大学物理(下)复习提纲
大学物理(下)期末复习

大学物理下归纳总结电学基本要求:1.会求解描述静电场的两个重要物理量:电场强度E 和电势V 。
2.掌握描述静电场的重要定理:高斯定理和安培环路定理(公式内容及物理意义)。
3.掌握导体的静电平衡及应用;介质的极化机理及介质中的高斯定理。
主要公式: 一、 电场强度1计算场强的方法(3种)1、点电荷场的场强及叠加原理点电荷系场强:∑=i i i r rQ E 304πε 连续带电体场强:⎰=Q r dQr E 34πε(五步走积分法)(建立坐标系、取电荷元、写E d、分解、积分)2、静电场高斯定理:物理意义:表明静电场中,通过任意闭合曲面的电通量(电场强度沿任意闭合曲面的面积分),等于该曲面内包围的电荷代数和除以0ε。
对称性带电体场强:3、利用电场和电势关系:x E xU=∂∂-二、电势电势及定义:1.电场力做功:⎰⋅=∆=210l l l d E q U q A2.物理意义:表明静电场中,电场强度沿任意闭合路径的线积分为0。
3.电势:)0(00=⋅=⎰p p aa U l d E U ;电势差:⎰⋅=∆B AAB l d E U电势的计算:1.点电荷场的电势及叠加原理点电荷系电势:∑=iiir Q U 04πε(四步走积分法)(建立坐标系、取电荷元、写dV 、积分) 2.已知场强分布求电势:定义法⎰⎰⋅=⋅=lv pdr E l d E V 0三、静电场中的导体及电介质1. 弄清静电平衡条件及静电平衡下导体的性质2. 了解电介质极化机理,及描述极化的物理量—电极化强度P , 会用介质中的高斯定理,求对称或分区均匀问题中的,,D E P 及界面处的束缚电荷面密度σ。
3. 会按电容的定义式计算电容。
磁学 恒定磁场(非保守力场)基本要求:1.熟悉毕奥-萨伐尔定律的应用,会用右手螺旋法则求磁感应强度方向;3.掌握描述磁场的两个重要定理:高斯定理和安培环路定理(公式内容及物理意义);并会用环路定理计算规则电流的磁感应强度; 3.会求解载流导线在磁场中所受安培力;4.理解介质的磁化机理,会用介质中的环路定律计算H 及B.主要公式:1.毕奥-萨伐尔定律表达式1)有限长载流直导线,垂直距离r (其中。
大学物理2-2总复习

√
[分析] B
0 I
2R
B
0 I (cos 1 cos 2 ) 4a
B
0 I
2R
0 I 2R
2、一无限长载流直导线,通有电流 I,弯成如图形状。设 各线段皆在纸面内,则P 点磁感应强度B 的大小为 3 0 I 8a I
[分析] B
4a
0
。
(cos 1 cos 2 )
0 I B (cos 1 cos 2 ) 4a
B
0 I
2R
1、无限长直导线在P 处弯成半径为R 的圆,当通以电流 I R 时,则在圆心O点的磁感应强度大小等于 I I I O A) 0 B) 0 C )0 1 0 1 2 R 4R 2 P 2 2 0 I 0 I 1 1 2 D) (1 ) E) (1 ) 2R 4R
合面上场强E处处为零. (3) 通过闭合面上任一面元的电场强度通量等于零.
E d S 0故闭
S
答 (1) 正确.
