2018年秋高中数学第二章基本初等函数Ⅰ2.2对数函数2.2.2第1课时对数函数的图象及其性质练习新人教A版必修1
高中数学第二章基本初等函数(ⅰ)2.2对数函数2.2.1第1课时对数aa高一数学

①log28=3;②log
12/12/2021
1 2
14=2;③logaa2=2(a>0,且
a≠1);④log3217=-3.
第八页,共二十七页。
[解析] (1)①3=log 1 18;②-2=log319;③3=log464;④x=log 1 3.
2
3
(2)①23=8;②122=14;③a2=a2(a>0,且 a≠1);④3-3=217.
12/12/2021
∴x=3.即 log327=3.………………12 分 [点评] 无理式的运算是易错点要多加练习.
第二十一页,共二十七页。
1.已知
log2x=3,则
x
1 2
等于(
1
1
A.3
B.2 3
1 C.3 3
D.
2 4
解析:由 log2x=3 得 x=23,
∴x =(2 ) 1
12/12/20221
12/12/2021
第十七页,共二十七页。
指数与对数互化的本质: 指数式 ab=N(a>0,且 a≠1)与对数式 b=logaN(a>0,a≠1,N>0)之间是一种等价 关系.已知对数式可以转化成指数式,指数式同样可以转化成对数式.
12/12/2021
第十八页,共二十七页。
3.求下列各式的值:
(1)log4(3x-1)=1; (2)logx4=2;
(3)log(
2-1)
1 3+2
=x. 2
12/12/2021
第十九页,共二十七页。
解析:(1)由 log4(3x-1)=1,得 3x-1=4, ∴x=53.
(2)由 logx4=2,得 x2=4,∴x=2(x=-2 舍去).
2018-2019学年度高中数学 第二章 基本初等函数(Ⅰ)2.2 对数函数 2.2.2 第一课时

第一课时对数函数的图象及性质【选题明细表】1.对数函数的图象过点M(16,4),则此对数函数的解析式为( D )(A)y=log4x (B)y=lo x(C)y=lo x (D)y=log2x解析:设对数函数为y=log a x(a>0,且a≠1),由于对数函数的图象过点M(16,4),所以4=log a16,得a=2.所以对数函数的解析式为y=log2x,故选D.2.下列函数①y=2x;②y=log0.5(x+1);③y=;④y=|x-1|中,在区间(0,1)上单调递减的函数的序号是( D )(A)①③ (B)②③ (C)①④ (D)②④解析:函数①y=2x在区间(0,1)上单调递增;②y=log0.5(x+1)在区间(0,1)上单调递减;③y=在区间(0,1)上单调递增;④y=|x-1|在区间(0,1)上单调递减.故选D.3.(2018·长沙高一月考)函数f(x)=+lg(1+x)的定义域是( C )(A)(-∞,-1) (B)(1,+∞)(C)(-1,1)∪(1,+∞) (D)(-∞,+∞)解析:由题意知解得x>-1,且x≠1.故选C.4.(2018·唐山高一检测)若函数f(x)=log a(x+b)的图象如图,其中a,b为常数,则函数g(x)=a x+b 的图象大致是( D )解析:由函数f(x)=log a(x+b)的图象可知,函数f(x)=log a(x+b)在(-b, +∞)上是减函数,所以0<a<1且0<b<1,所以g(x)=a x+b在R上是减函数,故排除A,B.由g(x)的值域为(b,+∞),所以g(x)=a x+b的图象应在直线y=b的上方,故排除C.故选D.5.若函数y=f(x)是函数y=3x的反函数,则f()的值为( B )(A)-log23 (B)-log32 (C) (D)解析:由题意可知f(x)=log3x,所以f()=log3=-log32,故选B.6.函数f(x)=|lo x|的单调增区间为.解析:由函数f(x)=|lo x|可得函数的大致图象如图所示,所以函数的单调增区间为[1,+∞).答案:[1,+∞)7.函数f(x)=log2(4-x2)的定义域为,值域为 ,不等式f(x)>1的解集为.解析:依题意得4-x2>0,解得-2<x<2,所以该函数的定义域为(-2,2).因为4-x2>0,所以(4-x2)max=4,所以在(-2,2)上,该函数的值域为(-∞,2].由f(x)>1得到log2(4-x2)>1,则4-x2>2,解得-<x<.故不等式f(x)>1的解集为(-,).答案:(-2,2) (-∞,2] (-,)8.已知函数f(x)=log a(1+x),g(x)=log a(1-x)(a>0且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.解:(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x).①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.综上,a>1时,x∈(0,1),0<a<1时,x∈(-1,0).9.函数y=log2|x|的图象大致是( A )解析:因为函数y=log2|x|是偶函数,且在(0,+∞)上为增函数,结合图象可知A正确.10.设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0的x的取值范围是.解析:根据题意画出f(x)的草图,由图象可知,f(x)>0的x的取值范围是-1<x<0或x>1.答案:(-1,0)∪(1,+∞)11.函数f(x)=log2(-1)(x>8)的值域是 .解析:因为x>8,所以-1>2,由于对数函数的底数2大于1,说明函数为增函数.所以f(x)>log22=1,故函数的值域为(1,+∞).答案:(1,+∞)12.设f(x)=(1)求f(log2)的值;(2)求f(x)的最小值.解:(1)因为log2<log22=1,所以f(log2)===.(2)当x∈(-∞,1]时,f(x)=2-x=()x在(-∞,1]上是减函数,所以f(x)的最小值为f(1)=.当x∈(1,+∞)时,f(x)=(log3x-1)(log3x-2),令t=log3x,则t∈(0,+∞),f(x)=g(t)=(t-1)(t-2)=(t-)2-,所以f(x)的最小值为g()=-.综上可知,f(x)的最小值为-.13.已知函数f(x)=2x-.(1)若f(x)=2,求x的值;(2)若2t f(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围. 解:(1)当x<0时,f(x)=0;当x≥0时,f(x)=2x-.由条件可知2x-=2,即22x-2·2x-1=0,解得2x=1±.因为2x>0,所以2x=1+,x=log2(1+).(2)当t∈[1,2]时,2t(22t-)+m(2t-)≥0,即m(22t-1)≥-(24t-1).因为22t-1>0,所以m≥-(22t+1).因为t∈[1,2],所以-(1+22t)∈[-17,-5].故m的取值范围是[-5,+∞).。
学高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.1第

(3)ln 10=2.303; (4)lg 0.01=-2.
