概率论3.5
《概率论与数理统计》3-3 边缘分布

2
2
2
1 arctan x 2
同理 ,
x ,
1 FY y lim F x, y 2 arctan y x 2 2 2
求 :⑴ C , ⑵ P X Y 1 . 解 又 ⑴由性质 :
x, y D,
其它 ,
f x, y d 1.
y
2 1
D1
O
1
x
f x, y d 0 dx0 Cxydy
1 1 2 C x y dx 2C xdx 0 2 0 0 1 2
P X ,Y D f x, y dxdy.
D
注: 注意分块积分. 只对密度函数为正的部分积分.
例1 设 D 是由 x 0, y 0, x 1, y 2 所围成的平面区
域 , 二维随机变量 X , Y 的联合概率密度函数为:
Cxy f x, y 0
fY y
所以
f x, y dx y 1dx 2 2 y,
0 y 1,
其它 .
2 y
2 2 y fY y 0
y
1 yx
y 2 x
O
1
2x
2 , , 定理 3.6 设 X , Y ~ N 1 , 2 , 12 , 2
2 1
,Y
.
证明 :
f X x
y 2
概率论与数理统计第五章课后习题及参考答案

概率论与数理统计第五章课后习题及参考答案1.用切比雪夫不等式估计下列各题的概率.(1)废品率为03.0,1000个产品中废品多于20个且少于40个的概率;(2)200个新生儿中,男孩多于80个而少于120个的概率(假设男孩和女孩的概率均为5.0).解:(1)设X 为1000个产品中废品的个数,则X ~)1000,03.0(B ,有30)(=X E ,1.29)(=X D ,由切比雪夫不等式,得)3040303020()4020(-<-<-=<<X P X P )103010(<-<-=X P )1030(<-=X P 709.0101.2912=-≥.(2)设X 为200个新生儿中男孩的个数,则X ~)200,5.0(B ,有100)(=X E ,50)(=X D ,由切比雪夫不等式,得)10012010010080()12080(-<-<-=<<X P X P )2010020(<-<-=X P )20100(<-=X P 87205012=-≥.2.一颗骰子连续掷4次,点数总和记为X ,估计)1810(<<X P .解:设i X 为该骰子掷第i 次出现的点数,则61)(==k X P i ,6,,2,1 =i ,6,,2,1 =k .27)654321(61)(=+++++=i X E ,691)654321(61)(2222222=+++++=i X E ,35)]([)()(22=-=i i i X E X E X D ,4,3,2,1=i .因为4321X X X X X +++=,且1X ,2X ,3X ,4X 相互独立,故有14)(=X E ,335)(=X D .由切比雪夫不等式,得)1418141410()1810(-<-<-=<<X P X P )4144(<-<-=X P )414(<-=X P 271.0433512=-≥.3.袋装茶叶用及其装袋,每袋的净重为随机变量,其期望值为100g ,标准差为10g ,一大盒内装200袋,求一盒茶叶净重大于5.20kg 的概率.解:设i X 为一袋袋装茶叶的净重,X 为一盒茶叶的净重,由题可知∑==2001i i X X ,100)(=i X E ,100)(=i X D ,200,,2,1 =i .因为1X ,2X ,…,200X 相互独立,则20000)()(2001==∑=i i X E X E ,20000)()(2001==∑=i i X D X D .)()(20500)()(()20500(2001X D X E X D X E X P X P i i ->-=>∑=)1020020000205001020020000(⋅->⋅-=X P )2251020020000(>⋅-=X P 由独立同分布的中心极限定理,1020020000⋅-X 近似地服从)1,0(N ,于是0002.0)5.3(1)2251020020000(=Φ-≈>⋅-X P .4.有一批建筑用木桩,其80%的长度不小于3m .现从这批木桩中随机取出100根,试问其中至少有30根短于3m 的概率是多少?解:设X 为100根木桩中短于3m 的根数,则由题可知X ~)2.0,100(B ,有20)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)30(1)30(<-=≥X P X P )42030(1)()((1-Φ-=-Φ-=X D X E X 0062.0)5.2(1=Φ-=.5.某种电器元件的寿命服从均值为100h 的指数分布.现随机选取16只,设它们的寿命是相互独立的.求这16只元件寿命总和大于1920h 的概率.解:设i X 为第i 只电器元件的寿命,由题可知i X ~)01.0(E ,16,,2,1 =i ,且1X ,2X ,…,16X 相互独立,则100)(=i X E ,10000)(=i X D .记∑==161i i X X ,则1600)()(161==∑=i i X E X E ,160000)()(161==∑=i i X D X D .))()(1920)()(()1920(X D X E X D X E X P X P ->-=>)400160019204001600(->-=X P )8.04001600(>-=X P ,由独立同分布的中心极限定理,1600-X 近似地服从)1,0(N ,于是2119.0)8.0(1)8.04001600(=Φ-=>-X P .6.