总体参讲义数的假设检验

合集下载

SPSS讲义05总体参数的估计

SPSS讲义05总体参数的估计
• <b>求两个均值差m1-m2的点估计和 95%置信区间.利用软件很容易得到 下面结果:
§5.3 区间估计
• 两个总体均值估计量的样本均值分别 为170.56和165.60,样本标准差分别为 6.97857 和 7.55659 ; 还 得 到 均 值 的 置 信 区 间 分 别 是 <168.5767, 172.5433>,<163.4524, 167.7476>.
用计算机可以很容易地得到挂面重量的 样本均值、总体均值的置信区间等等. 下面是SPSS的输出:
Descriptives( 描 述 统 计 量 )
结果变量 统计量
weight
Mean( 样 本 均 数 )
统计 量值 449 .0104
标准 误差 .794 35
95% Confidence Interval for MLeoawner B ound( 下 限 ) ( 总 体 均 数 的 95%可 信 区 间 )
§5.4 关于置信区间的注意点
• 一个描述性例子:有10000个人回答的调查 显 示 , 同 意 某 观 点 人 的 比 例 为 70%〔 有 7000 人同意〕,可算出总体中同意该观点的比例 的95%置信区间为〔0.691,0.709〕;
• 另一个调查声称有70%的比例反对该种观点, 还说总体中反对该观点的置信区间也是 〔0.691,0.709〕.
§5.1 用估计量估计总体参数
• 点估计<point estimation>,即用估计 量的实现值来近似相应的总体参数.
• 区间估计<interval estimation>;它 是包括估计量在内〔有时是以估计量 为中心〕的一个区间;该区间被认为 很可能包含总体参数.

第5章 假设检验

第5章 假设检验

计量经济学讲义
22
读者或许发现:前面讨论的置信系数( 1- a) 就是1减去“犯第一类错误的概率a”,因此, 95%的置信系数表示接受零假设犯第一类 错误的概率至多为5%。 简言之, 5%的置信水平与95%的置信系数 的意义相同。
2011-2-22
计量经济学讲义
23
2011-2-22
计量经济学讲义
0 0
2011-2-22
计量经济学讲义
21
假设检验的标准或古典方法是:给定某一 水平的a,比如0 . 0 1或0 . 0 5,然后使检 验的功效最大,也即使b最小。这个求解过 程很复杂,有兴趣的同学可以参阅有关参 考书。 需要指出的是:在实际中,古典方法仅仅 给出了a值,而没有过多考虑b值。
2011-2-22
24
2011-2-22
计量经济学讲义
25
显著性检验
2011-2-22
计量经济学讲义
26
显著性检验
显著性检验(test of significance approach) 是一种两者择一的假设检验,但它却是完 备的。 显著性检验是一种较为简洁的假设检验方 法。 我们仍通过P/E一例说明这种检验方法的一 些基本要点。
2011-2-22 计量经济学讲义 36
显著水平的选择与p值
2011-2-22
计量经济学讲义
37
显著水平的选择与p值
假设检验的古典方法的不足之处在于选择a 的任意性。虽然一般常用的a值有1%、5% 和1 0%,但是这些值并不是固定不变的。 前面指出,只有在检查犯第一类错误和第 二类错误后果的时候,才选择相应的a 。 在实践中,最好是用p值(即,概率值),p 值(p value)也称为统计量的精确置信水平。 它可定义为拒绝零假设的最低置信水平。

假设检验的基本方法

假设检验的基本方法

假设检验的基本方法假设检验是统计学中常用的一种方法,用于检验某个假设是否成立。

它可以帮助我们判断样本数据与总体数据之间的关系,从而做出合理的推断和决策。

在进行假设检验时,我们需要遵循一定的步骤和方法,以确保结果的可靠性和准确性。

首先,假设检验的基本步骤包括,建立假设、选择显著性水平、计算统计量、做出决策。

建立假设是假设检验的第一步,通常分为原假设和备择假设。

原假设是对总体参数的某种断言,而备择假设则是对原假设的补充或对立假设。

选择显著性水平是指在假设检验中规定的判断标准,通常取0.05或0.01。

计算统计量是根据样本数据计算出的用于检验假设的统计量,它可以帮助我们判断样本数据与假设之间的差异程度。

最后,根据计算出的统计量和显著性水平,我们可以做出接受原假设或拒绝原假设的决策。

其次,假设检验的方法主要包括,参数检验和非参数检验。

参数检验是指对总体参数进行假设检验,常用的方法有Z检验、t检验、F检验等。

Z检验适用于大样本的均值差异检验,t检验适用于小样本的均值差异检验,F检验适用于方差的检验。

非参数检验是指对总体分布形式进行假设检验,常用的方法有秩和检验、符号检验、卡方检验等。

非参数检验不对总体参数作出假设,适用于总体分布未知或不满足正态分布的情况。

最后,假设检验的应用范围非常广泛,可以用于医学、经济、社会科学等领域。

在医学领域,假设检验可以用于药物疗效的评价和临床试验结果的分析;在经济领域,假设检验可以用于市场调查和投资决策的制定;在社会科学领域,假设检验可以用于调查问卷的分析和社会现象的研究。

