二轮复习讲点什么
【高考二轮复习大题讲义】第1讲 求通项公式-解析版

第1讲 求通项公式公式法公式法:若判定出数列是等差数列或者等比数列,就直接带人等差数列或等比数列的通项公式()11n a a n d =+-或11n n a a q -=进行求解.【例1】已知等差数列{}n a 的前n 项和为n S ,且满足3578,2a S a ==,求数列{}n a 的通项公式.【解析】设数列{}n a 的公差为d ,依题意得()11154526,228a d a d a d ⨯⎧+=+⎪⎨⎪+=⎩ 解得123a d =⎧⎨=⎩.()()11231n a a n d n ∴=+-=+-=31n -.【例2】已知公比大于0的等比数列{}n a 的前n 项和为21,4,5n S a a =+是2S 和3a 的等差中项,求数列{}n a 的通项公式. 【解析】设数列{}n a 的公比为(0)q q >. 由题意知()12325a S a +=+,即442544q q q⎛⎫⨯+=++ ⎪⎝⎭,2 2320q q --=化简得,0,2q q >∴=,222 422n n n n a a q --∴==⨯=累加法累加法:如果递推公式的形式为1n a +-()n a f n =,则可利用累加法求通项公式. 使用时要满足:(1)等号右边为关于n 的表达式,且能够进行求和. (2)1,n n a a +的系数同构(结构相同),且为作差的形式.【例1】数列{}n a 满足:11a =,且1n a +-21nn a =+,求n a .【解析】1 21,n n n a a +-=+解 1121,n n n a a ---=+1212 1.a a -=+累加可得211222n n a a --=++++()()1221112 3.21n nn n n ---=+-=+--2 2.n n a n ∴=+-【例2】在数列{}n a 中,已知111,n n a a a +==21n -+,求数列{}n a 的通项公式. 【解析】1 21,n n a a n +=++12 1.n n a a n +∴-=+21323,5,,a a a a ∴-=-=()1212.n n a a n n --=-以上各式相加可得135n a a -=+++2(1)(321)2112n n n n -+--==-.又∵211,(2)n a a n n =∴=,显然11a =符合上式,()2*. n a n n ∴=∈N【例3】已知数列{}n a 满足:111,n a a +=-=*11,1n a n n n +-∈+N ,求数列的通项公式n a .【解析】∵1111n n a a n n +-=-+, 213241111,,1223a a a a a ∴-=--=--311111,,(2). 341n n a a a n n n-=--=-- 将以上(1)n -个式子相加得()()()213243a a a a a a -+-+-+()1n n a a -+- 11111122334⎛⎫⎛⎫⎛⎫=-+-+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111n n ⎛⎫- ⎪-⎝⎭, 即()*1112,n a a n n n-=-∈N . ∴1111111n a a n n n=+-=-+-=-()*2,n n ∈N . 当1n =时,11a =-也符合上式,∴()*1n a n n=-∈N . 累乘法累乘法:如果递推公式的形式为:()1n na f n a +=,则可利用累乘法求通项公式. 【例1】已知数列{}n a 满足:11a =,且()11n n na n a +=+,求n a . 【解析】()1111.n n n n a n na n a a n+++=+⇒=解 12121111122....1.n n n n n n a a a n n a a a n n a n a a na n ----∴⋅⋅=⋅⋅--⇒=∴==【例2】已知数列满足:12,(a n =+1)()122n n a n a +=+,求数列{}n a 的通项公式. 【解析】()()()()()()()()111324112311111*122,22,12.34511.23422.1,2,12.n n n n n nn n n n n n a n a n aa n a a a a a a a a a a n a n n n n a a n n ++----+=++∴=+=⋅⋅⋅⋅=+⎛⎫⋅⨯⨯⨯⨯=+ ⎪⎝⎭==∴=+⋅∈N 解则当时满足上式 【例3】数列{}n a 满足:()()()21*112,21223n n n n a a a n +++=-=-∈N ,求{}n a 的通项公式.【解析】由()()2112122n n n n a a +++-=-得1122222122121n n n n n n a a ++++--==⋅--. 12212312n n n n n n a a a a a a a a -----⋅⋅⋅⋅=⋅1231121212122212121n n n n nn ---+----⋅⋅⋅⋅---()()113121322212121n n n-+-⋅⋅=⋅---, ()()111322121n n n n a a -+⋅=⇒--即()()()*12.2121n n n n a n +=∈--N 构造法构造法的核心步骤:第一步:恒等变形.对递推公式(相邻几项的式子)进行恒等式变形,所谓恒等变形就是对等式两边的项进行同加、同减、同乘、同除或者拆分合并.第二步:同构式.恒等变形的目的是变形出同构式,所谓同构式就是结构相同的式子,如:2n n a 和112n n a --是同构式. 第三步:整体代换.将同构式视为一个整体,整体代换后构造出新的等差数列或者等比数列,该数列作为辅助数列.通过求出辅助数列的通项公式,便可算出原数列的通项公式,以下是我们需要重点掌握的几种常见的构造法的结构. 