在数值计算中中,每个数值都取小数点后四位,第五位四舍五入(即可以认为计算误差在区间]105,105[55--⨯⨯-上服从均匀分布),现有1200个数相加,求产生的误差综合的绝对值小于03.0的概率.解:设i X 为每个数值的误差,则i X ~)105,105(55--⨯⨯-U ,有0)(=i X E ,1210)(8-=i X D ,1200,,2,1 =i .从而0)()(12001==∑=i i X E X E ,61200110)()(-===∑i i X D X D .由独立同分布的中心极限定理,X 近似地服从)10,0(6-N ,于是)03.0(<X P ))()(03.0)()((X D X E X D X E X P -≤-=12101200003.0121012000(44--⋅-≤⋅-=X P 9974.01)3(2=-Φ=.7.某药厂断言,该厂生产的某药品对医治一种疑难的血液病治愈率为8.0.医院检验员任取100个服用此药的病人,如果其中多于75个治愈,就接受这一断言,否则就拒绝这一断言.(1)若实际上此药对这种病的治愈率是8.0,问接受这一断言的概率是多少?(2)若实际上此药对这种病的治愈率是7.0,问接受这一断言的概率是多少?解:设X 为100个服用此药的病人中治愈的个数,(1)由题可知X ~)8.0,100(B ,则80)(=X E ,16)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 48075(1))()((1-Φ-=-Φ-=X D X E X 8944.0)25.1(=Φ=.(2)由题可知X ~)7.0,100(B ,则70)(=X E ,21)(=X D ,由棣莫弗—拉普拉斯定理,得)75(1)75(≤-=>X P X P 217075(1)()((1-Φ-=-Φ-=X D X E X 1379.0)09.1(1=Φ-=.8.一射手在一次射击中,所得环数的分布律如下表:X678910P 05.005.01.03.05.0求:(1)在100次射击中环数介于900环与930环之间的概率是多少?(2)超过950环的概率是多少?解:设X 为100次射击中所得的环数,i X 为第i 次射击的环数,则∑==1001i i X X ,15.9)(=i X E ,95.84)(2=i X E ,2275.1)]([)()(22=-=i i i X E X E X D ,100,,2,1 =i .由1X ,2X ,…,100X 相互独立,得915)()(1001==∑=i i X E X E ,75.122)()(1001==∑=i i X D X D .由独立同分布的中心极限定理,75.122915-X 近似地服从)1,0(N ,于是(1))930900(≤≤X P ))()(930)()()()(900(X D X E X D X E X X D X E P -≤-≤-=75.12291593075.12291575.122915900(-≤-≤-=X P )75.1221575.122915(≤-=X P 823.01)35.1(2=-Φ≈.(2))950(>X P ))()(950)()((X D X E X D X E X P ->-=75.122915950)()((->-=X D X E X P 001.0)1.3(1=Φ-≈.9.设有30个电子元件1A ,2A ,…,30A ,其寿命分别为1X ,2X ,…,30X ,且且都服从参数为1.0=λ的指数分布,它们的使用情况是当i A 损坏后,立即使用1+i A (29,,2,1 =i ).求元件使用总时间T 不小于350h 的概率.解:由题可知i X ~)1.0(E ,30,,2,1 =i ,则10)(=i X E ,100)(=i X D .记∑==301i i X T ,由1X ,2X ,…,30X 相互独立,得300)()(301==∑=i i X E T E ,3000)()(301==∑=i i X D T D .))()(350)()(()350(T D T E T D T E T P T P ->-=>30103003503010300(⋅->⋅-=T P )91.03010300(>⋅-≈T P ,由独立同分布的中心极限定理,3010300⋅-T 近似地服从)1,0(N ,于是1814.0)91.0(1)91.03010300(=Φ-=>⋅-T P .10.大学英语四级考试,设有85道选择题,每题4个选择答案,只有一个正确.若需要通过考试,必须答对51道以上.试问某学生靠运气能通过四级考试的概率有多大?解:设X 为该学生答对的题数,由题可知X ~41,85(B ,则25.21)(=X E ,9375.15)(=i X D ,85,,2,1 =i .由棣莫弗—拉普拉斯中心极限定理,近似地有9375.1525.21-X ~)1,0(N ,得)8551(≤≤X P ))()(85)()()()(51(X D X E X D X E X X D X E P -≤-≤-=)9375.1525.21859375.1525.219375.1525.2151(-≤-≤-=X P 0)45.7()97.15(=Φ-Φ=.即学生靠运气能通过四级考试的概率为0.。
概率论与数理统计习题第一章第三章

