大学物理下册知识点总结
大学物理下册知识点总结

大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
大学物理下知识点总结

电流分布 直 无限长 电 流 半无限长
导线所在直线上
圆 圆心处 电 流 弧电流圆心 长直载流密绕螺线管 载流密绕细螺绕环
磁场分布
B μ0 I 2πa
B 0I 4 a
B0
BO
0 I
2R
BO
0 I
2R
2
B内 0nI B内 0nI
B外 0 B外 0
1、B 、H 关系:
磁介质概要
对各向同性磁介质: B H
L L
di dt
(1)自感磁能:Wm
1 2
LI 2
(2)磁能密度:wm
1 2
B2
1 H 2
2
1 BH 2
磁能:Wm wmdV V
6、Maxwell位移电流假说: 实质:变化电场→ 磁场
平板电容器中总位移电流:
Jd
D t
Id
C dU dt
0 S板
dE dt
全电流定律:
H dl
L
Ic Id
n
点电荷系场: u ui 无连限续大带或电无体限场长: 带ui电1 体q du不能q 使4d用q0r该(方u法 0)
计算量
q
E
4
r2
0
r0
E
i
qi
40ri2
r0i
dq
E 40r 2 r0
1
S
E dS
0
qi
s内
Up
U0 E dl p
q U
4 0r
U
i
qi
4
0
ri
U
dq
40r
Q1 ,R1 Q2 ,R2 R1 R2
场强分布
E 2 0a
(完整word版)《大学物理》下册复习资料

《大学物理》(下) 复习资料一、电磁感应与电磁场1. 感应电动势——总规律:法拉第电磁感应定律 dtd m i Φ-=ε , 多匝线圈dt d i ψ-=ε, m N Φ=ψ。
i ε方向即感应电流的方向,在电源内由负极指向正极。
由此可以根据计算结果判断一段导体中哪一端的电势高(正极)。
①对闭合回路,i ε方向由楞次定律判断; ②对一段导体,可以构建一个假想的回路(使添加的导线部分不产生i ε)(1) 动生电动势(B 不随t 变化,回路或导体L运动) 一般式:() d B v b ai ⋅⨯=ε⎰; 直导线:()⋅⨯=εB v i动生电动势的方向:B v ⨯方向,即正电荷所受的洛仑兹力方向。
(注意)一般取B v⨯方向为 d 方向。
如果B v ⊥,但导线方向与B v⨯不在一直线上(如习题十一填空2.2题),则上式写成标量式计算时要考虑洛仑兹力与线元方向的夹角。
(2) 感生电动势(回路或导体L不动,已知t /B ∂∂的值):⎰⋅∂∂-=s i s d t Bε,B与回路平面垂直时S t B i ⋅∂∂=ε 磁场的时变在空间激发涡旋电场i E :⎰⎰⋅∂∂-=⋅L s i s d t B d E(B增大时t B ∂∂[解题要点] 对电磁感应中的电动势问题,尽量采用法拉第定律求解——先求出t 时刻穿过回路的磁通量⎰⋅=ΦSm S d B ,再用dtd m i Φ-=ε求电动势,最后指出电动势的方向。
(不用法拉弟定律:①直导线切割磁力线;②L不动且已知t /B ∂∂的值)[注] ①此方法尤其适用动生、感生兼有的情况;②求m Φ时沿B 相同的方向取dS ,积分时t 作为常量;③长直电流r π2I μ=B r /;④i ε的结果是函数式时,根据“i ε>0即m Φ减小,感应电流的磁场方向与回路中原磁场同向,而i ε与感应电流同向”来表述电动势的方向:i ε>0时,沿回路的顺(或逆)时针方向。
2. 自感电动势dtdI Li -=ε,阻碍电流的变化.单匝:LI m=Φ;多匝线圈LI N =Φ=ψ;自感系数I N I L m Φ=ψ= 互感电动势dt dI M212-=ε,dtdIM 121-=ε。
大学物理下册基本概念定律归纳总结

大学物理下册基本概念定律归纳总结一.1. 电偶极子模型:是指电量为q、相距为d的一对正负点电荷组成的电结构,电偶极子的方向为从负电荷指向正电荷。
2. 电介质模型(木有)3. 电容器是装电的容器,是一种容纳电荷的器件。
4. 磁偶极子模型:磁偶极子是类比而建立的物理模型。