解:(1)log5625=4. (2)log1 5.73=m.
3
(3)e2.303=10. (4)10-2=0.01.
误区警示 在利用ax=N(a>0,且a≠1)⇔x=logaN(a>0,且a≠1)进行互化 时,要分清各字母或数字分别在指数式和对数式中的位置.
知识探究
1.对数的概念 一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN , 其中a叫做对数的 底数 ,N叫做 真数 .
2.常用对数与自然对数 (1)常用对数:通常我们将以 10 为底的对数叫做常用对数,记作 lg N . (2)自然对数:以 e 为底的对数称为自然对数,记作 ln N .
即时训练
2-1:计算:(1)log927;(2) log4 3
81;(3) log 3 54
625.
解:(1)设 x=log927,则 9x=27,32x=33,所以 x= 3 . 2
x
(2)设 x= log4 3 81,则( 4 3 )x=81, 34 =34,所以 x=16.
(3)令 x= log 3 54
3.对数loga N(a>0,且a≠1)具有下列简单性质 (1) 负数和零 没有对数,即N > 0; (2)1的对数为 零 ,即loga1= 0 ;
(3)底数的对数等于 1 ,即logaa= 1 ; (4) aloga N = N . 探究:为什么零和负数无对数?
答案:由对数的定义:ax=N(a>0且a≠1),则总有N>0,所以转化为对数式 x=loga N时,不存在N≤0的情况.
即时训练 1-1:将下列指数式与对数式互化:
2018年秋高中数学 第二章 基本初等函数(Ⅰ)2.2 对数函数 2.2.2 对数函数及其性质 第1

第1课时对数函数的图象及性质学习目标:1.理解对数函数的概念,会求对数函数的定义域.(重点、难点)2.能画出具体对数函数的图象,并能根据对数函数的图象说明对数函数的性质.(重点)[自主预习·探新知]1.对数函数的概念函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).思考1:函数y=2log3x,y=log3(2x)是对数函数吗?[提示]不是,其不符合对数函数的形式.2.对数函数的图象及性质[提示]底数a与1的关系决定了对数函数的升降;当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.3.反函数指数函数y=a x(a>0,且a≠1)和对数函数y=log a x(a>0且a≠1)互为反函数.[基础自测]1.思考辨析(1)对数函数的定义域为R.( )(2)y=log2x2与log x3都不是对数函数.( )(3)对数函数的图象一定在y轴右侧.( )(4)函数y=log2x与y=x2互为反函数.( )[答案](1)×(2)√(3)√(4)×2.函数y=log a x的图象如图221所示,则实数a的可能取值为( )图221A .5 B.15 C.1eD.12A [由图可知,a >1,故选A.]3.若对数函数过点(4,2),则其解析式为________.f (x )=log 2x [设对数函数的解析式为f (x )=log a x (a >0且a ≠1).由f (4)=2得log a 4=2,∴a=2,即f (x )=log 2x .]4.函数f (x )=log 2(x +1)的定义域为________.【导学号:37102283】(-1,+∞) [由x +1>0得x >-1,故f (x )的定义域为(-1,+∞).][合 作 探 究·攻 重 难]对数函数的概念及应用(1)下列给出的函数:①y =log 5x +1; ②y =log a x 2(a >0,且a ≠1);③y =log (3-1)x ;④y =13log 3x ;⑤y =log x 3(x >0,且x ≠1);⑥y =log 2πx .其中是对数函数的为( )A .③④⑤B .②④⑥C .①③⑤⑥D .③⑥(2)若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________.【导学号:37102284】(3)已知对数函数的图象过点(16,4),则f ⎝ ⎛⎭⎪⎫12=________. (1)D (2)4 (3)-1 [(1)由对数函数定义知,③⑥是对数函数,故选D. (2)因为函数y =log (2a -1)x +(a 2-5a +4)是对数函数, 所以⎩⎪⎨⎪⎧2a -1>0,2a -1≠1,a 2-5a +4=0,解得a =4.(3)设对数函数为f (x )=log a x (a >0且a ≠1), 由f (16)=4可知log a 16=4,∴a =2, ∴f (x )=log 2x , ∴f ⎝ ⎛⎭⎪⎫12=log 212=-1.]1.若函数f (x )=(a 2+a -5)log a x 是对数函数,则a =________. 2 [由a 2+a -5=1得a =-3或a =2. 又a >0且a ≠1,所以a =2.]对数函数的定义域求下列函数的定义域. (1)f (x )=1log 12x +1;(2)f (x )=12-x+ln(x +1); (3)f (x )=log (2x -1)(-4x +8).【导学号:37102285】[解] (1)要使函数f (x )有意义,则log 12x +1>0,即log 12x >-1,解得0<x <2,即函数f (x )的定义域为(0,2).(2)函数式若有意义,需满足⎩⎪⎨⎪⎧x +1>0,2-x ≥0,2-x ≠0即⎩⎪⎨⎪⎧x >-1,x <2,解得-1<x <2,故函数的定义域为(-1,2).