m =-,218y x =-;m =±28xy .故答案为:92,92-,12,12-,±22y x =,22y x =-,218y x =,218y x =-,28x y .10.(2019·广东高三月考(理))已知F 为抛物线2:4T x y =的焦点,直线:2l y kx =+与T 相交于,A B 两点.()1若1k =,求FA FB +的值;()2点(3,2)C --,若CFA CFB ∠=∠,求直线l 的方程.【答案】(1)10(2)3240x y +-= 【解析】(1)由题意,可得()0,1F ,设221212,,,44x x A x B x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,联立方程组224y kx x y=+⎧⎨=⎩,整理得2480x kx --=,则124x x k +=,128x x =-,又由22121144x x FA FB +++=+()2121222104x x x x +-=+=.(2)由题意,知211,14x FA x ⎛⎫=- ⎪⎝⎭,222,14x FB x ⎛⎫=- ⎪⎝⎭,()3.3FC =--, 由CFA CFB ∠=∠,可得cos ,cos ,FA FC FB FC =又2114x FA =+,2214x FB =+,则FA FC FB FC FA FC FB FC =, 整理得()1212420x x x x ++-=,解得32k =-, 所以直线l 的方程为3240x y +-=.1.(2021·吉林长春市·高三(理))已知M 是抛物线24y x =上的一点,F 是抛物线的焦点,若以Fx 为始边,FM 为终边的角60xFM ∠=,则FM 等于( ) A .2 B C .D .4【答案】D 【分析】设点200,4y M y ⎛⎫ ⎪⎝⎭,取()1,0a =,可得1cos ,2FM a <>=,求出20y 的值,利用抛物线的定义可求练提升得FM 的值. 【详解】设点()00,M x y ,其中2004y x =,则()1,0F ,2001,4y FM y ⎛⎫=- ⎪⎝⎭,取()1,0a =,则211cos ,2y FM a FM a FM a-⋅<>===⋅⎛,可得4200340480y y -+=,因为20104y ->,可得204y >,解得2012y =,则20034y x ==,因此,014MF x=+=. 故选:D.2.(2017·全国高考真题(文))过抛物线2:4C y x =的焦点F 的直线交C 于点M (在x 轴上方),l 为C 的准线,点N 在l 上且MNl ⊥,则点M 到直线NF 的距离为()A. B. D.【答案】A 【解析】设直线l 与x 轴相交于点P ,与直线MN 相交于点Q ,(1,0)F ,设||||MN MF m ==,因为||2,30PF NQM =∠=,所以||4,||2QF QM m ==, 所以42m m +=,解得:4m =,设00(,)M x y ,由焦半径公式得:014x +=, 所以03x=,0y =,所以sin sin 42NP MNF NFP NF ∠=∠===,所以点M 到直线NF 的距离为||sin 4NM MNF ⋅∠=⋅=3.(2020·广西南宁三中其他(理))已知抛物线28C y x =:的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若PQ =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=【答案】B 【解析】过Q 点作QH PM ⊥于H ,因为PQ =,由抛物线的定义得PQ =,所以在Rt PQH ∆中,4PQH π∠=,所以4PFM π∠=,所以直线PF 的斜率为1k =-,所以直线PF 的方程为()()012y x -=--, 即20x y +-=, 故选B.4.(2020·浙江高三月考)如图,已知抛物线21:4C y x =和圆222:(1)1C x y -+=,直线l 经过1C 的焦点F ,自上而下依次交1C 和2C 于A ,B ,C ,D 四点,则AB CD ⋅的值为( )A .14B .12C .1D .2【答案】C 【解析】因为抛物线21:4C y x =的焦点为(1,0)F ,又直线l 经过1C 的焦点F ,设直线:(1)l y k x =-,由24(1)y x y k x ⎧=⎨=-⎩得2222(24)0k x k x k -++=, 设1122(,),(,)A x y B x y ,则121=x x由题意可得:1111=-=+-=AB AF BF x x , 同理2=CD x ,所以12cos01︒⋅=⋅⋅==AB CD AB CD x x . 故选C5.【多选题】(2022·全国高三专题练习)已知抛物线21:C y mx =与双曲线222:13y C x -=有相同的焦点,点()02,P y 在抛物线1C 上,则下列结论正确的有( )A .双曲线2C 的离心率为2B .双曲线2C 的渐近线为y x = C .8m =D .点P 到抛物线1C 的焦点的距离为4【答案】ACD 【分析】由双曲线方程写出离心率、渐近线及焦点,即可知A 、B 、C 的正误,根据所得抛物线方程求0y ,即知D 的正误. 【详解】双曲线2C 的离心率为2e ==,故A 正确;双曲线2C 的渐近线为y =,故B 错误; 由12,C C 有相同焦点,即24m=,即8m =,故C 正确; 抛物线28y x =焦点为()2,0,点()02,P y 在1C 上,则04y =±,故()2,4P 或()2,4P -,所以P 到1C 的焦点的距离为4,故D 正确. 故选:ACD .6.【多选题】(2021·海南鑫源高级中学)在下列四个命题中,真命题为( )A .当a 为任意实数时,直线(a -1)x -y +2a +1=0恒过定点P ,则过点P 且焦点在y 轴上的抛物线的标准方程是243x y =B .已知双曲线的右焦点为(5,0),一条渐近线方程为2x -y =0,则双曲线的标准方程为221205x y -= C .抛物线y =ax 2(a ≠0)的准线方程14y a=-D .已知双曲线2214x y m +=,其离心率()1,2e ∈,则m 的取值范围(-12,0)【答案】ACD 【分析】求出直线定点设出抛物方程即可判断A ;根据渐近线方程与焦点坐标求出,a b 即可判断B ;根据抛物线方程的准线方程公式即可判断C ;利用双曲线离心率公式即可判断D . 【详解】对A 选项,直线(a -1)x -y +2a +1=0恒过定点为()2,3P -,则过点P 且焦点在y 轴上的抛物线的标准方程设为22x py =,将点()2,3P -代入可得23p =,所以243x y =,故A 正确;对B 选项,知5,2bc a==,又22225a b c +==,解得225,20a b ==,所以双曲线的标准方程为221520x y -=,故B 错; 对C 选项,得21x y a =,所以准线方程14y a=-,正确;对D 选项,化双曲线方程为2214x y m-=-,所以()1,2e =,解得()12,0m ∈-,故正确.故选:ACD7.(2021·全国高二课时练习)已知点M 为抛物线2:2(0)C y px p =>上一点,若点M 到两定点(,)A p p ,,02p F ⎛⎫⎪⎝⎭的距离之和最小,则点M 的坐标为______.【答案】,2p p ⎛⎫⎪⎝⎭【分析】过点M 作抛物线准线的垂线,垂足为B ,根据抛物线的定义可得||||MF MB =, 易知当A ,B ,M 三点共线时||MB MA +取得最小值且为||AB ,进而可得结果. 【详解】过点M 作抛物线准线的垂线,垂足为B ,由抛物线的定义,知点M 到焦点,02p F ⎛⎫⎪⎝⎭的距离与点M 到准线的距离相等,即||||MF MB =,所以||||||||MF MA MB MA +=+, 易知当A ,B ,M 三点共线时,||MB MA +取得最小值, 所以min 3(||||)||2p MF MA AB +==,此时点M 的坐标为,2p p ⎛⎫⎪⎝⎭. 故答案为:2p p ⎛⎫⎪⎝⎭,8.(2021·全国高二课时练习)抛物线()220y px p =>的焦点为F ,已知点A ,B 为抛物线上的两个动点,且满足120AFB ∠=︒,过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则MN AB的最大值为______.【分析】设=AF a ,=BF b ,根据中位线定理以及抛物线定义可得()12MN a b =+,在AFB △中,由余弦定理以及基本不等式可得)AB a b ≥+,即可求得MN AB 的最大值.