由于没有发现单独存在的磁单极子,因此磁偶极子的物理模型不是两个磁单极子,而是一段封闭回路电流。
磁偶极子模型能够很好地描述小尺度闭合电路元产生的磁场分布[1] 。
5. 抗磁质:磁介质中的磁感应强度由于磁介质的存在而削弱了,这类磁介质称为抗磁质。
顺磁质:磁介质中的磁感应强度由于磁介质的存在而增强了,这类磁介质称为顺磁质。
铁磁质:磁介质中的磁感应强度由于磁介质的存在而增强了成千上万倍,这类磁介质称为铁磁质。
6. 位移电流是电位移矢量随时间的变化率对曲面的积分。
7. 涡旋电场:涡旋电场是由变化的磁场所产生,既变化的磁场在其周围也会激发一电场,叫做感应电场或涡旋电场。
8. 霍尔效应:当电流垂直于外磁场方向通过导体时,在垂直于磁场和电流方向的导体的两个端面之间出现电势差的现象称为霍尔效应9. 光栅由大量等宽等间距的平行狭缝构成的光学器件称为光栅。
10. 偏振光:我们把光在与传播方向相垂直的平面内的各种振动状态称为光的偏振。
11. 光电子:光电子学是指光波波段,即、可见光、和软X射线波段的电子学。
(没有光电子)12. 德布罗意波:物质波,又称德布罗意波,是,指空间中某点某时刻可能出现的几率,其中概率的大小受波动规律的支配。
13. 量子力学波函数:指给定系统的能够完整描述该系统的,即描述该系统的全部可测量的物理量的具体情况,亦即该系统的能量、动量、角动量、位置等等物理量到底是多少乃至它们怎样随时间而变。
二.1. 电场:是电荷及变化周围空间里存在的一种特殊物质。
它是客观存在的,电场具有通常物质所具有的力和能量等客观属性。
2. 磁场的场强叠加原理:空间某一点的磁场是各个磁场源(电流或运动电荷)各自在该点产生的磁场的叠加(矢量和)3. 导体静电平衡条件:当感应电荷分布达到稳定状态时,导体内部的自由电子将不再有宏观运动,即导体在外电场中达到了静电平衡。
大学物理(下)知识点、重点及难点

光 的 干 涉 和 衍 射知识点:1. 获得相干光的基本原理:把一个光源的一点发出的光束分为两束。
具体方法有分波阵面法和分振幅法。
2. 杨氏双峰干涉:是分波阵面法,其干涉条纹是等间距的直条纹。
条纹中心位置:明纹:,...,2,1,02=±=k aD kx λ暗纹:,...,2,1,022)12(=+±=k a D k x λ条纹间距:λaD x 2=∆ 3. 光程差δ 4. 位相差 δλπφ2=∆有半波损失时,相当于光程增或减2λ,相位发生π的突变。
5. 薄膜干涉(1)等厚干涉:光线垂直入射,薄膜等厚处为同一条纹。
劈尖干涉:干涉条纹是等间距直条纹. 对空气劈尖:明纹:,...2,122==+k k ne λλ暗纹:,...,2,1,02)12(22=+=+k k ne λλ牛顿环干涉:干涉条纹是以接触点为中心的同心圆环.明环半径:,...2,1)21-(==k nR k r λ明暗环半径:,...,2,1,0==k nkRr λ暗(2)等倾干涉:薄膜厚度均匀,采用面广元,以相同倾角入射的光,其干涉情况一样,干涉条纹是环状条纹。
明环:,...2,12sin 222122==+-k k i n n e λλ暗环:,...,2,1,02)12(2sin 222122=+=+-k k i n n e λλ6. 迈克尔逊干涉仪7. 单缝夫朗和费衍射用半波带法处理衍射问题,可以避免复杂的计算.单色光垂直入射时,衍射暗纹中心位置: ,...2,122sin =±=k k a λφ亮纹中心位置: ,...,2,1,2)12(sin =+±=k k a λφ8. 光栅衍射9. 光学仪器分辨率 重点:1. 掌握用半波带法分析夫朗和费衍射单缝衍射条纹的产生及其亮暗纹位置的计算.2. 理解光栅衍射形成明纹的条件,掌握用光栅方程计算谱线位置。
3. 理解光程及光程差的概念.,并掌握其计算方法;理解什么情况下反射光有半波损失。
大二物理下知识点大全总结

大二物理下知识点大全总结大二物理是物理学专业学生在本科阶段的第二年学习的课程内容。
在大二物理学习中,学生将深入学习和理解一系列的物理知识点。