总之,假设检验是统计学中非常重要的方法,它可以帮助我们进行科学的推断和决策。

在实际应用中,我们需要根据具体情况选择合适的假设检验方法,并严格遵循假设检验的基本步骤,以确保结果的可靠性和准确性。

希望本文对假设检验方法有所帮助,谢谢阅读!。

总体均数的假设检验

总体均数的假设检验
总体均数的假设检验
$number {01}
目 录
• 引言 • 假设检验的基本原理 • 总体均数的假设检验方法 • 实例分析 • 总结与展望
01 引言
目的和背景
确定样本数据是否与假设的总体均数 存在显著差异,从而对总体均数进行 假设检验。
在科学实验、统计学、医学研究等领 域广泛应用,用于评估样本数据是否 支持或拒绝关于总体均数的假设。
配对样本均数假设检验实例
总结词
配对样本均数假设检验用于比较同一组研究对象在不同条件下的均数是否存在统计学显 著性差异。
详细描述
例如,为了比较同一组患者在接受两种不同治疗措施前后的改善程度,研究者收集了患 者的基线数据和接受不同治疗措施后的数据,并计算出各自治疗组的平均改善程度。然 后,研究者使用配对样本均数假设检验来比较同一组患者在不同治疗措施下的平均改善
概念简介
假设检验是一种统计推断方法,通过 检验样本数据是否符合某个假设,从 而对总体参数进行推断。
它基于概率论原理,通过计算样本数 据与假设的总体参数之间的差异,评 估这种差异是否具有统计学上的显著 性。
02
假设检验的基本原理
假设检验的步骤
建立假设
根据研究目的,提出一个关于总 体参数的假设,通常包括零假设 和备择假设。
收集样本数据
从总体中随机抽取一定数量的样 本,并记录样本数据。
确定检验水准
选择合适的检验水准,如α和β, 以平衡第一类和第二类错误的概 率。
计算统计量
根据样本数据计算适当的统计量, 如t值、Z值或χ^2值。
假设检验的类型
1 2
3
单样本均数检验
比较一个样本均数与已知总体均数或正常值范围。
两样本均数比较

HypothesisTesting假设检验讲义中英文版

HypothesisTesting假设检验讲义中英文版

2
1
2
X
Risk
Risk
10
❖ 可信区间 确定了总体参
数中样本统计可能的数 值范围. 它们可以是单 边也可是双边。
▪ 样本均值、样本标准偏差、样本 方异和其它样本统计被称为特征 值评估者。因为它们是用以代表 总体参数的单一数值。
2
1
2Leabharlann XRiskRisk
11
❖ Point Estimates of parameters and Confidence Interval Interpretation are both means for making inferences about sample data.
▪ Sample Means, Sample Standard
deviation, Sample Variances and other sample statistics are known
as Point Estimators because
they are single values used to represent population parameters
❖ Hypothesis tests are designed to help us make an inference about the true population value at the desired level of confidence.
Hypothesis Tests help determine if an apparent
为何要选取样本?
总体: 统计总体 用以定义所有可知或不可知参数(m, s) 的数据或信息
可能出现取样 错误吗?
应取多少样本?