【详解】设=AF a ,=BF b ,作AQ 垂直抛物线的准线于点Q ,BP 垂直抛物线的准线于点P .由抛物线的定义,知AF AQ =,BF BP =.由余弦定理得()2222222cos120AB a b ab a b ab a b ab =+=︒=++=+-.又22a b ab +⎛⎫≤ ⎪⎝⎭,∴()()()()22221344a b ab a b a b a b +-≥+-+=+,当且仅当a b =时,等号成立,∴)AB a b ≥+,∴()1a b MN AB +≤=MN AB9.(2020·山东济南外国语学校高三月考)抛物线C :22y x =的焦点坐标是________;经过点()4,1P 的直线l 与抛物线C 相交于A ,B 两点,且点P 恰为AB 的中点,F 为抛物线的焦点,则AF BF +=________.【答案】1,02⎛⎫⎪⎝⎭9【解析】抛物线C :22y x =的焦点1,02F ⎛⎫⎪⎝⎭. 过A 作AM ⊥准线交准线于M ,过B 作BN ⊥准线交准线于N ,过P 作PK ⊥准线交准线 于K ,则由抛物线的定义可得AM BN AF BF +=+. 再根据P 为线段AB 的中点,119(||||)||4222AM BN PK +==+=, ∴9AF BF +=,故答案为:焦点坐标是1,02⎛⎫ ⎪⎝⎭,9AF BF +=.10.(2019·四川高考模拟(文))抛物线C :()220x py p =>的焦点为F ,抛物线过点(),1P p .(Ⅰ)求抛物线C 的标准方程与其准线l 的方程;(Ⅱ)过F 点作直线与抛物线C 交于A ,B 两点,过A ,B 分别作抛物线的切线,证明两条切线的交点在抛物线C 的准线l 上.【答案】(Ⅰ)抛物线的标准方程为24x y =,准线l 的方程为1y =-;(Ⅱ)详见解析. 【解析】(Ⅰ)由221p p =⨯,得2p =,所以抛物线的标准方程为24x y =,准线l 的方程为1y =-.(Ⅱ)根据题意直线AB 的斜率一定存在,又焦点()0,1F ,设过F 点的直线方程为1y kx =+,联立241x yy kx ⎧=⎨=+⎩,得,2440x kx --=. 设()11,A x y ,()22,B x y ,则124x x k +=,124x x =-.∴()22221212122168x x x x x x k +=+-=+.由214y x =得,1'2y x =,过A ,B 的抛物线的切线方程分别为 ()()1112221212y y x x x y y x x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩, 即21122211241124y x x x y x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相加,得()()2212121148y x x x x x =+-+,化简,得()221y kx k =-+,即()21y k x k =--, 所以,两条切线交于点()2,1k -,该点显然在抛物线C 的准线l :1y =-上.1.(2021·全国高考真题)抛物线22(0)y px p =>的焦点到直线1y x =+,则p =( ) A .1 B .2 C .D .4【答案】B 【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得p 的值. 【详解】抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,其到直线10x y -+=的距离:d == 解得:2p =(6p =-舍去). 故选:B.2.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB .则双曲线的离心率为( ) A B C .2D .3练真题【答案】A 【分析】设公共焦点为(),0c ,进而可得准线为x c =-,代入双曲线及渐近线方程,结合线段长度比值可得2212a c =,再由双曲线离心率公式即可得解. 【详解】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =, 又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c ,所以222212a cbc =-=,所以双曲线的离心率ce a== 故选:A.3.(2020·北京高考真题)设抛物线的顶点为O ,焦点为F ,准线为l .P 是抛物线上异于O 的一点,过P 作PQ l ⊥于Q ,则线段FQ 的垂直平分线( ). A .经过点O B .经过点P C .平行于直线OP D .垂直于直线OP【答案】B 【解析】如图所示:.因为线段FQ 的垂直平分线上的点到,F Q 的距离相等,又点P 在抛物线上,根据定义可知,PQ PF =,所以线段FQ 的垂直平分线经过点P .故选:B.4.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【分析】先用坐标表示P Q ,,再根据向量垂直坐标表示列方程,解得p ,即得结果. 【详解】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.5.的直线过抛物线C :y 2=4x 的焦点,且与C 交于A ,B 两点,则AB =________.【答案】163【解析】∵抛物线的方程为24y x =,∴抛物线的焦点F 坐标为(1,0)F ,又∵直线AB 过焦点F AB 的方程为:1)y x =- 代入抛物线方程消去y 并化简得231030x x -+=, 解法一:解得121,33x x ==所以12116||||3|33AB x x =-=-= 解法二:10036640∆=-=> 设1122(,),(,)A x y B x y ,则12103x x +=, 过,A B 分别作准线1x =-的垂线,设垂足分别为,C D 如图所示.12||||||||||11AB AF BF AC BD x x =+=+=+++1216+2=3x x =+故答案为:1636.(2020·浙江省高考真题)如图,已知椭圆221:12x C y +=,抛物线22:2(0)C y px p =>,点A 是椭圆1C 与抛物线2C 的交点,过点A 的直线l 交椭圆1C 于点B ,交抛物线2C 于M (B ,M 不同于A ).(Ⅰ)若116=p ,求抛物线2C 的焦点坐标; (Ⅱ)若存在不过原点的直线l 使M 为线段AB 的中点,求p 的最大值.【答案】(Ⅰ)1(,0)32;【解析】 (Ⅰ)当116=p 时,2C 的方程为218y x =,故抛物线2C 的焦点坐标为1(,0)32;(Ⅱ)设()()()112200,,,,,,:A x y B x y M x y I x y m λ=+,由()22222222220x y y my m x y mλλλ⎧+=⇒+++-=⎨=+⎩, 1200022222,,222m m my y y x y m λλλλλλ--∴+===+=+++, 由M 在抛物线上,所以()222222244222m pm mp λλλλλ=⇒=+++, 又22222()220y pxy p y m y p y pm x y mλλλ⎧=⇒=+⇒--=⎨=+⎩, 012y y p λ∴+=,2101022x x y m y m p m λλλ∴+=+++=+,2122222mx p m λλ∴=+-+.由2222142,?22x y x px y px ⎧+=⎪⇒+=⎨⎪=⎩即2420x px +-=12x p ⇒==-222221822228162p p p m p p p λλλλλ+⇒-=+⋅=++≥+,18p ≥,21160p ≤,p ≤ 所以,p,此时A . 法2:设直线:(0,0)l x my t m t =+≠≠,()00,A x y .将直线l 的方程代入椭圆221:12x C y +=得:()2222220m y mty t +++-=,所以点M 的纵坐标为22M mty m =-+.将直线l 的方程代入抛物线22:2C y px =得:2220y pmy pt --=,所以02M y y pt =-,解得()2022p m y m+=,因此()220222p m xm+=,由220012x y +=解得22212242160m m p m m ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,所以当m t ==p .。