(3)由题意得⎩⎪⎨⎪⎧-4x +8>0,2x -1>0,2x -1≠1,解得⎩⎪⎨⎪⎧x <2,x >12,x ≠1.故函数y =log (2x -1)(-4x +8)的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<x <2,且x ≠1. 分母不能为根指数为偶数时,被开方数非负 对数的真数大于,底数大于且不为提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于数大于0且不等于2.求下列函数的定义域: (1)f (x )=lg(x -2)+1x -3; (2)f (x )=log x +1(16-4x ).[解] (1)要使函数有意义,需满足⎩⎪⎨⎪⎧x -2>0,x -3≠0,解得x >2且x ≠3,所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足⎩⎪⎨⎪⎧16-4x >0,x +1>0,x +1≠1,解得-1<x <0或0<x <4,所以函数定义域为(-1,0)∪(0,4).对数函数的图象问题 [探究问题]1.如图222,曲线C 1,C 2,C 3,C 4分别对应y =log a 1x ,y =log a 2x ,y =log a 3x ,y =log a 4x 的图象,你能指出a 1,a 2,a 3,a 4以及1的大小关系吗?图222提示:作直线y =1,它与各曲线C 1,C 2,C 3,C 4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a 4>a 3>1>a 2>a 1>0.2.函数y =a x与y =log a x (a >0且a ≠1)的图象有何特点? 提示:两函数的图象关于直线y =x 对称.(1)当a >1时,在同一坐标系中,函数y =a -x与y =log a x 的图象为( )A B C D(2)已知f (x )=log a |x |,满足f (-5)=1,试画出函数f (x )的图象.【导学号:37102286】思路探究:(1)结合a >1时y =a -x=⎝ ⎛⎭⎪⎫1ax及y =log a x 的图象求解.(2)由f (-5)=1求得a ,然后借助函数的奇偶性作图.(1)C [(1)∵a >1,∴0<1a<1,∴y =a -x是减函数,y =log a x 是增函数,故选C.](2)[解] ∵f (x )=log a |x |,∴f (-5)=log a 5=1,即a =5, ∴f (x )=log 5|x |,∴f (x )是偶函数,其图象如图所示.中,-x >0,∴x <0, 轴的左侧,故排除A ,D ; 是减函数,|2x ++的图象,如图(1)(1) (2)x 轴向左平移1个单位长度,得y (3) (4)函数图象的变换规律一般地,x ±a +b a ,b 为实数的图象是由函数x 的图象沿左或向右平移个单位长,度,再沿y 轴向上或向下平移个单位长度得到的.含有绝对值的函数的图象一般是经过对称变换得到f x -a的图象是关于直线轴对称图形;函数x 的图象与x 的图象在,f x的部分相同,在x的部分关于.[当 堂 达 标·固 双 基]1.下列函数是对数函数的是( ) A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1) D .y =ln xD [结合对数函数的形式y =log a x (a >0且a ≠1)可知D 正确.] 2.函数f (x )=lg x +lg(5-3x )的定义域是( )【导学号:37102287】A.⎣⎢⎡⎭⎪⎫0,53B.⎣⎢⎡⎦⎥⎤0,53C.⎣⎢⎡⎭⎪⎫1,53 D.⎣⎢⎡⎦⎥⎤1,53C [由⎩⎪⎨⎪⎧lg x ≥0,5-3x >0,得⎩⎪⎨⎪⎧x ≥1,x <53,即1≤x <53.]3.(2018·全国卷Ⅲ)下列函数中,其图象与函数y =ln x 的图象关于直线x =1对称的是( ) A .y =ln(1-x ) B .y =ln(2-x ) C .y =ln(1+x )D .y =ln(2+x )B [法一:设所求函数图象上任一点的坐标为(x ,y ),则其关于直线x =1的对称点的坐标为(2-x ,y ),由对称性知点(2-x ,y )在函数f (x )=ln x 的图象上,所以y =ln(2-x ).故选B. 法二:由题意知,对称轴上的点(1,0)既在函数y =ln x 的图象上也在所求函数的图象上,代入选项中的函数表达式逐一检验,排除A ,C ,D ,选B.] 4.函数f (x )=log a (2x -5)的图象恒过定点________. (3,0) [由2x -5=1得x =3, ∴f (3)=log a 1=0.即函数f (x )恒过定点(3,0).] 5.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.【导学号:37102288】[解] (1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2), 即log 3x =log 32,解得x =2. 由图象知:当0<a <2时,恒有f (a )<f (2). 所以所求a 的取值范围为0<a <2.百度文库是百度发布的供网友在线分享文档的平台。
高中数学第二章基本初等函数(Ⅰ)2.2对数函数2.2.2对数函数及其性质课件1新人教A版必修1

故函数的定义域为{x|1<x<2}.