结构一:一次函数结构型递推公式的结构如同一次函数结构型:n a =1(,n qa p q p -+均为常数,且1,0)q p ≠≠. 一般方法:设()1n n a q a λλ-+=+,得到()1,1p p q q λλ=-=-,可得出数列1n p a q ⎧⎫+⎨⎬-⎩⎭是以q 为公比的等比数列,从而可求出n a .【例1】在数列{}n a 中,111,3n n a a a -==+2,求数列{}n a 的通项公式. 【解析】设()13n n a a λλ-+=+即132n n a a λ-=+. 对比132n n a a -=+,可得1λ=.()1131n n a a -∴+=+.{}13n a ∴+是公比为.的等比数列 ()11 113.n n a a -∴+=+⋅123 1.n n a -∴=⋅-注意:在这里,{}1n a +即为同构式,把这个式子作为整体,就能构造出一个新的等比数列,这一种结构()11,0n n a qa p q p -=+≠≠的处理方式也是固定的,就是直接设出()1n n a q a λλ-+=+,求解出λ即可.【例2】在数列{}n a 中,111,2n n a a a +==+1,试求其通项公式. 【解析】121n n a a +=+,两边同时加上1,得()1121n n a a ++=+,1111 2.11,1 2.n n a a a a ++=+=∴+=则因此,数列{}1n a +是以2为首项,以2为公比的等比数列.1122,2 1.n n n n a a -∴+=⨯=-结构二:一次函数结构变形递推公式的结构形如1n n a N a -=⋅+(,,nM p N p M ⋅为常数).一般方法:此类问题可先处理n p ,两边同时除以np ,得1n n n na a N M p p -=+,进而构造成11n n n n a a N M p p p--=⋅+,设n n n a b p =,从而变成1n n Nb b M p -=⋅+,从而将问题转化为一次函数结构型.【例1】在数列{}n a 中,111,3n n a a a -==+23n ⋅,求数列{}n a 的通项公式. 【解析】111 323, 2.?33n n n n n nn a a a a ---=+⋅∴=+解 23n n a ⎧⎫∴⎨⎬⎩⎭是公差为的等差数列。
高考政治二轮复习 第一编 专题精讲一 社会再生产

(2)货币政策和财政政策
政策
具体措施
市场中的货币量
货币政策
积极的货币政策 从紧的货币政策
下调存贷款基准利率和存 款准备金率
提高存贷款基准利率和存 款准备金率
增加 减少
财政政策
扩张性财政政策 紧缩性财政政策
减少税收,增加财政支出 增加税收,减少财政支出
增加 减少
(3)通货膨胀与通货紧缩
通货膨胀
通货紧缩
(4)扩大内需应采取的举措。 第一,建立扩大消费需求的长效机制。把扩大消费需求作为扩大内需的战略 重点,进一步释放城乡居民消费潜力,逐步使我国国内市场总体规模位居世 界前列。
①要积极稳妥推进城镇化,大力发展服务业和中小企业,增加就业创业机会。 ②要完善收入分配制度,合理调整国民收入分配格局,着力提高城乡中低收入居 民收入,增强居民消费能力。 ③要增加政府支出用于改善民生和社会事业比重,扩大社会保障制度覆盖面,逐 步完善基本公共服务体系,形成良好的居民消费预期。 ④要加强市场流通体系建设,发展新型消费业态,拓展新兴服务消费,完善鼓励 消费的政策,改善消费环境,保护消费者权益,积极促进消费结构升级。 ⑤要合理引导消费行为,发展节能环保型消费品,倡导与我国国情相适应的文明、 节约、绿色、低碳消费模式。
3.坚持扩大内需战略,保持经济平稳较快发展
(1)扩大内需的含义。 内需即国内需求,包括投资需求和消费需求两个方面。扩大内需 是指通过综合运用各种宏观措施,启动投资市场和消费市场,以 拉动经济增长。
(2)拉动经济增长的主要动力——投资、消费、净出口。 从支出角度分析,GDP是投资、消费、净出口这三种需求之和, GDP的增长是由投资、消费、净出口这三大需求的增长组合决定。 因此经济学上常把投资、消费、净出口比喻为拉动GDP增长的 “三驾马车”,前两项称为内需。扩大内需主要是通过扩大国内 投资和国内消费来带动国民经济增长。
2023高三语文高考第二轮复习计划(10篇)

2023高三语文高考第二轮复习计划(10篇)高三语文高考第二轮复习计划篇1一、总体设想复习指导思想:依照循序渐进的原则,夯实基础,开拓视野,总结方法,提升能力。
复习安排:第一轮(20__年8月7号——20__年4月10号)结合课本,夯实基础;专题讲练,逐项过关。
二、考点分析1.语言知识(1)字音《普通话异读词审音表》,课下注解、课后附录。
关注多音字、形声字、统读字、易混字的读音。
(2)字形《第一批异形词整理表》,辨析音、形相近的字。
(3)词语掌握辨析近义词的方法,了解常用虚词及复句的相关知识,注重熟语的积累及正确使用,重点掌握常见错误类型。
(4)病句熟练掌握《考试说明》中的六种类型,培养分析能力,总结辨析方法。
(5)标点无需面面俱到,重点弄清几种常见易错标点符号用法(引号、冒号、分号、问号、顿号等)2.语言运用复习常见类型,关注新题型,多做创新题;贴近生活,注重实用。
3.名句名篇名句名篇重点在课内,暂以《语文教学大纲》要求背诵的40篇古诗文为准,课外适当扩展,读、背、默不间断。
4.现代文阅读准确理解文章内容,把握观点主旨是关键,培养阅读兴趣,总结不同类型文章的阅读方法和规律,点拨答题技巧。
5.古诗鉴赏广泛阅读,加强积累,进行鉴赏技巧的总结分析和点拨,授之以渔,以不变应万变。
6.文言文阅读注重基础知识的落实,注重翻译训练,强化语境意识,能分析概括文中观点、态度、领悟人物形象,体会表达技巧及语言特色。
7.写作训练第一学期按文体分别训练规范文,指导学生掌握写作的基本规律及写作技巧,并训练书写能力,每两周一次大作文训练,注重指导与评讲;第二学期与考试结合,按题型训练速度,精讲精练,注重积累时事焦点方面素材。