20152017解析几何全国卷高考真题

20152017解析几何全国卷高考真题

2015-2017解析几何全国卷高考真题2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (0,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值范围是( )(A )(-3333) (B )(-3636)(C )(2222) (D )(2323) 【答案】A 【解析】由题知12(3,0),(3,0)F F -,220012x y -=,所以12MF MF •=0000(3,)(3,)x y x y --•- =2220003310x y y +-=-<,解得033y << A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 .【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=.考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点, (Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由. 【答案】0ax y a --=0ax y a ++=(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(22,)N a -,或(22,)M a -,(2,)N a a .∵12y x'=,故24x y =在x =22a处的到数值为a C 在(22,)a a 处的切线方程为(2)y a a x a --0ax y a --=.故24x y =在x =-22a处的到数值为a C 在(22,)a a -处的切线方程为(2)y a a x a -=-+0ax y a ++=. 故所求切线方程为ax y a --=0ax y a ++=.(Ⅱ)存在符合题意的点,证明如下: 设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k .将y kx a =+代入C 得方程整理得2440x kx a --=.∴12124,4x xk x x a+==-. ∴121212y b y bk kx x --+=+=1212122()()kx xa b x x x x +-+=()k a b a +.当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补,故∠OPM=∠OPN ,所以(0,)P a -符合题意. 考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( ) A .26 B .8 C .46 D .10 【解析】由已知得321143ABk-==--,27341CBk+==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得262y =±-,所以46MN =,故选C .考点:圆的方程.5、(2015年2卷11题).已知A ,B 为双曲线E 的左,右顶点,点M 在E 上,∆ABM 为等腰三角形,且顶角为120°,则E 的离心率为( ) A .5 B .2 C .3 D .2 【解析】设双曲线方程为22221(0,0)x y a b a b -=>>,如图所示,AB BM =,0120ABM ∠=,过点M 作MN x ⊥轴,垂足为N ,在Rt BMN ∆中,BN a =,3MN a=,故点M 的坐标为(2,3)M a a ,代入双曲线方程得2222ab ac ==-,即222c a =,所以2e =,故选D .考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C xy m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M.(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . 将y kx b=+代入2229xy m +=得2222(9)20kx kbx b m +++-=,故12229M x x kbx k +==-+,299M M by kx b k =+=+.于是直线OM 的斜率9M OMM y kx k==-,即9OM k k ⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值.(Ⅱ)四边形OAPB 能为平行四边形.因为直线l 过点(,)3m m ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠.由(Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为Px .由2229,9,y x k x y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m xk =+,即239Pxk =+.将点(,)3mm 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2PMxx =239k =+2(3)23(9)mk k k -⨯+.解得147k =247k=因为0,3iik k >≠,1i =,2,所以当l 的斜率为4747OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是(A )()1,3- (B )(3- (C )()0,3 (D )(3 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c不是c,这一点易出错.8、(2016年1卷10题)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=2,|DE|=25则C的焦点到准线的距离为(A)2 (B)4 (C)6 (D)8【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150xy x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程; (II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围. 【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADCACD EBD ∠=∠=∠,所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+. 又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ).(Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k .则3482221+=+k k x x ,341242221+-=k k x x . 所以34)1(12||1||22212++=-+=k k x x k MN .过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积341112||||212++==k PQ MN S .可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12.综上,四边形MPNQ 面积的取值范围为)38,12[.考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130xy x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C 3 (D )2 【解析】A 圆化为标准方程为:,2228130xy x y +--+=()()22144x y -+-=故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b -=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin2113MF F ∠=,则E 的离心率为2(B )32(C 3 (D )2 【解析】A 离心率,由正弦定理得.12、(2016年2卷20题)(本小题满分12分) 已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值范围. 【解析】 ⑴当时,椭圆E 的方程为,A点坐标为,则直线AM 的方程为.()14,24111a d a +-==+43a =-1221F F e MF MF =-12211222sin 321sin sin 13F F M e MF MF F F ====---4t =22143x y +=()20-,()2y k x =+联立并整理得,解得或,则因为,所以因为,, ,整理得, 无实根,所以.所以的面积为.⑵直线AM 的方程为, 联立并整理得,解得或所以所以因为()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k xk x k +++-=2x =-228634k x k -=-+2222286121213434k AM k k k k -=++=+++AM AN ⊥2221121211413341AN k k k kk ⎛⎫=+-=+ ⎪⎝⎭⎛⎫++⋅- ⎪⎝⎭AM AN =0k >2221212114343k k k k k++++()()21440k k k --+=2440k k -+=1k =AMN △22111214*********AM ⎫=+=⎪+⎭(y k x t =+(2213x y t y k x t ⎧+=⎪⎨⎪=+⎩()222223230tk xtk x t k t +++-=x t =23t tk t x -=2223611t tk t tAM k t k -+=+2613t AN k k k=++2AM AN =所以,整理得,.因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE的中点,则C 的离心率为( )(A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;22662113t t k k k k+=++23632k k t k -=-3t >236332k kk ->-()()231202kk k +-<-322k <(2)建立,,a b c的齐次等式,求得ba或转化为关于e的等式求解;(3)通过特殊值或特殊位置,求出e.14、(2016年3卷16题)已知直线l:330mx y m++=与圆2212x y+=交于,A B两点,过,A B分别做l的垂线与x轴交于,C D两点,若23AB=,则||CD=__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C:22y x=的焦点为F,平行于x轴的两条直线12,l l分别交C于,A B两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设by la y l ==:,:21,则0≠ab ,且)2,21(),,21(),,21(),,2(),0,2(22b a R b Q a P b b B a A +---.记过BA ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分(Ⅰ)由于F 在线段AB 上,故01=+ab . 记AR的斜率为1k ,FQ的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=,所以AR FQ. ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D , 则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x.设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DEABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y .当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点. 16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N两点,若60MAN ∠=︒,则C 的离心率为_______.23【解析】如图,OA a=,AN AM b ==∵60MAN ∠=︒,∴3AP =,222234OP OA PA a b =--∴2232tan 34AP OP a b θ==-又∵tan b aθ=223234b a a b =-,解得223ab =∴22123113b e a ++17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,331P ⎛- ⎝⎭,,431P ⎛ ⎝⎭,中恰有三点在椭圆C 上.(1)求C 的方程; (2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点将()233011P P ⎛- ⎝⎭,,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a=,21b= ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==-得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx bx y =+⎧⎨+-=⎩,整理得()222148440k xkbx b +++-=122814kbx x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kb k b k --++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立.∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C的离心率为( ) A .2 B .3 C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为b y x a =±,根据直线与圆的位置关系可求得圆心到 渐进线的距离为3,∴ 圆心到渐近线的距离为221bab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3, ∴ 圆心到渐近线的距离为221k k+,即2231k k=+,解得23k=;由于渐近线的斜率与离心率 关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C :28yx=的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法∵ 点M 为线段NF 的中点 ∴ 1Mx=∴ 23MMF x=+=∴ 26NF MF ==【知识拓展】本题从抛物线定义入手,定比分点求坐标,这是基础概念题,课本习题常有练习.20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM=.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()0,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =.又2NP NM=,所以:())0,20,x x y y -=,则:0,2x x y ==.又()0,M x y 在椭圆C 上,所以:220012x y +=。