[规律总结] 定义域是研究函数的基础,若已 知函数解析式求定义域,常规为分母不能为零, 0的零次幂与负指数次幂无意义,偶次方根被 开方式(数)非负,求与对数函数有关的函数定 义域时,除遵循前面求函数定义域的方法外, 还要对这种函数自身有如下要求:一是要特别 注意真数大于零;二是要注意底数;三是按底 数的取值应用单调性.
非奇非偶函数
[知识点拨] 对数函数的知识总结: 对数增减有思路,函数图象看底数; 底数只能大于0,等于1来可不行; 底数若是大于1,图象从下往上增; 底数0到1之间,图象从上往下减; 无论函数增和减,图象都过(1,0)点. 3.反函数 对数函数y=logax(a>0,且a≠1)和指数函数y=ax(a>0,且 a≠1)互为反函数,它们的图象关于直线______对称.
(2)要使函数有意义,需使 2-ln(3-x)≥0,
即33- -xx≤ >0e,2, 解得 3-e2≤x<3,
故函数的定义域为{x|3-e2≤x<3}.
(3)要使函数有意义,需使 log0.5(x-1)>0,
即log1
2
(x-1)>0,所以
log2x-1 1>0,
x-1>0 ∴x-1 1>1 ,即 1<x<2.
2
有意义应有 x>0.
[正解] 要使函数有意义,须log1 x-1≥0,
2
∴log1
2
x≥1,∴0<x≤12.
∴定义域为0,12.
跟踪练习
已知函数 y=f(x),x,y 满足关系式 lg(lgy)=lg(3-x),求函 数 y=f(x)的表达式及定义域、值域.
高中数学 第二章 基本初等函数(Ⅰ)2.2.2 对数函数及其

2.2.2 对数函数及其性质疱丁巧解牛知识·巧学·升华 一、对数函数及其性质 1.对数函数 一般地,函数y=log a x (a>0,a ≠1)叫对数函数,其中x 是自变量,函数的定义域是(0,+∞).因为对数函数是由指数函数变化而来的,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞),指数函数与对数函数的定义域和值域是互换的. 只有形如y=log a x (a>0,a ≠1,x>0)的函数才叫对数函数.像y=log a (x+1),y=2log a x ,y=log a x+3等函数,它们是由对数函数变化而得到的,都不是对数函数.对数函数同指数函数一样都是基本初等函数,它来自于实践. 2.对数函数的图象和性质(1)下面先画指数函数y=log 2x 及y=log 1/2x 图象描点即可完成y=log 2x ,y=x 21log 的图象,如下图.0 1 2 4 8 x -1-2 y=log 1/2x -3s由表及图可以发现:我们可以通过函数y=log 2x 的图象得到函数y=log 0.5x 的图象.利用换底公式可以得到:y=log 0.5x=-log 2x ,点(x,y)与点(x,-y)关于x 轴对称,所以y=log 2x 的图象上任意一点(x,y)关于x 轴对称点(x,-y)在y=log 0.5x 的图象上,反之亦然.根据这种对称性就可以利用函数y=log 2x 的图象画出函数y=log 0.5x 的图象.方法点拨 注意此处空半格①作对数函数图象,其关键是作出三个特殊点(a1,-1),(1,0),(a ,1).一般情况下,作对数函数图象有这三点就足够了.不妨叫做“三点作图法.”②函数y=log a x 与y=x a1log 的图象关于x 轴对称.要点提示 (1)对数函数的图象恒在y 轴右方.(2)对数函数的单调性取决于它的底数.(3)log a b>0⇔(a-1)(b-1)>0;log a b<0⇔(a-1)(b-1)<0.(4)指数函数由唯一的常量a 确定.两个同底数的对数比较大小的一般步骤: (1)确定所要考查的对数函数; (2)根据对数的底数来判断对数函数的增减性,若底数与1的大小关系不确定应对a 进行分类讨论;(3)比较真数的大小,然后利用对数函数的增减性来判断两个对数值的大小. 3.反函数在指数函数y=2x中,x 为自变量(x ∈R ),y 是x 的函数(y ∈(0,+∞)),而且它是R 上的单调递增函数.可以发现,过y 轴正半轴上任意一点作x 轴的平行线,与y=2x的图象有且只有一个交点;另一方面,根据指数与对数的关系,由指数式y=2x可得到对数式y=log 2x .这样,对于任意一个y ∈(0,+∞),通过式子x =log 2y ,x 在R 中都有唯一确定的值和对应.也就是说,可以把y 作为自变量,x 作为y 的函数,这时我们就说x =log 2y(y ∈(0,+∞))是函数y=2x(x ∈R )的反函数(inverse function ).在函数x =log 2y 中,y 是自变量,x 是函数,但习惯上,我们通常用x 表示自变量,y 表示函数.为此,我们常常对调函数x =log 2y 中的字母x,y ,把它写成y =log 2x .这样,对数函数y =log 2x(x ∈(0,+∞))是指数函数y=2x(x ∈R )的反函数.由上述讨论可知,对数函数y =log 2x (x ∈(0,+∞))是指数函数y=2x(x ∈R )的反函数;同时指数函数y=2x(x ∈R )也是对数函数y =log 2x (x ∈(0,+∞))的反函数.