(2) 错误,虽然有 E d S 0 ,
Sቤተ መጻሕፍቲ ባይዱ
-q +q S
但本题中闭合面上各点场强均不为零。
(3)错误,通过整个闭合面的电场强度通量为零,而通 过任一面元的电场强度通量不一定为零(本题中任一面元 上都不为零)。
上底 下底
2 0 ③电荷分布是球对称
E
S
Φ E d S E 4r 2
E
E
Q 4 r 2
图示闭合面包围了两个等量异号点电荷±q.下列说法是 否正确?如有错误请改正. (1) 高斯定理 E d S q / 0 成立. S (2) 因闭合面内包围净电荷∑q i=0,得到
《大学物理》第八章至十一章练习题及资料整理总结

《大学物理》(下)复习提纲第八章静止电荷的电场(1)掌握电场强度的迭加法计算。
掌握库仑定律。
(2)掌握电场强度通量计算方法、高斯定理。
(3)掌握静电场的环路定律,电势能和电势的定义和计算公式。
(4)掌握导体静电平衡时电荷如何分布。
导体静电平衡后的电势计算方法以及平行板电容器的电容公式。
(5)掌握电介质在外电场中极化性质和电介质中的高斯定理。
要会用介质中高斯定理定性分析介质中电场和电势,掌握电场能量计算公式。
1.如图所示,真空中一长为L的均匀带电细直杆,总电荷为q,试求在直杆延长线上距杆的一端距离为d 的P点的电场强度.2.电荷为+q 和-2q 的两个点电荷分别置于x=1 m和x=-1 m处.一试验电荷置于x 轴上何处,它受到的合力等于零?3.若匀强电场的场强为E ,其方向平行于半径为R 的半球面的轴,如图所示.则通过此为半球面的电场强度通量Φe___________________,如果图是B,通量Φ为___________________。
e4.如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于___________________,如果电荷为q 的点电荷位于立方体的中心上,通过侧面abcd 的电场强度通量等于通量e Φ为___________________。
5.根据高斯定理的数学表达式∑⎰=⋅0/εq S d E S可知下述各种说法中,正确的是:(A) 闭合面内的电荷代数和为零时,闭合面上各点场强一定为零.(B) 闭合面内的电荷代数和不为零时,闭合面上各点场强一定处处不为零. (C) 闭合面内的电荷代数和为零时,闭合面上各点场强不一定处处为零. (D) 闭合面上各点场强均为零时,闭合面内一定处处无电荷.6.三个平行的“无限大”均匀带电平面,其电荷面密度都是+σ,如图所示,则A 、B 、C 、D 三个区域的电场强度分别为:E A =_________________,E B =_____________,E C =_______________,E D =_________________ (设方向向右为正).7. 真空中一“无限大”均匀带电平面,其电荷面密度为σ (>0).在平面附近有一质量为m 、电荷为q (>0)的粒子.试求当带电粒子在电场力作用下从静止开始垂直于平面方向运动一段距离l 时的速率.设重力的影响可忽略不计.8. 如图所示,两个“无限长”的、半径分别为R 1和R 2的共轴圆柱面均匀带电,沿轴线方向单位长度上所带电荷分别为λ1和λ2,则在各个区域距离轴线为 r 处的 P 点的电场强度大小E 为 _______________________.9.如图,A 点与B 点间距离为2l ,OCD 是以B 为中心,以l 为半径的半圆路径. A 、B 两处各放有一点电荷,电荷分别为+q 和-q .把另一电荷为Q (Q <0 )的点电荷从D 点沿路径DCO 移到O 点,则电场力所做的功为___________________10. 将电荷均为q 的三个点电荷一个一个地依次从无限远处缓慢搬到x 轴的原点、x = a 和x = 2a 处.求证外界对电荷所作之功为设无限远处电势能为零.11. 如图所示,两同心带电球面,内球面半径为r 1=5 cm ,带电荷q 1=3×10-8C ;外球面半径为r 2=20 cm , 带电荷q 2=-6×10-8C ,设无穷远处电势为零,则空间另一电势为 零的球面半径r = __________________.12. 如图所示,两个同心的均匀带电球面,内球面半径为R1、带电荷Q1,外球面半径为R2、带有电荷Q2.设无穷远处为电势零点,试求下图(A),(B),(C)三图中、距离球心为r 处的P点的电势U为分别为__________________,__________________,__________________。