本文将对大二物理下的知识点进行全面总结,以帮助学生更好地复习和掌握这些知识。
1. 力学1.1 牛顿运动定律1.2 质点运动1.3 刚体力学1.4 动量定理1.5 能量守恒定律1.6 转动力学2. 热学2.1 理想气体定律2.2 热力学第一定律2.3 热力学第二定律2.4 熵2.5 热传导、传导定律 2.6 热辐射2.7 温度和热量的测量3. 波动光学3.1 波动方程3.2 干涉和衍射现象3.3 光的偏振3.4 光的干涉和衍射装置 3.5 马赫—曾得干涉仪4. 电磁学4.1 静电场和电势4.2 恒定电流和电路4.3 电磁感应4.4 交流电4.5 等效交流电路4.6 电磁波4.7 电磁能量和动量4.8 电磁场的辐射5. 原子物理5.1 原子结构模型5.2 原子光谱5.3 半导体物理5.4 核物理基础5.5 放射性衰变6. 实验室技能6.1 物理实验技巧与操作 6.2 数据处理与误差分析 6.3 仪器仪表的使用6.4 实验安全与环境保护以上仅为大二物理下的知识点大致分类,实际学习中还包括大量的例题和习题训练。
学生需要通过理论学习和实践操作相结合的方式来扎实掌握这些知识点。
在学习过程中,还要注意培养问题解决和实验分析能力。
总结:大二物理的知识点涵盖了力学、热学、波动光学、电磁学、原子物理和实验室技能等方面。
掌握这些知识对于物理学专业学生来说至关重要。
通过不断地学习、练习和实践,学生将能够深入理解这些知识点,并在实际应用中灵活运用。
希望本文的总结对学生们在大二物理学习中有所帮助。
《大学物理下》重要知识点归纳

《大学物理下》重要知识点归纳第一部分一、简谐运动的运动方程: 振幅A : 取决于初始条件 角频率ω:反映振动快慢,系统属性。
初相位ϕ: 取决于初始条件二、简谐运动物体的合外力: (k : 比例系数) 简谐运动物体的位移:简谐运动物体的速度: 简谐运动物体的加速度: 三、旋转矢量法(旋转矢量端点在x 轴上投影作简谐振动)矢量转至一、二象限,速度为负矢量转至三、四象限,速度为正四、振动动能: 振动势能: 简谐振动总能量守恒.....: 五、平面简谐波波函数的几种标准形式:][)(cos o u x t A y ϕω+= ][2 cos o x t A ϕλπω+=0ϕ:坐标原点处质点的初相位 x 前正负号反映波的传播方向六、波的能量不守恒...! 任意时刻媒质中某质元的 动能 = 势能 !)(cos ϕω+=t A x202)(ωv x A +=Tπω2=mk =2ω)(cos ϕω+=t A x )(sin ϕωω+-==t A dtdxv )(cos 222ϕωω+-==t A dtx d a kxF -=221kx E p=)(cos 21 22 ϕω+=t A k pk E E E +=2 21A k =)(sin 2121 222ϕω+==t kA mv E ka,c,e,g 点: 能量最大! b,d,f 点: 能量最小!七、波的相干条件:1. 频率相同;2. 振动方向相同;3.相位差恒定。
八、驻波:是两列波干涉的结果波腹点:振幅最大的点 波节点:振幅最小的点相邻波腹(或波节)点的距离:2λ相邻波腹与波节的距离:λ九、光程:nr L = n:折射率 r :光的几何路程光程是一种折算..,把光在介质中走的路程折算成相同时间....光在真空中走的路程即光程,所以,与光程或光程差联系在一起的波长永远是真空..中的波长0λ。
十、光的干涉:光程差:),2,1,0(2)12(⋅⋅⋅=⎪⎩⎪⎨⎧→+±→±=∆k k k 干涉相消,暗纹干涉相长,明纹λλ十一、杨氏双缝干涉相邻两条明纹(或暗纹)的间距:λndd x '=∆ d ´: 缝与接收屏的距离 d : 双缝间距 λ:光源波长 n :介质的折射率十二、薄膜干涉中反射光2、3的光程差:*22122)2(sin 2λ+-=∆i n n dd : 膜的厚度等号右侧第二项*)2(λ由半波损失引起,当2n 在三种介质中最大或最小时, 有这一项,否则没有这一项。
大学物理下知识点归纳