因此,指数函数y=2x(x ∈R )与对数函数y =log 2x (x ∈(0,+∞))互为反函数. 当一个函数是单调函数时,可以把这个函数的因变量作为一个新的函数的自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数互为反函数.由于指数函数y=ax(a>0,且a ≠1)在R 上是单调函数,它的反函数是对数函数y=log a x (a>0,且a ≠1),反之对数函数的反函数是指数函数.课本上只要求知道指数函数y=a x(a >0且a ≠1)和对数函数y=log a x (a >0且a ≠1)互为反函数,不要求会求函数y=f (x )的反函数.联想发散 注意此处空半格(1)反函数也是函数,它具有函数的一切特性;反函数是相对于原函数而言的,函数与它的反函数互为反函数.(2)若是已知f (x )的解析式,求f -1(x 0)的值,不必去求f -1(x ),只需列方程f (x )=x 0,得出x 的值即为所求.(3)指数函数与对数函数互为反函数.它们的定义域与值域相互对称,单调性相同,图象关于直线y=x 对称,由于对数函数是由指数函数关于直线y=x 变化而得到的,也可以在用描点法作对数函数的图象时,对调同底数的指数函数的对应值里的x 、y 即可.所以在研究对数函数的图象和性质时,要紧扣指数函数的图象和性质. 问题·思路·探究问题1 在同一坐标系中,画出函数y=log 3x ,y=x 31log ,y=log 2x ,y=x 21log 的图象,比一比,看它们之间有何区别与联系.思路:利用对数函数的图象与性质可比较底数相同,真数不同的对数值的大小;可比较底数不同,真数相同的对数值的大小;也可比较底数与真数都不同的对数值的大小.一般地,如果两对数的底数不同而真数相同,如y=1log a x 与y=2log a x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).①当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限)上升得慢,即当x >1时,y 1<y 2; 当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴的对数函数的底数越大. ②当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快,即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2,即在第四象限内,图象越靠近x 轴的对数函数的底数越小. ③当0<a 2<1<a 1时,曲线y 1和y 2的图象分布在不同象限. 即当x >1时, y 2<0<y 1;当0<x <1时,y 2>0>y 1探究:从图象可以看到:所有图象都跨越一、四象限,任何两个图象都是交叉出现的,交叉点是(1,0),当a>1时,图象向下与y 轴的负半轴无限靠拢,在点(1,0)的右侧,函数值恒大于0,对同一自变量x 而言,底数越大,函数值越小,在点(1,0)的左侧,函数值恒小于0,对同一自变量x 而言,底数越大,函数值越大;当0<a<1时,图象向上与y 轴的正半轴无限靠拢,在点(1,0)的左侧,函数值恒大于0,对同一自变量x 而言,底数越大,函数值越大,在点(1,0)的右侧,函数值恒小于0,对同一自变量x 而言,底数越大,函数值越小;由此我们知道,对于对数函数y=log a x ,当y=1时,x=a ,而a 恰好又是对数函数的底数,这就启发我们,不妨作直线y=1,它同各个图象相交,交点的横坐标恰好就是对数函数的底数,以此可比较底数的大小.同时,根据不同图象间的关系,也可比较真数相同,底数不同的对数函数值的大小,如log 23<log 1.53,log 20.5 <log 30.5,log 0.52>log 0.62等. 问题2 怎样画对数函数y=log a x(a>0, a ≠1)的图象?至少要描出哪几个关键点?思路:(1)要善于对照指数函数与对数函数的关系来画图象;(2)从联系的角度研究画对数函数图象的方法,对深化理解对数函数的图象与性质很有帮助.探究:画对数函数y=log a x(a>0, a ≠1)的图象依据它与指数函数y=a x(a>0, a ≠1)的图象关于直线y=x 对称,用找对称点作对称图形的方法来画,也可以用列表、描点、连线的方法来画.画图象时首先要分清底数a>1还是0<a<1,明确图象的走向,然后至少要画出三个关键点:(a1,-1),(1,0),(a ,1),当然画出的点越多,所画图象越准确. 学好数学是大有禆益的. 典题·热题·新题例1 比较下列各组数中两个值的大小: (1)log 67,log 76(2)log 38,log 20.7; 思路解析:由于两个对数值不同底,故不能直接比较大小,可在两个对数值中间插入一个已知数,间接比较两对数值的大小.