大学物理下复习资料

电位移矢量 D0EP
介质中的高斯定理 SDdSq0
极化率
对于均匀介质 Pe0E r 1e
D
0E
真空中
0rE介质中
15
电容器的能量
q2 W
1CU21qU
2C 2
2
静电场的能量密度
we
1E2
2
静电场的能量
WVwedVV12E2dV
1 DEdV
V2
16
第十一章 恒定磁场
11-1 恒定电流 11-2 磁场 磁感应强度 11-3 毕奥萨伐尔定律 11-4 磁场的高斯定理和安培环路定理 11-5 带电粒子在电场和磁场中的运动 11-6 磁场对载流导线和载流线圈的作用 *11-7 电磁场的相对论变换
电磁铁,继电器 、电机、以及 各种高频电磁 元件的磁芯
磁棒
记忆元件
35
第十三章 变化的电磁场
13-1 电磁感应定律 Laws of Induction 13-2 动生电动势和感生电动势 Motional Emf and Induced Emf 13-3 自感和互感Self-Induction and Mutual Induction 13-4 磁场的能量Energy in a Magnetic Field 13-5 麦克斯韦电磁场理论 Maxwell’s Theory of Electromagnetism 13-6 电磁波波动方程 13-7 电磁波的能量和动量 13-8 电磁波的辐射
U U 1 U 2 U n
q q 1 q 2 q n b
C C 1 C 2 C n
电容器的串联
q 1 q 2 q n q
q q qq q q
U U 1U 2 U n a
《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。
初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。
八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。
十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。
大学物理下复习归纳

《大学物理》(下)复习资料第二部分:电学基本要求一. 基本概念电场强度, 电势;电势差, 电势能,电场能量。
二.基本定律、定理、公式 1.真空中的静电场: 库仑定律:r r q q F 321041πε=。
=041πε9×109 N·m 2·C -2电场强度定义:0q F=, 单位:N·C -1 ,或V·m -1 点电荷的场强:r q 3041πε=点电荷系的场强:N E E E E +++= 21,(电场强度叠加原理)。
任意带电体电场中的场强:电荷元dq 场中某点产生的场强为: r dqd 3041πε=,整个带电体在该产生的场强为:⎰=E d E电荷线分布dq=,dl λ 电荷面分布dq=dS σ, 电荷体分布dq=dV ρ电通量:S d E Se ⋅=⎰⎰φ=⎰⎰SdS E θcos高斯定理:在真空中的静电场中,穿过任一闭合曲面的电场强度的通量等于该闭合曲面所包围的电荷电量的代数和除以0ε 。
ε∑⎰⎰=⋅iSq S d E 。
物理意义:表明了静电场是有源场注意理解: 是由高斯面内外所有电荷共同产生的。
∑i q 是高斯面内所包围的电荷电量的代数和。
若高斯面内无电荷或电量的代数和为零,则0=•⎰⎰d ,但高斯面上各点的E 不一定为零。
在静电场情况下,高斯定理是普遍成立的。
对于某些具有对称性场强分布问题,可用高斯定理计算场强。
典型静电场:均匀带电球面:=(球面内);r q3041πε=(球面外)。
均匀带电无限长直线:E=r02πελ, 方向垂直带电直线。
均匀带电无限大平面:E=2εσ, 方向垂直带电直线。
均匀带电圆环轴线上: E=2/3220)(4x R qx+πε , 方向沿轴线(R 为圆环半径)。