大学物理下知识点归纳大学物理下知识点归纳静电场知识点:◎掌握库仑定律,掌握电场强度及电场强度叠加原理,掌握点电荷的电场强度公式◎理解电通量的概念,掌握静电场的高斯定理及应用,能计算无限长带电直线、带点平面、带电球面及带电球的场强分布.◎理解静电力做功的特征,掌握电势及电势叠加原理,能计算一些简单电荷分布的电势◎理解电场强度与电势的关系,掌握静电场的环路定理◎理解导体的静电平衡条件,能计算一些简单导体上的电荷分布规律和周围的电场分布◎能进行简单电容器电容的计算(*平行板电容器电容)◎掌握各向同性电介质中D、E的关系及介质中的高斯定理◎掌握平行板电容器储存的静电能的计算重点:叠加原理求电场强度,静电场的高斯定理及应用,电势及电势的计算,静电场的环路定理,简单电容器电容的计算,介质中的高斯定理,电容器储存的静电能稳恒磁场知识点◎掌握毕奥萨伐尔定律,能计算直线电流、圆形电流的磁感应强度◎理解磁通量的概念,掌握稳恒磁场的高斯定理,掌握安培环路定理及其应用◎掌握洛仑兹力和安培力公式,能分析运动电荷在均匀磁场中的受力和运动,了解霍尔效应,掌握载流平面线圈在均匀磁场中的磁矩和力矩计算。
◎掌握磁场强度、各向同性磁介质中H、B的关系及介质中的安培环路定理重点:毕奥萨伐尔定律及计算,安培环路定理及其应用,安培定律及应用,磁力矩,磁介质中的安培环路定理电磁感应知识点:◎掌握法拉第电磁感应定律及应用◎掌握动生电动势及计算、理解感生电场与感生电动势,◎理解自感和互感,能进行简单的自感和互感系数的计算◎掌握磁场能量◎理解位移电流和全电流环路定理◎理解麦克斯韦方程组的积分形式及物理意义重点:法拉第电磁感应定律及应用,动生电动势及计算,磁场能量,麦克斯韦方程组的积分形式扩展阅读:大学物理知识点总结大学物理知识点总结第一章声现象知识归纳1.声音的发生:由物体的振动而产生。
振动停止,发声也停止。
2.声音的传播:声音靠介质传播。
真空不能传声。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理下册学院:姓名:班级:第一部分:气体动理论与热力学基础一、气体的状态参量:用来描述气体状态特征的物理量。
气体的宏观描述,状态参量:(1)压强p:从力学角度来描写状态。
垂直作用于容器器壁上单位面积上的力,是由分子与器壁碰撞产生的。
单位 Pa(2)体积V:从几何角度来描写状态。
分子无规则热运动所能达到的空间。
单位m 3(3)温度T:从热学的角度来描写状态。
表征气体分子热运动剧烈程度的物理量。
单位K。
二、理想气体压强公式的推导:三、理想气体状态方程:112212PV PV PVCT T T=→=;mPV RTM'=;P nkT=8.31JR k mol=g;231.3810Jk k-=⨯;2316.02210AN mol-=⨯;AR N k=g四、理想气体压强公式:23ktp nε=212ktmvε=分子平均平动动能五、理想气体温度公式:21322ktmv kTε==六、气体分子的平均平动动能与温度的关系:七、刚性气体分子自由度表八、能均分原理:1.自由度:确定一个物体在空间位置所需要的独立坐标数目。
2.运动自由度:确定运动物体在空间位置所需要的独立坐标数目,称为该物体的自由度(1)质点的自由度:在空间中:3个独立坐标在平面上:2 在直线上:1(2)直线的自由度:中心位置:3(平动自由度)直线方位:2(转动自由度)共5个3.气体分子的自由度单原子分子 (如氦、氖分子)3i=;刚性双原子分子5i=;刚性多原子分子6i=4.能均分原理:在温度为T的平衡状态下,气体分子每一自由度上具有的平均动都相等,其值为12kT推广:平衡态时,任何一种运动或能量都不比另一种运动或能量更占优势,在各个自由度上,运动的机会均等,且能量均分。
5.一个分子的平均动能为:2kikTε=五. 理想气体的内能(所有分子热运动动能之和)1.1mol理想气体2iE RT=5.一定量理想气体(2i mE RTMνν'==九、气体分子速率分布律(函数)速率分布曲线峰值对应的速率 v p 称为最可几速率,表征速率分布在 v p ~ v p + d v 中的分子数,比其它速率的都多,它可由对速率分布函数求极值而得。