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题版

2015-2017解析几何全国卷高考真题1、(2015年1卷5题)已知M (00,x y )是双曲线C :2212x y -=上的一点,12,F F 是C 上的两个焦点,若120MF MF •<,则0y 的取值围是( )(A )(-3,3) (B )(-6,6)(C )(3-,3) (D )() 【答案】A【解析】由题知12(F F ,220012x y -=,所以12MF MF •=0000(,),)x y x y -•- =2220003310x y y +-=-<,解得033y -<<,故选 A.考点:双曲线的标准方程;向量数量积坐标表示;一元二次不等式解法.2、(2015年1卷14题)一个圆经过椭圆221164x y +=的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为 . 【答案】22325()24x y -+=【解析】设圆心为(a ,0),则半径为4a -,则222(4)2a a -=+,解得32a =,故圆的方程为22325()24x y -+=. 考点:椭圆的几何性质;圆的标准方程3、(2015年1卷20题)在直角坐标系xoy 中,曲线C :y=24x 与直线y kx a =+(a >0)交与M,N 两点,(Ⅰ)当k=0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM=∠OPN ?说明理由.【答案】0y a --=0y a ++=(Ⅱ)存在【解析】 试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得)M a,()N a -,或()M a -,)N a .∵12y x '=,故24x y =在x=C在,)a 处的切线方程为y a x -=-0y a --=.故24x y =在x=-处的到数值为C在(,)a -处的切线方程为y a x -=+0y a ++=.0y a --=0y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+. 当b a =-时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力4、(2015年2卷7题)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交y 轴于M ,N 两点,则||MN =( )A .26B .8C .46D .10 【解析】由已知得321143AB k -==--,27341CB k +==--,所以1AB CB k k =-,所以AB CB ⊥,即ABC ∆为直角三角形,其外接圆圆心为(1,2)-,半径为5,所以外接圆方程为22(1)(2)25x y -++=,令0x =,得2y =±,所以MN =C .考点:圆的方程.5、(2015年2卷11题).已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为()A.5 B.2 C.3 D.2【解析】设双曲线方程为22221(0,0)x ya ba b-=>>,如图所示,AB BM=,0120ABM∠=,过点M作MN x⊥轴,垂足为N,在Rt BMN∆中,BN a=,3MN a=,故点M的坐标为(2,3)M a a,代入双曲线方程得2222a b a c==-,即222c a=,所以2e=,故选D.考点:双曲线的标准方程和简单几何性质.6、(2015年2卷20题)(本题满分12分)已知椭圆222:9(0)C x y m m+=>,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(Ⅰ)证明:直线OM的斜率与l的斜率的乘积为定值;(Ⅱ)若l过点(,)3mm,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率,若不能,说明理由.【解析】(Ⅰ)设直线:l y kx b=+(0,0)k b≠≠,11(,)A x y,22(,)B x y,(,)M MM x y.将y kx b=+代入2229x y m+=得2222(9)20k x kbx b m+++-=,故12229Mx x kbxk+==-+,299M Mby kx bk=+=+.于是直线OM的斜率9MOMMykx k==-,即9OMk k⋅=-.所以直线OM 的斜率与l 的斜率的乘积为定值. (Ⅱ)四边形OAPB 能为平行四边形. 因为直线l 过点(,)3mm ,所以l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠. 由(Ⅰ)得OM 的方程为9y x k =-.设点P 的横坐标为P x .由2229,9,y x kx y m ⎧=-⎪⎨⎪+=⎩得2222981Pk m x k =+,即P x =.将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x ==2(3)23(9)mk k k -⨯+.解得14k =24k =.因为0,3i i k k >≠,1i =,2,所以当l的斜率为4或4+OAPB 为平行四边形.考点:1、弦的中点问题;2、直线和椭圆的位置关系.7、(2016年1卷5题)(5)已知方程222213x y m n m n-=+-表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值围是(A )()1,3- (B)(- (C )()0,3 (D)( 【答案】A考点:双曲线的性质【名师点睛】双曲线知识一般作为客观题学生出现,主要考查双曲线几何性质,属于基础题.注意双曲线的焦距是2c 不是c,这一点易出错.8、(2016年1卷10题)以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E两点.已知|AB |=,|DE|=则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B考点:抛物线的性质.【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.9、(2016年1卷20题)(本小题满分12分)设圆222150x y x ++-=的圆心为A ,直线l 过点B (1,0)且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值围.【答案】(Ⅰ)13422=+y x (0≠y )(II ))38,12[ 试题解析:(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:13422=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .由⎪⎩⎪⎨⎧=+-=134)1(22y x x k y 得01248)34(2222=-+-+k x k x k . 则3482221+=+k k x x ,341242221+-=k k x x .所以34)1(12||1||22212++=-+=k k x x k MN . 过点)0,1(B 且与l 垂直的直线m :)1(1--=x k y ,A 到m 的距离为122+k ,所以 1344)12(42||22222++=+-=k k k PQ .故四边形MPNQ 的面积 341112||||212++==k PQ MN S . 可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值围为)38,12[.当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值围为)38,12[. 考点:圆锥曲线综合问题【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试容,主要由求值、求方程、求定值、最值、求参数取值围等几部分组成, .其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、函数思想及化归思想的应用.10、(2016年2卷4题)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a=(A )43- (B )34- (C(D )2【解析】A圆化为标准方程为:,故圆心为,,解得,故选A .11、(2016年2卷11题)已知1F ,2F 是双曲线E :22221x y a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,sin 2113MF F ∠= ,则E 的离心率为(B )32(C(D )2 【解析】A离心率,由正弦定理得. 12、(2016年2卷20题)(本小题满分12分)已知椭圆E :2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为(0)k k >的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA.(I )当4t =,AM AN =时,求△AMN 的面积; (II )当2AM AN =时,求k 的取值围.2228130x y x y +--+=()()22144x y -+-=()14,1d ==43a =-1221F F e MF MF =-122112sin 31sin sin 13F F Me MF MF F F ====---【解析】 ⑴当时,椭圆E 的方程为,A 点坐标为, 则直线AM 的方程为.联立并整理得, 解得或,则因为,所以 因为,,,整理得, 无实根,所以. 所以的面积为. ⑵直线AM 的方程为,联立并整理得,解得或所以 所以因为所以,整理得,. 4t =22143x y +=()20-,()2y kx =+()221432x y y k x ⎧+=⎪⎨⎪=+⎩()2222341616120k x k x k +++-=2x =-228634k x k -=-+222861223434k AMk k -=+=++AM AN ⊥21212413341AN k kk =⎛⎫++⋅- ⎪⎝⎭AM AN =0k >212124343k k k=++()()21440k k k --+=2440k k -+=1k =AMN △221112144223449AM⎫==⎪+⎭(y k x =(2213x y t y k x ⎧+=⎪⎨⎪=+⎩()222223230tk x x t k t +++-=x =x =AM =+=3AN k k+2AM AN =23k k+23632k k t k -=-因为椭圆E 的焦点在x 轴,所以,即,整理得.13、(2016年3卷11题)已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b +=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12 (C )23 (D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .14、(2016年3卷16题)已知直线l :30mx y m ++=与圆2212x y +=交于,A B 两点,过,A B 分别做l 的垂线与x 轴交于,C D 两点,若AB =,则||CD =__________________.【答案】43t >236332k k k ->-()()231202k k k +-<-2k <考点:直线与圆的位置关系. 【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.15、(2016年3卷20题)已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点. (I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ)21y x =-.试题解析:由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且 )2,21(),,21(),,21(),,2(),0,2(22ba Rb Q a P b b B a A +---.记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x . .....3分 (Ⅰ)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b a aba ab a b a a b a k =-=-==--=+-=,所以AR FQ . ......5分(Ⅱ)设l 与x 轴的交点为)0,(1x D ,则2,2121211b a S x a b FD a b S PQF ABF -=--=-=∆∆.由题设可得221211b a x a b -=--,所以01=x (舍去),11=x .设满足条件的AB 的中点为),(y x E .当AB 与x 轴不垂直时,由DE ABk k =可得)1(12≠-=+x x yb a .而y ba =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为12-=x y . ....12分 考点:1、抛物线定义与几何性质;2、直线与抛物线位置关系;3、轨迹求法.【方法归纳】(1)解析几何中平行问题的证明主要是通过证明两条直线的斜率相等或转化为利用向量证明;(2)求轨迹的方法在高考中最常考的是直接法与代入法(相关点法),利用代入法求解时必须找准主动点与从动点.16、(2017年1卷15题)已知双曲线2222:x y C a b-,(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线交于M ,N 两点,若60MAN ∠=︒,则C 的离心率为_______.【解析】如图,OA a =,AN AM b ==∵60MAN ∠=︒,∴AP =,OP =∴tan AP OP θ==又∵tan b aθ=b a =,解得223a b =∴e ==17、(2017年1卷20题)已知椭圆C :22221x y a b+=()0a b >>,四点()111P ,,()201P ,,31P ⎛- ⎝⎭,41P ⎛ ⎝⎭中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.【解析】(1)根据椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必不过1P ,所以过234P P P ,,三点 将()23011P P ⎛- ⎝⎭,,代入椭圆方程得 222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,, 221121A A P A P B y y k k m m m----+=+==- 得2m =,此时l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kb x x k -+=+,21224414b x x k -⋅=+则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k --++=-+()()()811411k b b b -==-+-,又1b ≠ 21b k ⇒=--,此时64k ∆=-,存在k 使得0∆>成立. ∴直线l 的方程为21y kx k =-- 当2x =时,1y =-所以l 过定点()21-,.18、(2017年2卷9题)若双曲线C:22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )A .2B .3C .2D .233【命题意图】主要考查双曲线的性质及直线与圆的位置关系,意在考查考生的转化与化归思想. 【解析】解法一:常规解法根据双曲线的标准方程可求得渐近线方程为by x a=±,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221b ab a ⋅⎛⎫+ ⎪⎝⎭,即2231b ab a ⋅=⎛⎫+ ⎪⎝⎭,解得2e =.解法二:待定系数法设渐进线的方程为y kx =,根据直线与圆的位置关系可求得圆心到渐进线的距离为3,∴ 圆心到渐近线的距离为221k k +,即2231k k =+,解得23k =;由于渐近线的斜率与离心率关系为221k e =-,解得2e =.19、(2017年2卷16题)已知F 是抛物线C:28y x =的焦点,M 是C 上一点,F M 的延长线交y 轴于点N .若M 为F N 的中点,则F N = .【命题意图】本题主要考查抛物线的定义及直线与抛物线的位置关系,意在考查考生的转化与 化归思想运算求解的能力 【解析】解法一:几何法习. 20、(2017年2卷20题)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足2NP NM =.(1) 求点P 的轨迹方程;(2) 设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【命题意图】椭圆,定值问题的探索;运算求解能力【基本解法】(Ⅰ)解法一:相关点法求轨迹:设()00,M x y ,()0,0N x ,(),P x y ,则:()0,NP x x y =-,()00,NM y =. 又2NP NM =,所以:())00,0,x x y y -=,则:00,x x y ==.又()00,M x y 在椭圆C 上,所以:220012x y +=。