解:(1)因为log 67> log 66=1, log 76< log 77=1,所以log 67>log 76; (2)因为log 38> log 31=0, log 20.7< log 21=0,所以log 38>log 20.7.深化升华 注意此处空半格利用对数函数的增减性比较两个对数的大小,当不能直接比较时,经常在两个对数中间插入1或0等,间接比较两个对数值的大小.利用对数的单调性可解简单的对数不等式.例2 已知(1)log 2(2x-1)>1,(2)已知log 1/2(2x-1)>0,试分别求x 的取值范围. 思路解析:利用对数的单调性可解简单的对数不等式.解:(1)∵log 2(2x-1)>1,即log 2(2x-1)>log 22,∴2x-1>2,解得x>23, 即x 的范围是x ∈(23,+∞). (2)由已知得log 2(2x-1)>lg1,0<2x-1<1,∴0<x <1.误区警示 注意此处空半格解对数不等式的关键是善于把真数视为一个整体,用对数函数的单调性构造不等式.但一定要注意真数大于零这一隐含条件.例3 求函数y=)3lg(562+--x x x 的定义域.思路解析:定义域是使解析式的各部分有意义的交集.解:要使函数有意义,必须且只⎪⎩⎪⎨⎧≠+>+≥--,13,03,0562x x x x 即⎪⎩⎪⎨⎧-≠->≤≤-,2,3,16x x x∴-3<x <-2,或-2<x ≤1.∴函数的定义域为(-3,-2)∪(-2,1].深化升华 注意此处空半格求函数定义域时,常见的限制条件有:分母不为零,开偶次方时被开方数非负,对数的真数大于零,底数大于零且不等于1等.例4 试求满足不等式2(log 0.5x )2+9log 0.5x+9≤0的x 的范围.思路解析:把log 0.5x 看作一个变量t ,原不等式即变为关于t 的一元二次不等式,可求出t 的取值范围,进而再求出x 的取值范围.解:令t=log 0.5x ,则原不等式可化为2t 2+9t+9≤0,解得-3≤t ≤-23, 即-3≤log 0.5x ≤-23.又-3=log 0.50.5-3,-23=235.0log .∴235.0≤x ≤0.5-3,即22≤x ≤8.深化升华 注意此处空半格求复合函数的最值时,一般要注意函数有意义的条件,来决定中间变量的取值范围,并综合运用求最值的各种方法求解.例5 求函数y=log 0.3(2x+8-x 2)的单调区间和值域.思路解析:利用复合函数的单调性法则(同增异减),而求值域的关键是先求出对数的真数的取值范围,再由对数函数的单调性求得对数值的范围.解:因为2x+8-x 2>0,即x 2-2x-8<0,解得-2<x<4,所以此函数的定义域为(-2,4),又令u=2x+8-x 2,则y=log 0.3u.因为y=log 0.3u 为定义域上的减函数,所以y=log 0.3(2x+8-x 2)的单调性与u=2x+8-x 2的单调性相反.对于函数u=2x+8-x 2,x ∈(-2,4).当x ∈(-2,1]时为增函数;当x ∈[1,4)时为减函数.所以函数y=log 0.3(2x+8-x 2)的增区间为[1,4),减区间为(-2,1],又因为u=2x+8-x 2=-(x-1)2+9,所以当x ∈(-2,4)时, 0<u ≤q ⇒log 0.3u ≥log 0.39,即函数y=log 0.3(2x+8-x 2)的值域为 [log 0.39,+∞).拓展延伸 注意此处空半格考查对数函数与其他函数组成的复合函数时,要注意利用复合函数的单调性法则和函数单调性的定义;考查对数函数的值域问题时,要注意只有当对数的真数取到所有的正数时,对数值才可能取到所有的实数.例6 作出下列各函数的图象,并说明它们的图象可由y=log 3x 的图象经过怎样变换得到:(1) y=log 3|x|;(2)y=|log 3x|.思路解析:作含绝对值符号的函数图象,可先由绝对值定义去绝对值,写成分段函数的形式,也可依翻折变换的规律变换得出. 解:(1)原函数可化为y=⎩⎨⎧<->,0),(log ,0,log 33x x x x 它的图象如图(1)所示.先作出函数y=log 3x 的图象,再将所得图象沿y 轴对称到y 轴左侧,所得两部分组合在一起就是函数y=log 3|x|的图象.(2)原函数可化为y=⎩⎨⎧≤<-≥,1,log ,1,log 33x x x x x 它的图象如(2)图所示.先作出函数y=log 3x 的图象,再将所得图象再将所得图象在x 轴下方(虚线部分)的部分沿x 轴翻折到x 轴上方,与原x 轴上方的部分一起,就是y=|log 3x|的图象.深化升华 注意此处空半格利用对数函数的图象的平移和对称可以认识与对数函数有关的一些函数的图象和性质,这些图象的变换规律与指数函数的有关图象变换规律是类似的.。
高中数学 第二章基本初等函数(Ⅰ)对数函数及其性质 第1课时对数函数的图象及其性质课件新人教版必修(1)

归纳升华 定义域是使解析式有意义的自变量的取值集合, 求 与对数函数有关的定义域问题时,要注意对数函数的概 念,若自变量在真数上,则必须保证真数大于 0;若自变 量在底数上,应保证底数大于 0 且不等于 1.