即十、三个统计速率: a.平均速率MRT M RT m kTdv v vf NvdNv 60.188)(000=====⎰⎰∞∞ππb. 方均根速率MRTMk Tv dvv f vN dNvv73.13)(20222==⇒==⎰⎰∞C. 最概然速率:与分布函数f(v)的极大值相对应的速率称为最概然速率,其物理意义为:在平衡态条件下,理想气体分子速率分布在p v 附近的单位速率区间内的分子数占气体总分子数的百分比最大。
MRT M RT m kT v p 41.1220===三种速率的比较:各种速率的统计平均值: 理想气体的麦克斯韦速率分布函数十一、分子的平均碰撞次数及平均自由程:一个分子单位时间里受到平均碰撞次数叫平均碰撞次数表示为 Z ,一个分子连续两次碰撞之间经历的平均自由路程叫平均自由程。
表示为 平均碰撞次数 Z 的导出:热力学基础主要内容一、内能分子热运动的动能(平动、转动、振动)和分子间相互作用势能的总和。
内能是状态的单值函数。
对于理想气体,忽略分子间的作用 ,则 平衡态下气体内能:二、热量系统与外界(有温差时)传递热运动能量的一种量度。
热量是过程量。
摩尔热容量:( Ck =Mc )1mol 物质温度升高1K 所吸收(或放出)的热量。
Ck 与过程有关。
系统在某一过程吸收(放出)的热量为:系统吸热或放热会使系统的内能发生变化。
若传热过程“无限缓慢”,或保持系统与外界无穷小温差,可看成准静态传热过程。
准静态过程中功的计算: 元功:应用:单位均用焦耳(J )表示。
准静态过程(平衡过程)系统从一个平衡态到另一个平衡态,中间经历的每一状态都可以近似看成平衡态过程。
三.热力学第一定律:Q E W=∆+;dQ dE dW=+1.气体21V V WPdv =⎰2.,,Q E W ∆符号规定3.2121()V m V m m m dEC dT E E C T T M M''=-=-g g 或2V m iC R =g 热力学第一定律在理想气体的等值过程和绝热过程中的应用: 1. 等体过程气体容积保持不变 (dV = 0 ) 等容过程中的功 A = 0 (dV = 0)等容过程内能210()V m W Q E C T T ν=⎧⎪⎨=∆=-⎪⎩g 内能仅与始末态温度有关。
2. 等压过程:系统压强保持不变 (P = 常数,dP = 0 ) 等压过程中的功 :212121()()()p m W p V V R T T Q E W C T T νν=-=-⎧⎪⎨=∆+=-⎪⎩g C 2,12C p m p m V m V m i C C R R γ+=+=>g g g g 热容比= 3.等温过程:2122110T T E E m V m p Q W R T ln R T ln M V M p -=⎧⎪''⎨===⎪⎩ 绝热过程 : 特征:Q=0210()V m Q W E C T T ν=⎧⎪⎨=-∆=--⎪⎩g绝热方程1PV C γ=, -12V T C γ= ,13P T C γγ--= 。
四.循环过程:特点:系统经历一个循环后,0E∆=系统经历一个循环后Q W =(代数和)(代数和)41.1:60.1:73.1::2=p v v v Zv=λn v d Z 22π=pd kT 22πλ=nd Zv 221πλ==kTmv e v kTmv f 22232)2(4)(-=ππ⎰∞⋅=0)(dvv f v v ⎰∞⋅=22)(dvv f v v ∑∑+ipiiki E E E =内)(T E E E k =理=RTi M m E 2=PdVPSdl l d F dA ==⋅=1. 正循环(顺时针)-----热机 逆循环(逆时针)-----致冷机2. 热机效率:1221111Q Q Q W Q Q Q η-===- 式中:1Q ------在一个循环中,系统从高温热源吸收的热量和; 2Q ------在一个循环中,系统向低温热源放出的热量和; 12W Q Q =-------在一个循环中,系统对外做的功(代数和)。