三、备考措施1.强化合作意识。
做到精诚团结,资源共享。
要做到“六个统一”:统一资料;统一教学安排;统一教学内容;统一教学方法;统一教学时间;统一教学检测。
教师分工负责相关专题,全体老师集体讨论,然后整理成为导学案,力争为学生提供最新的学习素材;研究复习备考中发现的新问题,交流复习备考经验。
高考数学二轮复习 专题一 集合、常用逻辑用语、不等式、函数与导数 第二讲 函数的图象与性质教案 理-

第二讲函数的图象与性质年份卷别考查角度及命题位置命题分析2018Ⅱ卷函数图象的识别·T3 1.高考对此部分内容的命题多集中于函数的概念、函数的性质及分段函数等方面,多以选择、填空题形式考查,一般出现在第5~10或第13~15题的位置上,难度一般.主要考查函数的定义域,分段函数求值或分段函数中参数的求解及函数图象的判断.2.此部分内容有时出现在选择、填空题压轴题的位置,多与导数、不等式、创新性问题结合命题,难度较大.函数奇偶性、周期性的应用·T11Ⅲ卷函数图象的识别·T72017Ⅰ卷函数单调性、奇偶性与不等式解法·T5Ⅲ卷分段函数与不等式解法·T152016Ⅰ卷函数的图象判断·T7Ⅱ卷函数图象的对称性·T12函数及其表示授课提示:对应学生用书第5页[悟通——方法结论]求解函数的定义域时要注意三式——分式、根式、对数式,分式中的分母不为零,偶次方根中的被开方数非负,对数的真数大于零.底数大于零且不大于1.解决此类问题的关键在于准确列出不等式(或不等式组),求解即可.确定条件时应先看整体,后看部分,约束条件一个也不能少.[全练——快速解答]1.(2016·高考全国卷Ⅱ)以下函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是( )A.y=x B.y=lg xC .y =2xD .y =1x解析:函数y =10lg x的定义域与值域均为(0,+∞).结合选项知,只有函数y =1x的定义域与值域均为(0,+∞).应选D.答案:D2.(2018·某某名校联考)函数f (x )=⎩⎪⎨⎪⎧f (x -4),x >2,e x,-2≤x ≤2,f (-x ),x <-2,那么f (-2 017)=( )A .1B .eC .1eD .e 2解析:由题意f (-2 017)=f (2 017),当x >2时,4是函数f (x )的周期,所以f (2 017)=f (1+4×504)=f (1)=e.答案:B3.函数f (x )=x -1ln (1-ln x )的定义域为________.解析:由函数解析式可知,x 需满足⎩⎪⎨⎪⎧x -1≥01-ln x >0x >01-ln x ≠1,解得1<xf (x )=x -1ln (1-ln x )的定义域为(1,e).答案:(1,e)4.(2017·高考全国卷Ⅲ)设函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,2x,x >0,那么满足f (x )+f ⎝ ⎛⎭⎪⎫x -12>1的x 的取值X 围是__________.解析: 当x ≤0时,原不等式为x +1+x +12>1,解得x >-14,∴-14<x ≤0.当0<x ≤12时,原不等式为2x+x +12>1,显然成立.当x >12时,原不等式为2x+2x -12>1,显然成立.综上可知,x 的取值X 围是⎝ ⎛⎭⎪⎫-14,+∞.答案:⎝ ⎛⎭⎪⎫-14,+∞求函数的定义域,其实质就是以函数解析式所含运算有意义为准那么,列出不等式或不等式组,然后求出解集即可.2.分段函数问题的5种常见类型及解题策略 常见类型 解题策略求函数值弄清自变量所在区间,然后代入对应的解析式,求“层层套〞的函数值,要从最内层逐层往外计算求函数最值 分别求出每个区间上的最值,然后比较大小解不等式根据分段函数中自变量取值X 围的界定,代入相应的解析式求解,但要注意取值X 围的大前提求参数 “分段处理〞,采用代入法列出各区间上的方程利用函数性质求值必须依据条件找到函数满足的性质,利用该性质求解函数图象及应用授课提示:对应学生用书第5页[悟通——方法结论]1.作函数图象有两种基本方法:一是描点法、二是图象变换法,其中图象变换有平移变换、伸缩变换、对称变换等.2.利用函数图象可以判断函数的单调性、奇偶性,作图时要准确画出图象的特点.(1)(2017·高考全国卷Ⅰ)函数y =sin 2x1-cos x的部分图象大致为( )解析:令函数f (x )=sin 2x 1-cos x ,其定义域为{x |x ≠2k π,k ∈Z },又f (-x )=sin (-2x )1-cos (-x )=-sin 2x 1-cos x =-f (x ),所以f (x )=sin 2x1-cos x 为奇函数,其图象关于原点对称,故排除B ;因为f (1)=sin 2 1-cos 1>0,f (π)=sin 2π1-cos π=0,故排除A 、D ,选C.答案:C(2)(2017·高考全国卷Ⅲ)函数y =1+x +sin xx2的部分图象大致为( )解析:法一:易知函数g (x )=x +sin xx2是奇函数,其函数图象关于原点对称,所以函数y =1+x +sin xx2的图象只需把g (x )的图象向上平移一个单位长度,结合选项知选D.法二:当x →+∞时,sin x x 2→0,1+x →+∞,y =1+x +sin xx2→+∞,故排除选项B.当0<x <π2时,y =1+x +sin xx2>0,故排除选项A 、C.选D.答案:D由函数解析式识别函数图象的策略[练通——即学即用]1.(2018·高考全国卷Ⅲ)函数y =-x 4+x 2+2的图象大致为( )解析:法一:ƒ′(x )=-4x 3+2x ,那么ƒ′(x )>0的解集为⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫0,22,ƒ(x )单调递增;ƒ′(x )<0的解集为⎝ ⎛⎭⎪⎫-22,0∪⎝ ⎛⎭⎪⎫22,+∞,ƒ(x )单调递减. 