电场力:q 0= , 电场力的功:A ab =⎰⎰=•ba ba dl E q l d E q θcos 00,特点:积分与路经无关, 说明静电场力是保守力。
大学物理下册复习资料

大学物理下册复习资料大学物理下册复习资料在大学物理学习的过程中,下册的内容往往更加深入和复杂。
为了更好地复习和掌握这些知识,我们需要有一份全面而有深度的复习资料。
本文将为大家提供一份关于大学物理下册的复习资料,帮助大家更好地备考。
一、电磁场与电磁波电磁场与电磁波是大学物理下册的重要内容。
电磁场包括静电场和静磁场,而电磁波则包括光波和无线电波等。
在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。
首先,我们可以回顾电场和磁场的基本概念和性质。
电场是由电荷产生的力场,而磁场是由电流产生的力场。
我们需要掌握电场和磁场的计算公式,以及它们的叠加原理和能量守恒定律等。
其次,我们可以深入学习电磁场的运动学和动力学。
在这一部分中,我们需要了解电磁场中的粒子运动规律,如洛伦兹力和质点在电磁场中的运动方程等。
同时,还需要掌握电磁场中的能量和动量守恒定律,以及电磁场的能量密度和能流密度等概念。
最后,我们需要学习电磁波的基本性质和传播规律。
电磁波是由振荡的电场和磁场组成的,具有波动性和粒子性。
我们需要了解电磁波的传播速度、波长和频率之间的关系,以及电磁波的干涉、衍射和偏振等现象。
二、量子力学量子力学是大学物理下册的另一个重要内容。
它是研究微观领域的物质和能量的理论。
在复习这一部分内容时,我们可以从以下几个方面进行总结和梳理。
首先,我们需要回顾波粒二象性的基本概念和原理。
量子力学认为微观粒子既具有波动性又具有粒子性,这一观点颠覆了经典物理学的观念。
我们需要了解波粒二象性对物质和能量的描述,以及波函数和概率密度等概念。
其次,我们可以深入学习量子力学的基本原理和数学表达。
量子力学的基本原理包括叠加原理、不确定性原理和量子力学的统计解释等。
我们需要掌握薛定谔方程和波函数的求解方法,以及量子力学中的算符和测量等概念。
最后,我们需要学习量子力学在原子物理和固体物理中的应用。
量子力学在原子物理中解释了原子的结构和性质,如玻尔模型和量子力学模型等。
大学物理复习提纲(下)

《大学物理》(下)复习提纲第6章 恒定电流的磁场(1) 掌握磁场,磁感应强度,磁力线,磁通量等概念,磁场中的高斯定理,毕奥一沙伐一拉普拉斯定律。
(2) 掌握安培环路定律,应用安培环路定律计算磁场.(3)掌握安培定律,会用安培定律计算磁场力。
会判断磁力矩的方向。
会判断霍尔效应电势的方向。
1. 边长为2a 的等边三角形线圈,通有电流I ,则线圈中 心处的磁感强度的大小为________________.2. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为3.一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,一无限长载流直导线,通有电流I ,弯成如图形状.设各线段皆在纸面内,则P 点磁感强度B的大小为________________.则P 点磁感强度B的大小为4. 一无限长载有电流I 的直导线在一处折成直角,P 点位于导线所在平面内,距一条折线的延长线和另一条导线的距离都为a ,如图.求P点的磁感强度B.5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于(A )R I πμ20 (B )240RIμ6.如图所示,用均匀细金属丝构成一半径为R 的圆环C ,电流I 由导线1流入圆环A 点,并由圆环B 点流入导线2.设导线1和导线2与圆环共面,则环心O 处的磁感强度大小 为________________________,方向___________________.7. 真空中电流分布如图,两个半圆共面,且具有公共圆心,试求O 点处的磁感强度.8.均匀磁场的磁感强度B 与半径为 r 的圆形平面的法线n的夹角为α ,今以圆周为边界,作一个半球面S ,S 与圆形平面组成 封闭面如图.则通过S 面的磁通量Φ =________________.9.如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll d B 等于10.