3. 卡诺热机效率: 211cT T η=-式中:1T ------高温热源温度;2T ------低温热源温度;4. 制冷机的制冷系数: 卡诺制冷机的制冷系数:221212Q T e Q Q T T ==--五. 热力学第二定律1. 开尔文表述:从单一热源吸取热量使它完全变为有用功的循环过程是不存在的(热机效率为100%是不可能的)。
2. 克劳修斯表述:热量不能自动地从低温物体传到高温物体。
3. 可逆过程和不可逆过程:可逆过程:任何一个系统状态变化过程若能使系统沿着相反方向经过与原来完全一样的中间状态再回到原状态而不引起其他变化。
说明:1)系统复原;2)外界复原。
不可逆过程:若一过程产生的效果无论用任何复杂的方法,在不引起其他变化的条件下,都不能回复原态。
一切与热现象有关的实际宏观过程都是不可逆的。
熵是态函数: 熵有相加性;绝热不可逆过程熵增加; 熵是系统混乱度的量度,在平衡态时达最大。
熵增加原理:在绝热过程中,熵永不减少。
任何自发不可逆过程总是向熵增加方向进行。
【例1】(大本练习册P145—38)一定量的理想气体,由状态a 经b 到达c .(如图,abc 为一直线)求此过程中 (1)气体对外作的功;(2)气体内能的增量;(3)气体吸收的热量.(1 atm =×105Pa)【例2】(大本练习册P146—41)一定量的某种理想气体进行如图所示的循环过程.已知气体在状态A 的温度为T A =300 K ,求(1) 气体在状态B 、C 的温度;(2) 各过程中气体对外所作的功; (3) 经过整个循环过程,气体从外界吸收的总热量(各过程吸热的代数和).【例3】(大本练习册P146—44) 气缸内贮有36 g 水蒸汽(视为刚性分子理想气体),经abcda 循环过程如图所示.其中a -b 、c -d 为等体过程,b -c 为等温过程,d -a 为等压过程.试求:(1) d -a 过程中水蒸气作的功W da (2) a -b 过程中水蒸气内能的增量ab(3) 循环过程水蒸汽作的净功W(4) 循环效率(注:循环效率=W /Q 1,W 为循环过程水蒸汽对外作的净功,Q 1为循环过程水蒸汽吸收的热量,1 atm= ×105Pa)【例4】(教材8—4)一定量理想气体分别经过等压,等温和绝热过程从体积1V 膨胀到体积2V ,如图所示,则下述正确的是 ( )(A )C A →吸热最多,内能增加 (B )D A →内能增加,作功最少 (C )B A →吸热最多,内能不变 (D )C A →对外作功,内能不变【例5】(大本练习册P131—19)图示曲线为处于同一温度T 时氦(原子量4)、氖(原子量20)和氩(原子量40)三种 气体分子的速率分布曲线。
其中:曲线(a )是 气分子的速率分布曲线;曲线(c )是 气分子的速率分布 曲线。
【例6】某理想气体分别进行了如图所示的两个卡诺循环:Ⅰ(abcda )和Ⅱ)(a d c b a ''''',且两条循环曲线所围面积相等。
设循环Ⅰ的效率为η,每次循环在高温热源处吸收的热量为Q ,循环Ⅱ的效率为η',每次循环在高温热源处吸收的热量为Q ',则( )Q Q ,'<'< (A)ηη Q Q ,'>'< (B)ηη Q Q ,'<'> (C)ηη Q Q '>'> (D),ηη2212Q =Q -Q =定义:Q e W 01 2 312 3 ab cV (L)p (atm ) V (L) O a b cd 50 2 6 Vab cdb 'c '1T 2T 0p【例7】两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1与T 3的两个热源之间,另一个工作在温度为T 2与T 3的两 个热源之间,若这两个循环曲线所包围的面积相等。
由此可知( )(A )两个热机的效率一定相等。
(B )两个热机从高温热源所吸收的热量一定相等。
(C )两个热机向低温热源所放出的热量一定相等。
(D )两个热机吸收的热量与放出的热量(绝对值)的差值一定相等。
【例8】一热机由温度为727 ℃ 的高温热源吸热,向温度为527 ℃ 的低温热源放热。