[变式训练] 求下列函数的定义域: 1 (1)f(x)= ; 1-log4(x-1) (2)f(x)= log0.6x-1. x-1>0, 解: (1)由 得 x∈(1, 5)∪(5, +∞). log4(x-1)≠1, 1 所以函数 f(x)= 的定义域为 1-log4(x-1)
2.对数函数的图象与性质
定义 底数 图象 定义域 值域 (0,+∞) R y=logax(a>0,且 a≠1) a>1 0<a<1
单调性 性 质 函数
增函数
减函数
共点性 图象过定点(1,0),即 loga1=0 x∈(0,1)时, x∈(0,1)时, y∈(-∞,0); y∈(0,+∞);
值特征 x∈(1, +∞)时,x∈(1, +∞)时, y∈(0,+∞).
(2)y=f(x)的图象与 y=f(-x)的图象关于 y 轴对称,y =f(x)的图象与 y=-f(x)的图象关于 x 轴对称.
[ 变式训练 ] ( )
函数 f(x) = ln(x2 + 1) 的图象大致是
解析:因为 f(-x)=ln[(-x)2+1]=ln(x2+1)=f(x), 排除选项 C,又 f(0)=0,排除选项 B、D,所以选项 A 正确. 答案:A
1 的取值范围是0,2.
1 答案:0,2
类型 1 求对数类函数的定义域(自主研析) [典例 1] 求下列函数的定义域: (1)y=log5(3x+2); (2)y=log(1-x)6; (3)y= log0.5(3-4x).
2018版高中数学第二章基本初等函数Ⅰ2.2.2第1课时对数函数的图象及性质(优秀经典公开课比赛课件)

第1课时 对数函数的图象及性质
学习目标 1.理解对数函数的概念(易错点).2.初步掌握对数函 数的图象和性质(重点).
预习教材 P70-P73,完成下面问题:
知识点 1 对数函数的概念 一般地,把函数 _y_=__lo_g_a_x_(a_>__0_,__且__a_≠_1_) ___叫做对数函数, 其中__x____是自变量,函数的定义域是 __(0_,__+__∞__) _.
【训练 2】 求下列函数的定义域: (1)f(x)=lg(x-2)+x-1 3; (2)f(x)=log(x+1)(16-4x). 解 (1)要使函数有意义,需满足xx--32≠>00,, 解得 x>2 且 x≠3. ∴函数的定义域为(2,3)∪(3,+∞).
(2)要使函数有意义,需满足1x+6-1>4x> 0,0, x+1≠1,
解析 (1)令x+2=1,即x=-1,得y=loga1+1=1,故函数y =loga(x+2)+1的图象过定点(-1,1). (2)作直线y=1,它与各曲线C1,C2,C3,C4的交点的横坐标就 是各对数的底数,由此可判断出各底数的大小必有
解得 a=4.
答案 4
题型二 对数型函数的定义域
【例 2】 (1)函数 f(x)= 21-x+ln(x+1)的定义域为________. (2)函数 f(x)= log1 12x+1的定义域为________.
2
解析
(1)
若
使
函
数
式
有
意
义
需
满
足
条
件
:
x+1>0 2-x>0
⇒
x>-1,
f(x)=log1 x,所以 f(8)=log1 8=-3.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1课时 对数函数的图象及其性质
A 级 基础巩固
一、选择题
1.已知集合A ={y |y =log 2x ,x >1},B =⎩⎪⎨⎪⎧⎭
⎪⎬⎪⎫y ⎪⎪⎪⎭⎪⎫y =⎝ ⎛12x ,x <0,则A ∩B =( ) A .{y |0<y <1}
B .{y |y >1} C.⎩⎨⎧⎭⎬⎫y ⎪⎪⎪12<y <1 D .∅
解析:因为A ={y |y >0},B ={y |y >1}.
所以A ∩B ={y |y >1}.
答案:B
2.已知a =21.2,b =⎝ ⎛⎭⎪⎫12-0.8,c =2log 52,则a ,b ,c 的大小关系为( )
A .c <b <a
B .c <a <b
C .b <a <c
D .b <c <a 解析:a =21.2>20=1,b =⎝ ⎛⎭⎪⎫12-0.8=245>20=1,又因为a =21.2=265>245=b ,所以a
>b .c =2log 52=log 54<1,所以a >b >c .