如图,流出纸面的电流为2I,流进纸面的电流为I,则下述各式中哪一个是正确的?11.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) 0d=⎰⋅LlB,且环路上任意一点B = 0.(B) 0d=⎰⋅LlB,且环路上任意一点B≠0.(C) 0d≠⎰⋅LlB,且环路上任意一点B≠0.(D) 0d≠⎰⋅LlB,且环路上任意一点B =常量.[]12. 有一同轴电缆,其尺寸如图所示,它的内外两导体中的电流均为I,且在横截面上均匀分布,但二者电流的流向正相反,则(1) 在r < R1处磁感强度大小为________________.(2) R1< r< R2处磁感强度大小为________________.(2) 在r > R3处磁感强度大小为________________.13. 两根长直导线通有电流I,图示有三种环路;在每种情况下,⎰⋅L l dB等于:_______________________(对环路a)._______________________(对环路b)._______________________(对环路c).14. 在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:(A) =⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =(B) ≠⎰⋅1d L l B⎰⋅2d L l B, 21P P B B =.(C) =⎰⋅1d Ll B⎰⋅2d L l B, 21P P B B ≠.(D)≠⎰⋅1d L l B ⎰⋅2d L l B , 21P P B B ≠. [ ]15.把轻的导线圈用线挂在磁铁N 极附近,磁铁的轴线穿过线圈中心,且与线圈在同一平面内,如图所示.当线圈内通以如图所示方向的电流时,线圈将(A) 不动. (B) 发生转动,同时靠近磁铁. (C) 发生转动,同时离开磁铁. (D) 不发生转动,只靠近磁铁.(E) 不发生转动,只离开磁铁. [ ]16. 如图,一根载流导线被弯成半径为R 的1/4圆弧,放在磁感强度为B 的均匀磁场中,则载流导线ab (电流I 顺时针方向流动)所受磁场的作用力的大小为____________,方向_________________.17.如图,均匀磁场中放一均匀带正电荷的圆环,其线电荷密度为λ,圆环可绕通过环心O 与环面垂直的转轴旋转.当圆环以角速度ω转动时,圆环受到的磁力矩为 ___ _________, 其方向__________________________.L 1 2I 3(a)(b)⊙18.有两个半径相同的环形载流导线A 、B ,它们可以自由转动和移动,把它们放在相互垂直的位置上,如图所示,将发生以下哪一种运动?(A) A 、B 均发生转动和平动,最后两线圈电流同方向并紧靠在一起. (B) A 不动,B 在磁力作用下发生转动和平动. (C) A 、B 都在运动,但运动的趋势不能确定.(D) A 和B 都在转动,但不平动,最后两线圈磁矩同方向平行.19.如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈的运动将是 ______________________ _________; 若线圈平面与直导线垂直,见图(b),则圆线圈将 __________________________________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理(下)复习提纲(基本概念 , 基本定律、定理、原理、公式)第一部分:(第11、12章)热学基本要求一. 基本概念压强,温度, 内能,功,热量,理想气体,平衡态。