应选D.法二:当x =1时,y =2,所以排除A ,B 选项.当x =0时,y =2,而当x =12时,y =-116+14+2=2316>2,所以排除C 选项.应选D. 答案:D 2.函数f (x )=⎝⎛⎭⎪⎫21+e x -1cos x 的图象的大致形状是( )解析:∵f (x )=⎝⎛⎭⎪⎫21+e x -1cos x ,∴f (-x )=⎝ ⎛⎭⎪⎫21+e -x -1cos(-x )=-⎝ ⎛⎭⎪⎫21+e x -1cosx =-f (x ),∴函数f (x )为奇函数,其图象关于原点对称,可排除选项A ,C ,又当x ∈⎝⎛⎭⎪⎫0,π2时,e x >e 0=1,21+ex -1<0,cos x >0,∴f (x )<0,可排除选项D ,应选B.答案:B3.(2018·某某调研)函数f (x )的图象如下图,那么f (x )的解析式可以是( )A .f (x )=ln|x |xB .f (x )=e xxC .f (x )=1x2-1D .f (x )=x -1x解析:由函数图象可知,函数f (xf (x )=x -1x,那么当x →+∞时,f (x )→+∞,排除D ,应选A.答案:A函数的性质及应用授课提示:对应学生用书第6页[悟通——方法结论]1.判断函数单调性的一般规律对于选择、填空题,假设能画出图象,一般用数形结合法;而对于由基本初等函数通过加、减运算或复合运算而成的函数常转化为基本初等函数单调性的判断问题;对于解析式为分式、指数函数式、对数函数式等较复杂的函数,用导数法;对于抽象函数,一般用定义法.2.函数的奇偶性(1)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称.(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.3.记住几个周期性结论(1)假设函数f(x)满足f(x+a)=-f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(2)假设函数f(x)满足f(x+a)=1f(x)(a>0),那么f(x)为周期函数,且2a是它的一个周期.(1)(2017·高考全国卷Ⅱ)函数f(x)=ln(x2-2x-8)的单调递增区间是( )A.(-∞,-2) B.(-∞,1)C.(1,+∞)D.(4,+∞)解析:由x2-2x-8>0,得x>4或x<-2.因此,函数f(x)=ln(x2-2x-8)的定义域是(-∞,-2)∪(4,+∞).注意到函数y=x2-2x-8在(4,+∞)上单调递增,由复合函数的单调性知,f(x)=ln(x2-2x-8)的单调递增区间是(4,+∞).答案:D(2)(2017·高考全国卷Ⅰ)函数f(x)在(-∞,+∞)单调递减,且为奇函数.假设f(1)=-1,那么满足-1≤f(x-2)≤1的x的取值X围是( )A.[-2,2] B.[-1,1]C.[0,4] D.[1,3]解析:∵f(x)为奇函数,∴f(-x)=-f(x).∵f(1)=-1,∴f(-1)=-f(1)=1.故由-1≤f(x-2)≤1,得f(1)≤f(x-2)≤f(-1).又f(x)在(-∞,+∞)单调递减,∴-1≤x-2≤1,∴1≤x≤3.答案:D(3)(2018·高考全国卷Ⅲ)函数ƒ(x )=ln(1+x 2-x )+1,ƒ(a )=4,那么ƒ(-a )=________.解析:∵ƒ(x )+ƒ(-x )=ln(1+x 2-x )+1+ln(1+x 2+x )+1=ln(1+x 2-x 2)+2=2,∴ƒ(a )+ƒ(-a )=2,∴ƒ(-a )=-2. 答案:-21.掌握判断函数单调性的常用方法数形结合法、结论法(“增+增〞得增、“减+减〞得减及复合函数的“同增异减〞)、定义法和导数法.2.熟知函数奇偶性的3个特点(1)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. (2)确定函数的奇偶性,务必先判断函数的定义域是否关于原点对称. (3)对于偶函数而言,有f (-x )=f (x )=f (|x |).3.周期性:利用周期性可以转化函数的解析式、图象和性质,把不在区间上的问题,转化到区间上求解.4.注意数形结合思想的应用.[练通——即学即用]1.(2018·某某模拟)以下函数中,既是奇函数又在(0,+∞)上单调递增的是( ) A .y =e x+e -xB .y =ln(|x |+1)C .y =sin x |x |D .y =x -1x解析:选项A 、B 显然是偶函数,排除;选项C 是奇函数,但在(0,+∞)上不是单调递增函数,不符合题意;选项D 中,y =x -1x 是奇函数,且y =x 和y =-1x在(0,+∞)上均为增函数,故y =x -1x在(0,+∞)上为增函数,所以选项D 正确.答案:D2.(2018·某某八中摸底)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,那么以下结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72 解析:因为函数f (x +2)是偶函数, 所以f (x +2)=f (-x +2), 即函数f (x )的图象关于x =2对称. 又因为函数y =f (x )在[0,2]上单调递增, 所以函数y =f (x )在区间[2,4]上单调递减. 因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52, 即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52. 答案:B授课提示:对应学生用书第116页一、选择题1.