答案:A
3.若f (x )=1log 12
(2x +1)
,则f (x )的定义域为( ) A.⎝ ⎛⎭
⎪⎫-12,0 B.⎝ ⎛⎦⎥⎤-12,0 C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)
解析:由题意应有⎩⎪⎨⎪⎧log 12(2x +1)>0,2x +1>0,
解得⎩⎪⎨⎪⎧2x +1<1,x >-12, 所以-12
<x <0.故选A. 答案:A
4.已知f (x )为R 上的增函数,且f (log 2x )>f (1),则x 的取值范围为( )
A.⎝ ⎛⎭
⎪⎫12,2 B.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) C .(2,+∞) D .(0,1)∪(2,+∞)
解析:依题意有log 2x >1,所以x >2.
答案:C
5.已知a >0,且a ≠1,则函数y =x +a 与y =log a x 的图象只可能是( )
解析:当a >1时,函数y =log a x 为增函数,且直线y =x +a 与y 轴交点的纵坐标大于1;当0<a <1时,函数y =log a x 为减函数,且直线y =x +a 与y 轴交点的纵坐标在0到1之间,只有C 符合,故选C.
答案:C
二、填空题
6.下列各函数是对数函数的序号是________.
①y =log 32x ;②y =log 3(x +1);
③y =log 3x ;④y =-log 3x .
解析:①中,真数不是自变量x ,故不是对数函数;②同①,不是对数函数;③中,log 3x =12log 3x =log 9x ,满足对数函数的三个条件特征,故是对数函数;④中,-log 3x =log 13x ,是对数函数.
答案:③④
7.函数y =log a (2x -3)+1的图象恒过定点P ,则点P 的坐标是________. 解析:当2x -3=1,即x =2时,y =1,故点P 的坐标是(2,1).
答案:(2,1)
8.函数f (x )=2x
+log 2x (x ∈[1,2])的值域为________.
解析:因为y =2x ,y =log 2x 在各自定义域上均为增函数,所以f (x )=2x +log 2x 在[1,2]上单调递增,故f (x )∈[2,5].
答案:[2,5]
三、解答题
9.比较下列各组数的大小;
(1)log 0.90.8,log 0.90.7,log 0.80.9;
(2)log 32,log 23,log 413
.
解:(1)因为y =log 0.9x 在(0,+∞)上是减函数, 且0.9>0.8>0.7,所以1<log 0.90.8<log 0.90.7. 又因为log 0.80.9<log 0.80.8=1,
所以log 0.80.9<log 0.90.8<log 0.90.7.
(2)由log 31<log 32<log 33,得0<log 32<1.
又因为log 23>log 22=1,log 413
<log 41=0, 所以log 413
<log 32<log 23. 10.已知函数f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1).
(1)求函数f (x )的定义域;
(2)若函数f (x )的最小值为-2,求实数a 的值.
解:(1)由题意得⎩
⎪⎨⎪⎧1+x >0,3-x >0,解得-1<x <3, 所以函数f (x )的定义域为(-1,3).
(2)因为f (x )=log a [(1+x )(3-x )]
=log a (-x 2+2x +3)=log a [-(x -1)2+4],
若0<a <1,则当x =1时,f (x )有最小值log a 4, 所以log a 4=-2,a -2=4,
所以a =12
. 若a >1,则当x =1时,f (x )有最大值log a 4, f (x )无最小值.
综上可知,a =12
. B 级 能力提升
1.函数f (x )=log a |x |+1(a >1)的图象大致为( )
解析:方法一:先画y =log a x 的图象,然后作y =log a x 的图象关于y 轴对称的图象,
将两个函数的图象向上平移1个单位,即得到函数y =log a |x |+1(a >1)的大致图象.
方法二:函数f (x )=log a |x |+1(a >1)是偶函数,所以f (x )的图象关于y 轴对称,当x >0时,f (x )=log a x +1是增函数;当x <0时,f (x )=log a (-x )+1是减函数,又因为图象过(1,1),(-1,1)两点,结合选项可知,选C.
答案:C
2.给出函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫
12x ,x ≥4,f (x +1),x <4,
则f (log 23)=______.
解析:因为1<log 23<log 24=2,所以3+log 23∈(4,5), 所以f (log 23)=f (log 23+1)=f (log 23+2)=
f (lo
g 23+3)=f (log 224)=⎝ ⎛⎭⎪⎫12log 224
=
答案:124
3.已知实数x 满足-3≤log 12x ≤-12.求函数y =⎝ ⎛⎭⎪⎫log 2x 2·⎝ ⎛⎭⎪⎫
log 2x 4的值域.
解:y =⎝ ⎛⎭⎪⎫log 2x 2⎝ ⎛⎭⎪⎫log 2x 4=(log 2x -1)(log 2x -2)=
log 2
2x -3log 2x +2.
因为-3≤log 12x ≤-12,所以12
≤log 2x ≤3.
令t =log 2x ,则t ∈⎣⎢⎡⎦⎥⎤12,3,
y =t 2-3t +2=⎝ ⎛⎭⎪⎫t -322
-14,
所以t =32时,y min =-14;t =3时,y max =2.
故函数的值域为⎣⎢⎡⎦⎥⎤-14,2.。