二.基本定律、定理、公式1、理想气体物态方程:m 一定时,有:m pV RT RT M ν==,p nkT =, pVC T= 普适气体常数: 11K mol J 31.8--⋅⋅=R ,玻尔兹曼常数:23101.3810Rk J K N --==⨯⋅ 2、理想气体平衡态时的统计规律:0 x y z v v v ===,22221 3x y z v v v v ===3、分子平均平动动能:k mv 212ε=理想气体压强公式:kp n 23ε=温度公式:k kT 32ε=4、常温下理想气体(刚性)分子的自由度:单原子分子:t r i 3, 0, 3=== 双原子分子:t r i 3, 2, 5=== 多原子分子:t r i 3, 3, 6===5、能量按自由度均分原理:平衡态下,分子每个自由度具有平均动能12kT平衡态时刚性分子的平均能量 2ikT ε=。
温度为T 的平衡态下ν mol 理想气体的内能: i M i E RT RT 22νμ==。
6、麦克斯韦分子速率分布函数: ()dNf v Ndv =, ()0 1 f v dv ∞=⎰(归一化条件),7、各种平均值的求法:()0v vf v dv ∞=⎰,()220v v f v dv ∞=⎰最概然速率:p v ==≈ 平均速率:v =≈==8、分子平均碰撞频率、平均自由程和平均速率之间的关系: v z λ=分子平均碰撞频率:z d vn 2==分子平均自由程:λ=9、热力学第一定律: Q E A ∆=+内能增量∆E =2M iR T ∆μ ,准静态过程的功21V V A PdV =⎰,吸热QmPV RT RT M ν==, m 一定时:112212=PV PV T T 10、热力学第一定律的应用: 摩尔热容: dQ C dT =, 2v i C R =,22p v i C C R R +=+=,比热容比:2P v C i C iγ+==等体过程:A =0, 2v M iQ E R T ∆∆μ==等压过程: 21()MA P V V R T ∆μ=-=,2M i E R T ∆∆μ=,22p M i Q R T ∆μ+= 等温过程:0E ∆=, 2112lnln T V P MM Q A RT RT V P μμ===绝热过程:Q =0, 2M iA E R T ∆∆μ=-=- 11、循环过程:热机效率的定义和一般计算公式:2111Q AQ Q η==-, 卡诺热机效率:211c T T η=-。
致冷机的致冷系数的定义和一般计算公式:2212Q Q w A Q Q ==-, 卡诺致冷机的致冷系数:212c T w T T =- 12、热力学第二定律:开尔文表述:不可能从单一热源吸取热量,使之完全变成有用的功而不产生其他的影响。
克劳修斯表述:热量不可能自动地从低温物体传向高温物体。
第二部分:(第13、14章)机械振动与机械波基本要求一、基本概念1. 简谐振动:周期, 频率,角频率,相位, 初相位,振幅,振动的能量;2.平面简谐波:波长,波速, 周期, 频率, 波的能量,平均能量密度, 能流密度(波的强度), 相干波, 相干波源。
二、基本定律、定理、公式1、简谐振动:微分方程:2220 d xx dtω+= ,弹簧振子F kx =-,ω=, 单摆ω= 振动表达式:()cos x A t ωϕ=+振幅A ,相位()t ωϕ+,初相位 ϕ,角频率 ω;22Tπωπν==。
周期T , 频率ν。
ω由振动系统本身参数所确定;A 、 ϕ可由初始条件确定:A =,00arctan v x ϕω⎛⎫=-⎪⎝⎭简谐振动的能量:2221122k p E E E kA m A ω=+==, 2、两个简谐振动的合成:① 同向同频的合成后仍为谐振动:111cos()x A t ωϕ=+ , 222cos()x A t ωϕ=+合振动:12cos()x x x A t ωϕ=+=+ 其中A =11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+。
相位差:21=2k ∆ϕϕϕπ=-±时,(k 为整数),A =A 1+A 2 极大21=(21)k ∆ϕϕϕπ=-±+时,(k 为整数),12=A A A - 极小 熟练掌握矢量合成方法。
② 同向异频的合成:拍现象, 拍频21ννν=-。
③ 相互垂直的谐振动的合成:若频率相同,则合成运动轨迹为椭园;若两分振动的频率成简单整数比,合成运动的轨迹为李萨如图形。
3、波长、波速和频率的关系:u Tλλν==,波速u 由媒质决定,频率ν由波源决定。