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)

专题16 抛物线1.2017课标II ,文12】过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为B. C. D. 2.【2014,安徽文3】抛物线241x y =的准线方程是( )A . 1-=yB . 2-=yC . 1-=xD . 2-=x3. 【2014全国1,文10】已知抛物线C : x y =2的焦点为F ,()00,A x y 是C 上一点,x F A 045=,则0x =( ) A. 1 B. 2 C. 4 D. 84. 【2014辽宁文8】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 5.【2014四川,文10】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧, 2OA OB ⋅=u u u r u u u r(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3CD 6.【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)7. 【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)8.【2014全国2,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )9.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )210.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .11.【2014上海,文4】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.12.【2014高考陕西版文第11题】抛物线24y x =的准线方程为________.13.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.14.【2017浙江,21】(本题满分15分)如图,已知抛物线2x y =,点A11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PQ PA ⋅的最大值.15.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.16.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明AR FQ P ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.17. 【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为,过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC u u u r 与BD u u u r同向.(I )求2C 的方程;(II )若AC BD =,求直线l 的斜率.18.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.19.【2015高考浙江,文19】(本题满分15分)如图,已知抛物线211C 4y x =:,圆222C (1)1x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点. (1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公 共点为切点.20.【2014福建,文21】((本小题满分12分) 已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 21.【2015高考福建,文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅰ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.专题17 立体几何中线面位置关系1.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是A .B .C .D .2.【2017课标3,文10】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥3.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线..,满足,,,则下列结论一定正确的是( ) A .B .C ..既不平行也不垂直D ..的位置关系不确定4.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 6. 【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 17.【2014辽宁文4】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件9.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m10.【2014年.浙江卷.文6】设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 11.【2017课标1,文18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=o .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=o ,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.12.【2017山东,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E⊥平面ABCD ,(Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅰ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.13.【2017江苏,15】 如图,在三棱锥A -BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .14.【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.15.【2014四川,文18】(本小题满分12分)在如图所示的多面体中,四边形和都为矩形. (Ⅰ)若,证明:直线平面;(Ⅰ)设,分别是线段,的中点,在线段上是否存在一点,使直线平面?请证明你的结论.(第15题)ADBC EF16. 【2015高考四川,文18】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F ,G ,H 标记在正方体相应地顶点处(不需要说明理由) (Ⅰ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅰ)证明:直线DF 平面BEG17.【2014山东.文18】 (本小题满分12分) 如图,四棱锥ABCD P -中,AP ⊥平面PCD ,AD ∥BC ,AD BC AB 21==,F E ,分别为线段PC AD ,的中点.(1)求证:AP ∥平面BEF ; (2)求证:BE ⊥平面PAC .18. 【2016高考山东文数】(本小题满分12分) 在如图所示的几何体中,D 是AC 的中点,EF ∥DB .AB FH ED CG CDEAB(I )已知AB =BC ,AE =EC .求证:AC ⊥FB ;(II )已知G ,H 分别是EC 和FB 的中点.求证:GH ∥平面ABC .19. 【2015高考山东,文18】 如图,三棱台DEF ABC -中,2AB DE G H =,,分别为AC BC ,的中点.(I )求证://BD 平面FGH ;(II )若CF BC AB BC ⊥⊥,,求证:平面BCD ⊥平面EGH .20.【2015高考广东,文18】(本小题满分14分)如图3,三角形DC P 所在的平面与长方形CD AB 所在的平面垂直,D C 4P =P =,6AB =,C 3B =.(1)证明:C//B 平面D P A ;(2)证明:C D B ⊥P ;(3)求点C 到平面D P A 的距离.21.【2015天津文17】(本小题满分13分)如图,已知1AA ⊥平面ABC ,11,BB AA P AB =AC =3,1BC AA ==1BB = 点E ,F 分别是BC ,1AC 的中点. (I )求证:EF P 平面11A B BA ; (II )求证:平面1AEA ⊥平面1BCB . (III )求直线11A B 与平面1BCB 所成角的大小.。