以下四个函数: ①y =3-x ;②y =2x -1(x >0);③y =x 2+2x -10;④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0).其中定义域与值域相同的函数的个数为( )A .1B .2C .3D .4解析:①y =3-x 的定义域和值域均为R ,②y =2x -1(x >0)的定义域为(0,+∞),值域为⎝ ⎛⎭⎪⎫12,+∞,③y =x 2+2x -10的定义域为R ,值域为[-11,+∞),④y =⎩⎪⎨⎪⎧x (x ≤0),1x(x >0)的定义域和值域均为R ,所以定义域与值域相同的函数是①④,共有2个,应选B.答案:B2.设定义在R 上的奇函数y =f (x )满足对任意的x ∈R ,都有f (x )=f (1-x ),且当x ∈[0,12]时,f (x )=(x +1),那么f (3)+f (-32)的值为( )A .0B .1C .-1D .2解析:由于函数f (x )是奇函数,所以f (x )=f (1-x )⇒f (x )=-f (x +1)⇒f (x +1)=-f (x )⇒f (x +2)=f (x ),所以f (3)=f (1)=f (1-1)=f (0)=0,f (-32)=f (12)=32f (3)+f (-32)=-1.答案:C3.函数f (x )=1+ln ()x 2+2的图象大致是( )解析:因为f (0)=1+ln 2>0,即函数f (x )的图象过点(0,ln 2),所以排除A 、B 、C ,选D.答案:D4.(2017·高考某某卷)奇函数f (x )在R 上是增函数,g (x )=xf (x ).假设a =g (-log 2 5.1),b =g (2),c =g (3),那么a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .b <a <cD .b <c <a解析:奇函数f (x )在R 上是增函数,当x >0时,f (x )>f (0)=0,当x 1>x 2>0时,f (x 1)>f (x 2)>0,∴x 1f (x 1)>x 2f (x 2),∴g (x )在(0,+∞)上单调递增,且g (x )=xf (x )是偶函数,∴a =g (-log 2 5.1)=g (log 2 5.1).易知2<log 2 5.1<3,1<2<2,由g (x )在(0,+∞)上单调递增,得g (2)<g (log 2 5.1)<g (3),∴b <a <c ,应选C.答案:C5.(2018·某某模拟)函数f (x )=e xx 的图象大致为( )解析:由f (x )=e x x ,可得f ′(x )=x e x -e x x 2=(x -1)e x x2, 那么当x ∈(-∞,0)和x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.又当x <0时,f (x )<0,应选B.答案:B6.定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,那么( )A .f (-25)<f (11)<f (80)B .f (80)<f (11)<f (-25)C .f (11)<f (80)<f (-25)D .f (-25)<f (80)<f (11)解析:因为f (x )满足f (x -4)=-f (x ),所以f (x -8)=f (x ),所以函数f (x )是以8为周期的周期函数,那么f (-25)=f (-1),f (80)=f (0),f (11)=f (3).由f (x )是定义在R 上的奇函数,且满足f (x -4)=-f (x ),得f (11)=f (3)=-f (-1)=f (1).因为f (x )在区间[0,2]上是增函数,f (x )在R 上是奇函数,所以f (x )在区间[-2,2]上是增函数,所以f (-1)<f (0)<f (1),即f (-25)<f (80)<f (11).答案:D7.(2018·某某模拟)函数f (x )=ex -1+4x -4,g (x )=ln x -1x ,假设f (x 1)=g (x 2)=0,那么( )A .0<g (x 1)<f (x 2)B .f (x 2)<g (x 1)<0C .f (x 2)<0<g (x 1)D .g (x 1)<0<f (x 2) 解析:易知f (x )=e x -1+4x -4,g (x )=ln x -1x在各自的定义域内是增函数,而f (0)=e -1+0-4=1e -4<0,f (1)=e 0+4×1-4=1>0,g (1)=ln 1-11=-1<0,g (2)=ln 2-12=ln 2e f (x 1)=g (x 2)=0,所以0<x 1<1,1<x 2<2,所以f (x 2)>f (1)>0,g (x 1)<g (1)<0,故g (x 1)<0<f (x 2).答案:D8.函数f (x )=(x 2-2x )·sin(x -1)+x +1在[-1,3]上的最大值为M ,最小值为m ,那么M +m =( )A .4B .2C .1D .0 解析:f (x )=[(x -1)2-1]sin(x -1)+x -1+2,令t =x -1,g (t)=(t 2-1)sin t +t ,那么y =f (x )=g (t)+2,t ∈[-2,2].显然M =g (t)max +2,m =g (t)min +2.又g (t)为奇函数,那么g (t)max +g (t)min =0,所以M +m =4,应选A.答案:A9.g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,g (x ),x >0,假设f (2-x 2)>f (x ),那么x 的取值X 围是( ) A .(-∞,-2)∪(1,+∞)B .(-∞,1)∪(2,+∞)C .(-2,1)D .