假设检验

假设检验

= (x -1000) ×
n s
2
=
z0.025
= 1.96 ;⑤
判 断 : 这 里 | u |= 0.5164, z0.025 = 1.96 , 显 然 | u |< za 。 所 以 小 概 率 事 件 没 有 发 生 , 故 接 受
2
H0 : m = m0 = 10.5 cm,可以认为切割机工作正常。
方法二(直接利用 H0 的接受域公式):
故称为拒绝域,W 的余集W 成为接受域,接受域就是区间估计的范围。样本的观测值落在W 就作出接 受 H0 的决定。假设检验就是根据取到的样本观测值与枢轴量的理论值作比较,作出拒绝还是接受哪个
假设的决定。
例如若
P
ìï í ïî
X s0
/
m n
³
l
üï ý
=
a
,当a
ïþ
= 0.01;
0.05,
0.1等很小的值时就是小概率事件,小概率事
为了说明两类错误主次关系的直观含义,我们引用一个生活例子:某人因身体不适前往医院求医。 医生的职责就是通过各种生理检查,根据化验的数据作出该病员是否犯病的结论。然而再好的医生都不 可避免会犯下两类错误。一种是病员确实有病,但由于生理指标未出现明显的异常现象,使医生判断为 无病。另一种是病员实际上没有疾病,但生理指标呈现某种异常,使医生判断为有病。这两类错误都会 导致病员的损失,然而两类错误的损失是不一样的。如果“有病判无病”,相当于以真当假—第 1 类错 误,其结果可能延误了治病的时机造成病情的加重以致死亡;而“无病判有病”,相当于以假当真—第 2 类错误,其结果是病员会有一些经济或其他损失,然而对生命是无碍的。因此医生总是尽可能地避免 犯上述第 1 类错误。

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料

区间估计与假设检验的联系与区别讲义资料
区间估计与假设检验是统计推断的两种常见方法。

它们虽然都属于推断统计,但也有明显的不同之处。

区间估计的主要目的是估计总体参数的值,也可以称作参数估计。

根据样本信息,我们可以得出一个可能的参数值范围,也就是置信区间,从而得到一个可靠的估计区间。

估计是不断变化的,每一次统计分析给出的参数估计值都可能有所变化,从而慢慢趋近真实值。

假设检验即“判断”,是统计学中比较常用的检验方法,目的是确定两个总体之间的差异是由随机因素造成的,还是由特定的因素(如环境因素)造成的。

假设检验涉及两个立场:备择假设和原假设。

假设检验的结果由抽样分布决定,不同的抽样分布对应不同的结论,比如有抽样分布下假设检验结果可能是拒绝备择假设,也可能是接受备择假设。

从概念上讲,区间估计技术计算的是一个参数的值的估计,而假设检验是用于检查参数的方法,它只检验两个总体是否具有显著的性质差异,而不会真正测量它们的差异。

总的来说,区间估计通过单组数据范围尽可能准确地估计参数的取值范围,而假设检验则是针对任何特定统计主题,利用数据样本来检验其是否与假设相符。

两者都具有自己的优点和不足,可以结合使用来为抽样荟萃而得出结论,从而更准确地了解样本的真实情况。

数学中的假设检验

数学中的假设检验

数学中的假设检验假设检验是统计学中一种重要的方法,用于对统计样本数据进行推断与判断。

它可以帮助我们判断某个假设是否成立,从而为决策提供依据。

本文将通过介绍假设检验的基本概念、步骤和应用案例,深入探讨数学中的假设检验方法。

一、假设检验的基本概念假设检验是根据样本数据对总体进行统计推断的方法。

它基于两个互为对立的假设:原假设(H0)和备择假设(H1)。

原假设通常是我们认为成立的假设,而备择假设则是我们希望验证的假设。

在进行假设检验时,我们首先假设原假设成立,然后利用统计方法计算出样本数据的观察值,根据观察值与预期值之间的偏差,判断原假设的合理性。

如果观察值与预期值之间的差异显著大于正常情况下的偏差范围,我们就可以拒绝原假设,接受备择假设。

二、假设检验的步骤假设检验包括以下几个基本步骤:1. 确定假设:根据问题的背景和研究目的,明确原假设和备择假设。

2. 选择显著性水平:显著性水平(α)是假设检验中一个重要的参数,用于确定拒绝原假设的标准。

一般情况下,α取0.05或0.01。

3. 计算统计量:根据样本数据,选择合适的统计量进行计算。

常用的统计量有t值、F值和卡方值等。

4. 判断拒绝域:根据显著性水平和统计量的分布特性,确定拒绝原假设的临界值。

5. 比较统计量和临界值:将计算得到的统计量与拒绝域的临界值进行比较,判断是否拒绝原假设。

6. 得出结论:根据比较结果,给出对原假设的结论,并解释其统计意义和实际意义。

三、假设检验的应用案例1. 以某医院为例,研究员想要验证该医院使用的一种新型药物是否比常规药物更有效。

设定原假设为“新型药物不比常规药物更有效”,备择假设为“新型药物比常规药物更有效”。

收集一组患者的数据,比较两组患者接受新型药物和常规药物后的治疗效果,通过假设检验确定是否接受备择假设。

2. 在金融领域,分析师经常使用假设检验来验证股票市场的有效性。

他们可以将原假设设定为“股票市场不存在明显的投资机会”,备择假设设定为“股票市场存在明显的投资机会”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档