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336

专题19 抛物线1.【2017课标1,理10】已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16 B.14 C.12 D.10【答案】A【解析】试题分析:设A(x,y),B(x,y),D(x,y),E(x,y),直线方程为11223344y k1(x1)y4x22y4x联立方程y k(x1)1得k12x22k12x 4x k120∴2k42x x 1122k12k421k21同理直线与抛物线的交点满足2k42x x 2342k2由抛物线定义可知|AB||DE |x x x x 2p12342k 42k 444162212482816k k k k k k22222 2121212当且仅当k1k21(或1)时,取得等号.【考点】抛物线的简单性质2.【2016年高考四川理数】设O为坐标原点,P是以F为焦点的抛物线y22px(p 0)上任意一点,M是线段PF上的点,且PM=2 MF,则直线OM的斜率的最大值为( )(A)33(B)23(C)22(D)1【答案】C【解析】1p 试题分析:设P 2pt 2 , 2pt , M x , y (不妨设 t 0),则 22, 2 .FP ptptp 试题分析:设2由已1 FM FP知得3p 2p px t22 3 6 ,2pt y , 3 ,,2ppx t23 32pt y , 3,,2t1 12 kOM122 11 2tt 22t22,,故选 C.kOMmax2考点:抛物线的简单的几何性质,基本不等式的应用.3.【2016年高考四川理数】设 O 为坐标原点,P 是以 F 为焦点的抛物线 y 2 2px (p 0) 上任意一点,M 是线段 PF 上的点,且 PM =2 MF ,则直线 OM 的斜率的最大值为( ) (A ) 3 3 (B ) 2 3 (C ) 2 2(D )1【答案】C 【解析】试题分析:设P 2pt , 2pt , M x , y (不妨设 t 0),则 22,2 .由已2FP pt ppt2试题分析:设1FMFP知得3p2p px t2236,2pty,3,,2p px t2332pty,3,,2t112 kOM122112t t22t22,k ,故选C.OMmax2考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P的坐标,利用向量法求出点M的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k斜率用参数表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,2本题采用基本不等式求出最值.4.【2016高考新课标 1卷】以抛物线 C 的顶点为圆心的圆交 C 于 A 、B 两点,交 C 的准线于 D 、E 两点.已知|AB |=4 2 ,|DE|= 2 5 ,则 C 的焦点到准线的距离为(A)2(B)4(C)6(D)8【答案】B 【解析】【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所 以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的 主要原因.5.【 2015高 考 四 川 , 理 10】 设 直 线 l 与 抛 物 线 y 24x 相 交 于 A , B 两 点 , 与 圆x5yr r 0 相切于点 M ,且 M 为线段 AB 的中点.若这样的直线 l 恰有 4条,则 r222的取值范围是()(A )1,3(B )1,4(C )2,3(D )2,4【答案】D 【解析】显然当直线的斜率不存在时,必有两条直线满足题设.当直线的斜率存在时,设斜率为.设32y 4xA (x , y ),B (x , y ), xx ,M (x , y ),则11112212y 24x22,相减得(yy )(yy ) 4(xx ) .由于121212y y y yxx ,所以1212122xx122 ky.圆心为2,即y0 C ,由CMAB 得(5, 0)k 1,ky 5 xx 50 0,所以2 5x , x3,即点 M必在直线 x 3上.将 x 3代入 y 2 4x 得 y 2 12,2 3 y2 3 .因为点 M 在圆x5yr r0 上,所以 (x5)2y 2 r 2 ,r 2y 2 4 12 4 16 .又222y 04 4 (由于斜率不存在,故2y,所以不取等号),所以4 y4 16,2 r 4 .选 D.2 0y6 5 4A32 1M FC–1O123456789–1B–2 x–3 –4 –5 –66.【2015高考浙江,理 5】如图,设抛物线 y 2 4x 的焦点为 F ,不经过焦点的直线上有三个不同的点 A , B ,C ,其中点 A , B 在抛物线上,点C 在 y 轴上,则 BCF 与 ACF 的面积之比是( )A. B F AF 11B. B F AF221 1 C. B F AF 11 D. B F AF 221 1【答案】A.4【解析】S BC x BF1BCF,故选A.BS AC x AF1ACF A【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.7.【2017课标II,理16】已知F是抛物线C:y28x的焦点,M是C上一点,FM的延长线交y轴于点N。

对2017年高考全国Ⅲ卷抛物线解答题的思考

对2017年高考全国Ⅲ卷抛物线解答题的思考

解 析 :由余 弦定理得 3=口 +c 一口c,所 以AB+ 2BC =c+2口,令 t=c+2a,贝0 c=t一2a,所 以3= n2+(t一2a) 一口(t一2a),因为 7a2—5at+t 一3
可求 tanC的最 大值.
:0关于 的方 程有 解 ,所 以,△ :25t 一28(t 一3)
2018年 第 3期
中学数 学研 究
·23·
=o,因为△≥o,可求c。sc≥譬,因为 ·c。sc + 1
变式 在 △ABc中,已知B =60。,AC=√3,则
AB +2BC的最 大值 为

c为锐角,根据正切函数的单调 性可求 当。。sC: 时,tanC取 最 大 值 ,利 用 同角 三角 函数 基 本 关 系 式
性质 1 已知△ 的三个顶点均在抛物线Y = (p >0)上 ,且 P(x。,Yo)为定 点 ,直 线 PA,P曰 的斜 率分别 记作 , ,直 线 AB 的斜 率记作 j}.
(1)若 |i}l+J}2=0,贝4 =一』 (此 时 Yo≠ 0);

若 + =A(A为常数 ,A≠0),则直线AB恒过定
(Y—Yo) 一[2p( 一 o)一2,,0(y—Yo)]X 1=0,即
(y—y0)。 一 [2p( 一 0) 一 2y0(Y — Yo)] X
二 yQ — Icxo — m



整理得 ( ‰

+m).
( —yo) 一2(kyo+p)( 一 o)(),一Yo)+
2pJj}( 一 。) :0,两边 同时 除 以( 一 ) ,得 (kx。
得 y:Ij}[ 一(‰ 一2 _yo)]一( 一孕),所以直线AB kl,k2.

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题16 抛物线—三年高考(2015-2017)数学(文)真题分项版解析(原卷版)(打包下载)