(1,2)解析:因为g (x )是定义在R 上的奇函数,且当x <0时,g (x )=-ln(1-x ),所以当x >0时,-x <0,g (-x )=-ln(1+x ),即当x >0时,g (x )=ln(1+x ),那么函数f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0,作出函数f (x )的图象,如图:由图象可知f (x )=⎩⎪⎨⎪⎧ x 3,x ≤0,ln (1+x ),x >0在(-∞,+∞)上单调递增. 因为f (2-x 2)>f (x ),所以2-x 2>x ,解得-2<x <1,应选C.答案:C10.(2018·高考全国卷Ⅱ)ƒ(x )是定义域为(-∞,+∞)的奇函数,满足ƒ(1-x )=ƒ(1+x ).假设ƒ(1)=2,那么ƒ(1)+ƒ(2)+ƒ(3)+…+ƒ(50)=( )A .-50B .0C .2D .50解析:∵ƒ(x )是奇函数,∴ƒ(-x )=-ƒ(x ),∴ƒ(1-x )=-ƒ(x -1).由ƒ(1-x )=ƒ(1+x ),∴-ƒ(x -1)=ƒ(x +1),∴ƒ(x +2)=-ƒ(x ),∴ƒ(x +4)=-ƒ(x +2)=-[-ƒ(x )]=ƒ(x ),∴函数ƒ(x )是周期为4的周期函数.由ƒ(x )为奇函数得ƒ(0)=0.又∵ƒ(1-x )=ƒ(1+x ),∴ƒ(x )的图象关于直线x =1对称,∴ƒ(2)=ƒ(0)=0,∴ƒ(-2)=0.又ƒ(1)=2,∴ƒ(-1)=-2,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)=ƒ(1)+ƒ(2)+ƒ(-1)+ƒ(0)=2+0-2+0=0,∴ƒ(1)+ƒ(2)+ƒ(3)+ƒ(4)+…+ƒ(49)+ƒ(50)=0×12+ƒ(49)+ƒ(50)=ƒ(1)+ƒ(2)=2+0=2.应选C.答案:C11.定义在R 上的函数f (x )对任意0<x 2<x 1都有f (x 1)-f (x 2)x 1-x 2<1,且函数y =f (x )的图象关于原点对称,假设f (2)=2,那么不等式f (x )-x >0的解集是( )A .(-2,0)∪(0,2)B .(-∞,-2)∪(2,+∞)C .(-∞,-2)∪(0,2)D .(-2,0)∪(2,+∞) 解析:由f (x 1)-f (x 2)x 1-x 2<1, 可得[f (x 1)-x 1]-[f (x 2)-x 2]x 1-x 2<0.令F (x )=f (x )-x ,由题意知F (x )在(-∞,0),(0,+∞)上是减函数,又是奇函数,且F (2)=0,F (-2)=0,所以结合图象,令F (x )>0,得x <-2或0<x <2,应选C.答案:C12.(2018·某某三市联考)函数f (x )=e |x |,函数g (x )=⎩⎪⎨⎪⎧ e x ,x ≤4,4e 5-x ,x >4对任意的x ∈[1,m ](m >1),都有f (x -2)≤g (x ),那么m 的取值X 围是( )A .(1,2+ln 2) B.⎝ ⎛⎭⎪⎫2,72+ln 2 C .(ln 2,2] D.⎝ ⎛⎦⎥⎤1,72+ln 2 解析:作出函数y 1=e |x -2|和y =g (x )的图象,如下图,由图可知当x=1时,y 1=g (1),又当x =4时,y 1=e 2<g (4)=4e ,当x >4时,由ex -2≤4e 5-x ,得e 2x -7≤4,即2x -7≤ln 4,解得x ≤72+ln 2,又m >1,∴1<m ≤72+ln 2.答案:D二、填空题13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),那么f ⎝ ⎛⎭⎪⎫-52=________.解析:由题意得f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫2-52=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=-12. 答案:-1214.假设函数f (x )=x (x -1)(x +a )为奇函数,那么a =________.解析:法一:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-x )=-f (x )对x ∈R 恒成立,所以-x ·(-x -1)(-x +a )=-x (x -1)(x +a )对x ∈R 恒成立,所以x (a -1)=0对x ∈R 恒成立,所以a =1.法二:因为函数f (x )=x (x -1)(x +a )为奇函数,所以f (-1)=-f (1),所以-1×(-1-1)×(-1+a )=-1×(1-1)×(1+a ),解得a =1.答案:115.函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,那么实数a 的取值X 围是________.解析: 当x ≥1时,f (x )=2x -1≥1,∵函数f (x )=⎩⎪⎨⎪⎧ (1-2a )x +3a ,x <1,2x -1,x ≥1的值域为R ,∴当x <1时,(1-2a )x +3a 必须取遍(-∞,1)内的所有实数,那么⎩⎪⎨⎪⎧ 1-2a >0,1-2a +3a ≥1,解得0≤a <12. 答案:⎣⎢⎡⎭⎪⎫0,12 16.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),那么对函数y =f (x )有以下判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6]上图象是往下的,所以①②④正确,③错误.答案:①②④。
二轮复习第三讲14、15世纪至19世纪中期的世界与中国

政治:君主专制空前强化(明太祖废丞相,明成祖设内阁;康熙 设南书房;雍正设军机处),统一多民族国家进一步发展巩固。