4、平面谐波的波动方程:① 沿X 正方向传播的平面谐波:cos ()=cos 2()=cos 2()x t x x y A t A A t u T ωϕπϕπνϕλλ⎡⎤⎡⎤⎡⎤=-+-+-+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦② 沿X 负方向传播的平面谐波:c o s (+)=c o s 2(+)=c o s 2(+)x t x x y A t A A t u T ωϕπϕπνϕλλ⎡⎤⎡⎤⎡⎤=+++⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦③ 相距为 x ∆的两点振动的相位差:2x π∆ϕ∆λ=-5、波的能量:平均能量密度:2212w A ρω=, 能流密度(波的强度):2212I wu A u ρω==2 A ∝ , u w I =6、波的干涉:①相干条件:同振动方向,同振动频率,相位差恒定。
②干涉加强、减弱条件: 相位差:21212()=2r r k π∆ϕϕϕπλ=---±,(k 取整数),干涉加强21212()=(21)r r k π∆ϕϕϕπλ=---±+,(k 取整数),干涉减弱特例:当210 ϕϕ-=时,波程差: 21=r r k δλ=-±,干涉加强 21=(21)2r r k λδ=-±+, 干涉减弱③ 驻波:是两列同振幅、沿相反方向传播的相干波的干涉。
相邻波节(或相邻波腹)的间距:2λ ④ 半波损失:波从波疏媒质入射到波密媒质界面反射时,有相位π的突变,称存在半波损失(反之则不存在)。
第三部分:(第15章)光学基本要求一、基本概念相干光,相干光源,光程,自然光,偏振光。
二、基本定律、定理、公式1、光程和光程差① 光在折射率为n 的介质中传播的距离为r 时对应的光程为nr δ=② 光程的意义:光程表示在相同的时间内光在真空中通过的路程,即:光程这个概念可将光在介质中走过的路程按相等传播时间或相等位相变化折算为光在真空中的路程。
③ 光在传播路径中两点之间的相位差∆ϕ与光程差δ 的关系:2π∆ϕδλ=,式中:λ 是该单色光在真空中的波长。
2、杨氏双缝干涉:两缝到屏幕上某P 点的光程差:21dxr r Dδ=-==,k δλ± 明条纹, k =0,1,2,· · ·=(21)2k λδ±-, 暗条纹, k =1,2,3,· · ·屏幕上明暗条纹的位置 :D x kdλ=±,明条纹, k =0,1,2,· · ·(21)2D x k d λ=±-, 暗条纹, k =1,2,3,· · ·明纹间距(或暗纹间距): D x dλ∆=某缝盖薄膜后附加光程差:e n )1(-=δ∆3、薄膜干涉:2=2k λδλ=+±,明条纹, k =1,2,···2=(21)22k λλδ=+±+,暗条纹,k = 0,1,2,⋅⋅⋅正入射情况(i =0):22ne k λδλ=+=±, 明条纹, k =1,2,3,··2(21)22ne k λλδ=+=±+,暗条纹, k =0,1,2,···① 劈尖: 相邻明(暗)条纹间距:2sin l n λθ=,θ很小时:θλn l 2=② 牛顿环:r = k =1,2,···r = k = 0,1,2,··· ③ 迈克尔逊干涉仪:, 2d Nλ=,4、单缝衍射:sin a k ϕλ=±,暗条纹, k =1,2,3,···sin =(21)2a k λϕ±+,明条纹, k = 1,2,3,···中央明条纹中心:0ϕ=;中央明条纹范围:aasin λλϕ-<<5、光栅衍射:光栅常数:d = a +b光栅方程:sin d k ϕλ=±, 主极大明条纹, k = 0,1,2,···。
(正入射)光栅衍射条纹(单色光)的特征:多缝干涉明条纹光强受到单缝衍射明暗条纹光强的调制,这些干涉明条纹很亮很细,称为主极大明条纹,主极大的条数和位置由d 决定,与缝数N 无关;观察屏上出现的主极大的最大级次dk λ<;但N 越多,主极大明条纹越亮、越细,叫光谱线;次级大和暗条纹与N 有关,两个主极大之间有N -1条暗条纹和N -2条次级大。
N 很大时,次级大条数很多很暗,成为主极大之间的背景。
缺级公式: dk k a'=,k '=1,2,3,··· 6、光的偏振:马吕斯定律:20cos I I θ=,布儒斯特定律:201tan =n i n 。
0090 i γ+= (光的偏振不做要求)。