专题16 抛物线1.2017课标II ,文12】过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为B. C. D. 2.【2014,安徽文3】抛物线241x y =的准线方程是( )A . 1-=yB . 2-=yC . 1-=xD . 2-=x3. 【2014全国1,文10】已知抛物线C : x y =2的焦点为F ,()00,A x y 是C 上一点,x F A 045=,则0x =( ) A. 1 B. 2 C. 4 D. 84. 【2014辽宁文8】已知点(2,3)A -在抛物线C :22y px =的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .43-B .1-C .34-D .12- 5.【2014四川,文10】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧, 2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是( )A .2B .3CD 6.【2015高考陕西,文3】已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)7. 【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)8.【2014全国2,文10】设F 为抛物线2:=3C y x 的焦点,过F 且倾斜角为30︒的直线交C 于A ,B 两点,则 AB =( )(A (B )6 (C )12 (D )9.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )210.【2017天津,文12】设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .11.【2014上海,文4】若抛物线y 2=2px 的焦点与椭圆15922=+y x 的右焦点重合,则该抛物线的准线方程为___________.12.【2014高考陕西版文第11题】抛物线24y x =的准线方程为________.13.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.14.【2017浙江,21】(本题满分15分)如图,已知抛物线2x y =,点A11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围;(Ⅱ)求||||PQ PA ⋅的最大值.15.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OHON; (II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.16.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.17. 【2015高考湖南,文20】(本小题满分13分)已知抛物线21:4C x y =的焦点F 也是椭圆22222:1y x C a b+=(0)a b >>的一个焦点,1C 与2C 的公共弦长为,过点F 的直线l 与1C 相交于,A B 两点,与2C 相交于,C D 两点,且AC 与BD 同向. (I )求2C 的方程;(II )若AC BD =,求直线l 的斜率.18.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.19.【2015高考浙江,文19】(本题满分15分)如图,已知抛物线211C 4y x =:,圆222C (1)1x y +-=:,过点P(t,0)(t>0)作不过原点O 的直线PA ,PB 分别与抛物线1C 和圆2C 相切,A ,B 为切点. (1)求点A ,B 的坐标; (2)求PAB ∆的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则该直线与抛物线相切,称该公 共点为切点.20.【2014福建,文21】((本小题满分12分) 已知曲线Γ上的点到点(0,1)F 的距离比它到直线3y =-的距离小2.(1)求曲线Γ的方程;(2)曲线Γ在点P 处的切线l 与x 轴交于点A .直线3y =分别与直线l 及y 轴交于点,M N ,以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B ,试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论. 21.【2015高考福建,文19】已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.专题17 立体几何中线面位置关系1.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是A .B .C .D .2.【2017课标3,文10】在正方体1111ABCD A B C D 中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥3.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线..,满足,,,则下列结论一定正确的是( ) A . B .C ..既不平行也不垂直D ..的位置关系不确定4.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,b 内,则“直线a 和直线b 相交”是“平面α和平面b 相交”的( )(A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件5.【2015高考广东,文6】若直线1l 和2l 是异面直线,1l 在平面α内,2l 在平面β内,l 是平面α与平面β的交线,则下列命题正确的是( )A .l 至少与1l ,2l 中的一条相交B .l 与1l ,2l 都相交C .l 至多与1l ,2l 中的一条相交D .l 与1l ,2l 都不相交 6. 【2016高考上海文科】如图,在正方体ABCD −A 1B 1C 1D 1中,E 、F 分别为BC 、BB 1的中点,则下列直线中与直线EF 相交的是( )(A)直线AA 1(B)直线A 1B 1(C)直线A 1D 1 (D)直线B 1C 17.【2014辽宁文4】已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是( ) A .若//,//,m n αα则//m n B .若m α⊥,n α⊂,则m n ⊥ C .若m α⊥,m n ⊥,则//n α D .若//m α,m n ⊥,则n α⊥8.【2015高考湖北,文5】12,l l 表示空间中的两条直线,若p :12,l l 是异面直线;q :12,l l 不相交,则( )A .p 是q 的充分条件,但不是q 的必要条件B .p 是q 的必要条件,但不是q 的充分条件C .p 是q 的充分必要条件D .p 既不是q 的充分条件,也不是q 的必要条件9.【2015高考浙江,文4】设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α⊂,m β⊂( )A .若l β⊥,则αβ⊥B .若αβ⊥,则l m ⊥C .若//l β,则//αβD .若//αβ,则//l m10.【2014年.浙江卷.文6】设m 、n 是两条不同的直线,α、β是两个不同的平面,则( )A.若n m ⊥,α//n ,则α⊥mB.若β//m ,αβ⊥,则α⊥mC.若β⊥m ,β⊥n ,α⊥n ,则α⊥mD.若n m ⊥,β⊥n ,αβ⊥,则α⊥m 11.【2017课标1,文18】如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠=.(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠=,且四棱锥P-ABCD 的体积为83,求该四棱锥的侧面积.12.【2017山东,文18】(本小题满分12分)由四棱柱ABCD -A 1B 1C 1D 1截去三棱锥C 1- B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E⊥平面ABCD ,(Ⅰ)证明:1AO ∥平面B 1CD 1;(Ⅱ)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.13.【2017江苏,15】 如图,在三棱锥A-BCD 中,AB ⊥AD , BC ⊥BD , 平面ABD ⊥平面BCD , 点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .14.【2016高考北京文数】(本小题14分)如图,在四棱锥ABCD P -中,⊥PC 平面ABCD ,,AB DC DC AC ⊥∥ (I )求证:DC PAC ⊥平面; (II )求证:PAB PAC ⊥平面平面;(III )设点E 为AB 的中点,在棱PB 上是否存在点F ,使得//PA 平面C F E ?说明理由.15.【2014四川,文18】(本小题满分12分)(第15题)ADBC EF在如图所示的多面体中,四边形和都为矩形。

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336

三年高考2015_2017高考数学试题分项版解析专题19抛物线理20171102336
专题 19 抛物线
1.【2017 课标 1,理 10】已知 F 为抛物线 C:y2=4x 的焦点,过 F 作两条互相垂直的直线 l1,
l2,直线 l1 与 C 交于 A、B 两点,直线 l2 与 C 交于 D、E 两点,则|AB|+|DE|的最小值为
A.16
B.14
C.12
D.10
【答案】A
【解析】试题分析:设 A(x , y ), B(x , y ), D(x , y ), E(x , y ) ,直线方程为
距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考 中小题的热点,在复习时不能遗漏相应平面几何知识的复习.
7.【2017 课标 II,理 16】已知 F 是抛物线 C : y2 8x 的焦点, M 是 C 上一点, FM 的延长
F 1 234
B
C 567
89
6.【2015 高考浙江,理 5】如图,设抛物线 y2 4x 的焦点为 F ,不经过焦点的直线上有三个 不同的点 A , B , C ,其中点 A , B 在抛物线上,点 C 在 y 轴上,则 BCF 与 ACF 的面
积之比是( )
BF 1 BF2 1 BF 1 BF2 1
(A)
3 3
(B)
2 3
(C)
2 2
(D)1
【答案】C
【解析】
1
试题分析:设 P 2 pt2 , 2 pt , M x , y (不妨设 t 0 ),则
22 FP
p
,2 . pt
p 试题分析:设
2
,
1 FM FP
p 2p p ,
x
t
x
2
知得
3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.【2017课标1,理10】已知F 为抛物线C :y 2=4x 的焦点,过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【答案】A【解析】试题分析:设11223344(,),(,),(,),(,)A x y B x y D x y E x y ,直线1l 方程为1(1)y k x =-联立方程214(1)y x y k x ⎧=⎨=-⎩得2222111240k x k x x k --+=∴21122124k x x k --+=-212124k k += 同理直线2l 与抛物线的交点满足22342224k x x k ++= 由抛物线定义可知1234||||2AB DE x x x x p +=++++221222222212121224244416482816k k k k k k k k ++=++=++≥+= 当且仅当121k k =-=(或1-)时,取得等号. 【考点】抛物线的简单性质2.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 【答案】C 【解析】试题分析:设()()22,2,,P pt pt M x y (不妨设0t >),则22,2.2p FP pt pt ⎛⎫=-⎪⎝⎭由已知得13FM FP =,22,2362,3p p p x t pt y ⎧-=-⎪⎪∴⎨⎪=⎪⎩,22,332,3p p x t pt y ⎧=+⎪⎪∴⎨⎪=⎪⎩,2211212121222OM t k t t t ∴==≤=++,()max22OM k ∴=,故选C. 考点:抛物线的简单的几何性质,基本不等式的应用.3.【2016年高考四川理数】设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px =>上任意一点,M 是线段PF 上的点,且PM =2MF ,则直线OM 的斜率的最大值为( )(A 3(B )23(C 2(D )1 【答案】C 【解析】试题分析:设()()22,2,,P pt pt M x y (不妨设0t >),则22,2.2p FP pt pt ⎛⎫=-⎪⎝⎭由已知得13FM FP =,22,2362,3p p p x t pt y ⎧-=-⎪⎪∴⎨⎪=⎪⎩,22,332,3p p x t pt y ⎧=+⎪⎪∴⎨⎪=⎪⎩,22121211222OMt k t t t ∴==≤=++,()max 2OM k ∴= C. 考点:抛物线的简单的几何性质,基本不等式的应用.【名师点睛】本题考查抛物线的性质,结合题意要求,利用抛物线的参数方程表示出抛物线上点P 的坐标,利用向量法求出点M 的坐标,是我们求点坐标的常用方法,由于要求最大值,因此我们把k 斜率用参数t 表示出后,可根据表达式形式选用函数,或不等式的知识求出最值,本题采用基本不等式求出最值.4.【2016高考新课标1卷】以抛物线C 的顶点为圆心的圆交C 于A 、B 两点,交C 的准线于D 、E 两点.已知|AB |=42,|DE|=25,则C 的焦点到准线的距离为 (A)2 (B)4 (C)6 (D)8 【答案】B 【解析】考点:抛物线的性质。