经济:封建农耕经济高度发达,城镇商业呈现繁荣景象,货币 作用越来越大,出现“商帮”。民营手工业发展迅速,出现资本 主义萌芽。政府奉行“重农抑商”,实行海禁和“闭关锁国”政 策。阻碍资本主义萌芽的发展,使中国逐渐落后于世界发展的潮 流。
思想文化:理学仍占据主流地位,传统文化中萌生反专制的进 步思想;文学艺术进一步大众化、世俗化,出现反封建的文学作 品;传统科技步入总结,西学东渐出现。
a.议会改革:如1832年议会改革 ; b.责任内阁制形成(王权与行政权分立) :
首相由下议院多数党领袖担任;首相提名各部大臣;内阁全体 成员对政府事务集体负责,并与首相在政治上共进退。如果议会 通过了对政府的不信任案,内阁就要下台,或者宣布解散议会, 重新进行选举。
首相权力:掌握国家行政大权,并通过议会掌握立法权
民主与共和
“民主”强调人民主权,“共和”主张分权制衡
“共和”强调在将“国家权力属于人民”落实为具体的制度规划 时,应重点防范国家权力“归于私人”。“共和”不主张“议会至 上”原则而视“行政为听差”、“司法委仆从”,强调分权制衡以 保证“效率”和公正。还主张通过两院制来实现议会内部权力结构 的平衡。
1.欧美的民主思想与实践
分析欧美资产阶级革命爆发的原因: 经济:资本主义经济的发展 阶级:资产阶级力量(英国:新贵族)的壮大 思想文化:启蒙思想的传播(英国:宗教因素、传统) 现实:统治阻碍资本主义发展(德国:分裂)
(1)英国:确立君主立宪制 ①确立标志:
高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
2022届高考物理二轮复习 3.1 电场的性质 带电粒子在电场中的运动 讲义

专题三电场与磁场第1讲电场的性质带电粒子在电场中的运动基本知能:考点一| 电场的性质1.电场中各物理量的关系2.电势高低的比较(1)根据电场线方向判断,沿着电场线方向,电势越来越低。
(2)将带电荷量为+q的电荷从电场中的某点移至无穷远处时,电场力做正功越多,则该点的电势越高。
(3)根据电势差U AB=φA-φB判断,若U AB>0,则φA>φB,反之φA<φB。
3.电势能变化的判断(1)根据电场力做功判断,若电场力对电荷做正功,电势能减少;反之则增加。
即W=-ΔE p。
(2)根据能量守恒定律判断,电场力做功的过程是电势能和其他形式的能相互转化的过程,若只有电场力做功,电荷的电势能与动能相互转化,总和应保持不变,即当动能增加时,电势能减少。
4.掌握图象问题的四个关键(1)根据v t 图象中速度变化、斜率确定电荷所受合力的方向与合力大小变化,确定电场的方向、电势高低及电势能变化。
(2)电场强度的大小等于φ x 图线的斜率大小,电场强度为零处,φ x 图线存在极值,其切线的斜率为零。
(3)E x 图象中图线与x 轴围成的“面积”表示电势差,“面积”大小表示电势差大小。
(4)E p x 图象中图线的切线斜率大小等于电场力大小。
5.掌握平行板电容器的两个重要结论(1)电容器与电路(或电源)相连,则两端电压取决于电路(或电源),稳定时相当于断路,两端电压总等于与之并联的支路电压。
(2)充电后电容器与电路断开,电容器所带电荷量不变,此时若只改变两板间距离,则板间电场强度大小不变。
必须记住的三个公式定义式C =Q U ,决定式C =εr S 4πkd ,关系式E =U d .电场中力与能的综合[典例1] (多选)(2021·湖南卷)如图,圆心为O 的圆处于匀强电场中,电场方向与圆平面平行,ab 和cd 为该圆直径。
将电荷量为q (q >0)的粒子从a 点移动到b 点,电场力做功为2W (W >0);若将该粒子从c 点移动到d 点,电场力做功为W 。
2023版高考语文二轮总复习 第1部分 考点精讲 复习板块3 语言文字运用

第一部分复习板块三一、(2022·高考语文模拟,新编)语言文字运用(一)语言文字运用Ⅰ阅读下面的文字,完成1~3题。
为庆祝建党百年,中央广播电视总台推出大型融媒体特别节目《追寻——红色家书背后的故事》。
节目将不同时代共产党员的红色家书为切入点,将这些可以堪称绝妙的文章通过文情并茂的演绎奉献给观众,极大地满足了受众的欣赏。
当今时代,互联网发展迅速,音频已成为走在移动互联网发展前沿的媒体。
声音凭借着单纯的信息维度,流水般汹涌地涌入听者的身体,更能直击人心。
情感放大是中国特色节目中不可或缺的元素,《追寻》将百封家书用震撼人心的讲述和__①__的吟诵传递出人间至美之情。
一封封浸染着父母之恩、夫妻之爱、兄弟之情的家书,透过声音,连着时空,栩栩如生。
《追寻》以一种__②__的方式对经典人物、故事进行了生动演绎,更多革命烈士将被我们了解、认知、传诵。
通过《追寻》,我们认识了裘古怀,“同志们,壮大我们的革命武装力量争取胜利吧!”他的临终遗言__③__,令人动容。
《追寻》展现了信仰的力量、人性的光辉,将红色文化以受众喜闻乐见的方式传播了出去。
1.请在文中横线处填入恰当的成语。
答:①声情并茂②别出心裁③振聋发聩【解析】第①空,语境修饰“吟诵”,形容吟诵的声音动听,情感充沛,故填“声情并茂”。
声情并茂:(演唱、朗诵等)声音优美,感情丰富。
第②空,语境强调这种演绎方式构思新颖,故填“别出心裁”。
别出心裁:另有一种构思或设计,指想出的办法与众不同。
第③空,语境强调他的临终遗言有号召力,唤醒了众人,故填“振聋发聩”。
振聋发聩:比喻用语言文字唤醒糊涂麻木的人,使他们清醒过来。
其他答案,合乎语境亦可得分。
2.文中画波浪线的句子有语病,请进行修改,使语言表达准确流畅。
可少量增删词语,不得改变原意。
答:(示例)节目以不同时代共产党员的红色家书为切入点,将这些堪称绝妙的文章通过文情并茂的演绎奉献给观众,极大地满足了受众的欣赏要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二轮复习讲点什么?