【名师点睛】本题主要考查抛物线的性质及运算,注意解析几何问题中最容易出现运算错误,所以解题时一定要注意运算的准确性与技巧性,基础题失分过多是相当一部分学生数学考不好的主要原因.5.【2015高考四川,理10】设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r的取值范围是()(A )()13,(B )()14,(C )()23,(D )()24, 【答案】D 【解析】显然当直线l 的斜率不存在时,必有两条直线满足题设.当直线l 的斜率存在时,设斜率为k .设11221200(,),(,),,(,)A x y B x y x x M x y ≠,则21122244y x y x ⎧=⎪⎨=⎪⎩,相减得121212()()4()y y y y x x +-=-.由于12x x ≠,所以12121222y y y y x x +-⋅=-,即02ky =.圆心为(5,0)C ,由CM AB ⊥得00001,55y k ky x x -⋅=-=--,所以0025,3x x =-=,即点M 必在直线3x=上.将3x =代入24y x=得2012,2323y y =∴-<<.因为点M 在圆()()22250x y r r -+=>上,所以22222000(5),412416x y r r y -+==+<+=.又2044y +>(由于斜率不存在,故00y ≠,所以不取等号),所以204416,24y r <+<∴<<.选D.xyABCFO M利用这个范围即可得到r 的取值范围。

6.【2015高考浙江,理5】如图,设抛物线24y x =的焦点为F ,不经过焦点的直线上有三个不同的点A ,B ,C ,其中点A ,B 在抛物线上,点C 在y 轴上,则BCF ∆与ACF ∆的面积之比是( )A. 11BF AF --B. 2211BF AF --C. 11BF AF ++D. 2211BF AF ++ 【答案】A. 【解析】11--===∆∆AF BF x x AC BC S S A B ACF BCF ,故选A. 【考点定位】抛物线的标准方程及其性质【名师点睛】本题主要考查了抛物线的标准方程及其性质,属于中档题,解题时,需结合平面几何中同高的三角形面积比等于底边比这一性质,结合抛物线的性质:抛物线上的点到准线的距离等于其到焦点的距离求解,在平面几何背景下考查圆锥曲线的标准方程及其性质,是高考中小题的热点,在复习时不能遗漏相应平面几何知识的复习.7.【2017课标II,理16】已知F是抛物线C:28y x=的焦点,M是C上一点,FM的延长线交y轴于点N。

若M为FN的中点,则FN=。

【答案】6【解析】试题分析:点A,【考点】抛物线的定义;梯形中位线在解析几何中的应用。

【名师点睛】抛物线的定义是解决抛物线问题的基础,它能将两种距离(抛物线上的点到焦点的距离、抛物线上的点到准线的距离)进行等量转化。

如果问题中涉及抛物线的焦点和准线,又能与距离联系起来,那么用抛物线定义就能解决问题。

因此,涉及抛物线的焦半径、焦点弦问题,可以优先考虑利用抛物线的定义转化为点到准线的距离,这样就可以使问题简单化。

8.【2016高考天津理数】设抛物线222x pty pt⎧=⎨=⎩,(t为参数,p>0)的焦点为F,准线为l.过抛物线上一点A作l的垂线,垂足为B.设C(72p,0),AF与BC相交于点E.若|CF|=2|AF|,且△ACE的面积为32则p的值为_________.6试题分析:抛物线的普通方程为22y px =,(,0)2p F ,7322pCF p p =-=,又2CF AF =,则32AF p =,由抛物线的定义得32AB p =,所以A x p =,则||2A y p =,由//CF AB 得EF CF EA AB =,即2EF CFEA AF==,所以262CEF CEA S S ∆∆==,92ACF AEC CFE S S S ∆∆∆=+=,所以132922p p ⨯⨯=,6p =.考点:抛物线定义【名师点睛】1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理. 2.若P (x 0,y 0)为抛物线y 2=2px (p >0)上一点,由定义易得|PF |=x 0+p2;若过焦点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则弦长为|AB |=x 1+x 2+p ,x 1+x 2可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.9.【2016高考浙江理数】若抛物线y 2=4x 上的点M 到焦点的距离为10,则M 到y 轴的距离是_______. 【答案】9 【解析】试题分析:1109M M x x +=⇒= 考点:抛物线的定义.【思路点睛】当题目中出现抛物线上的点到焦点的距离时,一般会想到转化为抛物线上的点到准线的距离.解答本题时转化为抛物线上的点到准线的距离,进而可得点到y 轴的距离.10.【2017北京,理18】已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.【答案】(Ⅰ)方程为2y x =,抛物线C 的焦点坐标为(14,0),准线方程为14x =-.(Ⅱ)详见解析.试题分析:(Ⅰ)代入点P求得抛物线的方程,根据方程表示焦点坐标和准线方程;(Ⅱ)设直线l的方程为12 y kx=+(0k≠),与抛物线方程联立,得到根与系数的关系,直线ON的方程为22yy xx=,联立求得点B的坐标2112(,)y yxx,证明1211220y yy xx+-=.试题解析:解:(Ⅰ)由抛物线C:22y px=过点P(1,1),得12p=.所以抛物线C的方程为2y x=.抛物线C的焦点坐标为(14,0),准线方程为14x=-.21122112112222y y y y y y x xy xx x+-+-=122112211()()222kx x kx x x xx+++-=122121(22)()2k x x x xx-++=22211(22)42kkk kx--⨯+=0=,所以211122y yy xx+=.故A为线段BM的中点.【考点】1.抛物线方程;2.直线与抛物线的位置关系【名师点睛】本题考查了直线与抛物线的位置关系,考查了转换与化归能力,当看到题目中出现直线与圆锥曲线时,不需要特殊技巧,只要联立直线与圆锥曲线的方程,借助根与系数关系,找准题设条件中突显的或隐含的等量关系,把这种关系“翻译”出来,有时不一定要把结果及时求出来,可能需要整体代换到后面的计算中去,从而减少计算量.11.【2016高考江苏卷】(本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线2:y 2(0)C px p => (1)若直线l 过抛物线C 的焦点,求抛物线C 的方程; (2)已知抛物线C 上存在关于直线l 对称的相异两点P 和Q .①求证:线段PQ 的中点坐标为(2,).p p --; ②求p 的取值范围.【答案】(1)x y 82=(2)①详见解析,②)34,0( 【解析】值范围。

相关文档
最新文档