文■面向太阳
很多教师感觉在高三二轮复习的时候上课没有什么东西可讲的,发下去试卷以后学生对对答案就算完成了任务。
很多学生认为高三后期上课收效不大,因此很多学生上课不是非常的认真听讲,甚至有的人想在家里自己复习。
究其原因如果从教师的角度来说就是教师讲课不分轻重,面面俱到。
其实试卷上大多数题目学生可自行解决,如果上课时再眉毛胡子一把抓,学生自然会厌烦,感觉是浪时间。
所以要根据课前调查精心备课,将课上的主要精力、时间集中到存在问题最突出、最主要和学生最想知道的问题上来。
根据学生试卷的情况,讲解要具有针对性和有效性,找出学生答题出现失误的“问题”所在,透彻分析,防止类似错误的再次发生。
于是上课前尽可能多地了解学生对做错的题是怎么样思考的,多问几个“为什么学生会在这道题(这类问题)上出错?”找出学生在理解物理概念、物理规律上存在的问题,在思维方式上存在的缺陷,这样上课才会提高学生的复习质量。
通常有以下几种情况需要注意:
一、讲典型错误
讲卷课不能从头讲到尾面面俱到,而是应有选择、有侧重。
否则,既浪费了学生的宝贵时间,又难有成效。
教师在每次讲卷前都要认真检查全班学生的答题情况,细致诊断学生的解答,找出错误的症结,弄清哪些题目错得多,错在哪里,学生错误共性在什么地方,典型的问题在那里。
是不是一轮复习的时候教师讲解的不到位,还是平时的驯练不到
位,是知识上的问题还是能力上的问题。
这样才能急学生之所急讲学生之所需,集中了学生的易错处和典型错例,就能激发学生的思维、加深印象,从而提高课堂效率。
同时这也能大大的节省时间,把更多的时间留给学生自己消化理解。
二、讲解题思路
进入二轮复习教学必须由重视基础知识转移到综合能力训练上来。
试题的综合程度、难度普遍加大。
这就要求教师在上课中不能简单地对答案或订正错误,而要指导学生进行考点分析即思考试题在考查什么知识点,这些知识点理解时有哪些注意点,该题是怎么考的,解题的突破口在哪里,什么又是最佳解题途径。
这样才能培养学生的辨别分析能力。
因此教师在上课时应时刻做好思维的示范,要将严谨、富有逻辑性的解题规范清晰地展现在学生面前。
三、讲解题技巧
物理复习资料层出不穷,可谓题海无涯。
教师对习题的精选是练习的前提,而且教师要善于将题型分类,总结解题方法与技巧或教会学生进行小结归纳。
物理问题中,一题多解者屡见不鲜,力的观点与能量的观点则几乎是联系和贯穿所有知识点的两条主线。
一题多解、巧解这类题都要求学生对物理规律有深刻理解,对物理情景能分析透彻、清晰,对物理知识能综合、灵活地运用。
例如:整体法、隔离法、等效法、对称法、图像法、守恒法、微元法等。
又如针对不同题型的应试策略和特殊解法,公式法、几何法、图象法和比例法等。
上课时教师应有意识地
贯输给学生此类技巧,哪样才能达到提高解题速度。
总之,教师要强调在订正过程中应重在解法的领会,而不应停留在具体知识的得失上。
四、讲拓展发散
高考每年所考的知识点是相对稳定的,而试题不同,命题人可以随意变化题意、角度,在题设条件、问题的设问方式上推陈出新,让应试者眼花缭乱、防不胜防。
高考题物理模型基本都是清晰的,不少题型都是常见的,很多试题源于课本却又高于课本,只是变化了情境,学生很可能就会由于思维的定势造成失分,因此善于分析和应变最为关键。
所以每道题按原题讲完之后,教师要把原题进行变化,同学生一起进行解题后的小结与反思。
即对某知识从多个侧面、多个角度进行合理的发散。
常见的有情境、迁移、应用、图象、综合等几种发散形式。
如可以对原题的提问方式进行改变、对原题的结论进行衍生和扩展、由一般到特殊或由特殊到一般、也可把习题的因果关系倒置、还可把几条题目几个过程进行组合等等。
这种训练立足于基础,不刻意求难,注重渐进、合理性,学生感到别开生面,解题的积极性就能调动起来,思维就被拓展开阔起来,这就是我们所说的老题新讲,学生才能感觉到有滋味。