1.1 写出以下随机试验的样本空间:(1) 某篮球运发动投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会一样,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,那么()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故:()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的间隔 ; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ;1.3 设样本空间}{20≤≤=Ωx x , 事件A =}{15.0≤≤x x ,}{6.18.0≤=x x B 详细写出以下各事件:(1)AB ; (2) B A - ; (3) B A -; (4) B A ⋃ (1)AB }{18.0≤=x x ; (2) B A -=}{8.05.0≤≤x x ;(3) B A -=}{28.05.00≤⋃≤≤x x x ; (4) B A ⋃=}{26.15.00≤⋃≤≤x x x1.6 按从小到大次序排列)()(),(),(),(B P A P AB P B A P A P +⋃, 并说明理由.解:由于),(,B A A A AB ⋃⊆⊆故)()()(B A P A P AB P ⋃≤≤,而由加法公式,有:)()()(B P A P B A P +≤⋃ 1.7 假设W 表示昆虫出现残翅, E 表示有退化性眼睛, 且P(W) = 0.125; P(E) = 0.075, P(WE) = 0.025, 求以下事件的概率: (1) 昆虫出现残翅或退化性眼睛;(2) 昆虫出现残翅, 但没有退化性眼睛; (3) 昆虫未出现残翅, 也无退化性眼睛.解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:175.0)()()()(=-+=⋃WE P E P W P E W P(2) 由于事件W 可以分解为互斥事件E W WE ,,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:1.0)()()(=-=W E P W P E W P(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:825.0)(1)(=⋃-=E W P E W P . 1.8 设A 与B 是两个事件, P(A) = 0.6; P(B) = 0.8。
第一章概率论典型例题

典型例题:一.排列1.特殊排列相邻、彼此隔开、顺序一定和不可分辨例1.晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例2.4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例3.5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?2.重复排列和非重复排列(有序)例4.5封不同的信,有6个信箱可供投递,共有多少种投信的方法?3.对立事件例5.七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例6.15人中取5人,有3个不能都取,有多少种取法?例7.有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?4.顺序问题例8.3白球,2黑球,先后取2球,放回,2白的种数?(有序)例9.3白球,2黑球,先后取2球,不放回,2白的种数?(有序)例10.3白球,2黑球,任取2球,2白的种数?(无序)二.概率1. 一批产品由90件正品和10件次品组成,从中任取一件,问取得正品的概率多大.2. 甲、乙两人各自向同一目标射击,已知甲命中目标的概率为0.7,乙命中目标的概率为0.8 求:(1)甲、乙两人同时命中目标的概率;(2)恰有一人命中目标的概率;(3)目标被命中的概率.3. 甲、乙、丙三人同时对飞机进行射击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击中而击落的概率为0.6, 若三人都击中, 飞机必定被击落, 求飞机被击落的概率.4. 有一批产品是由甲、乙、丙三厂同时生产的.其中甲厂产品占50%,乙厂产品占30%, 丙厂产品占20%,甲厂产品中正品率为95%,乙厂产品正品率为90%, 丙厂产品正品率为85%, 如果从这批产品中随机抽取一件, 试计算该产品是正品的概率多大.1.7 一个小孩用13个字母T T N M M I I H E C A A A ,,,,,,,,,,,,作组字游戏。
概率论与数理统计(科学出版社-王松桂)

0
0
2
0
0
2
1
1
1
1
1
1
2
2
0
2
2
0
= 0.3124
(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y =0}+ P{X=2,Y =0} +P{X=2,Y =1}=
1 1 1 0 0 2 2 2 0 0 0 2 2 2 0 1 1 1
C 0.7 0.3 × C 0.4 0.6 + C 0.7 0.3 × C 0.4 0.6 + C 0.7 0.3 × C 0.4 0.6
a ≈ 184 厘米
2.19 解:X 的可能取值为 1,2,3。
2 C4 6 = = 0.6 ; 3 C 5 10
因为 P( X = 1) =
P( X = 3) =
1 1 = = 0.1 ; 3 C5 10
P ( X = 2) = 1 − 0.6 − 0 .1 = 0.3
所以 X 的分布律为
答案仅供参考
X
1
2
3
P
0.6
0.3
0.1
X 的分布函数为
x <1 ⎧ 0 ⎪ 0.6 1 ≤ x < 2 ⎪ F ( x) = ⎨ ⎪0.9 2 ≤ x < 3 ⎪ ⎩ 1 x≥3
2.20(1)
π P{Y = 0} = P{ X = } = 0.2 2 2 P{Y = π } = P{ X = 0} + P{ X = π } = 0.3 + 0.4 = 0.7 3π P{Y = 4π 2 } = P{ X = } = 0.1 2
因为 n=282 较大,p 较小,所以 Y 近似服从参数为 λ = 282 × e −5 ≈ 1.9 的泊松分布。
离散期望值计算公式

离散期望值计算公式在概率论和统计学中,期望值是一个重要的概念,它代表了一个随机变量的平均值。
对于离散型随机变量,我们可以使用离散期望值计算公式来计算期望值。
本文将介绍离散期望值计算公式的推导和应用。
离散期望值计算公式的推导。
设X是一个离散型随机变量,其取值为x1,x2,...,xn,对应的概率分布为P(X=x1),P(X=x2),...,P(X=xn)。
则X的期望值E(X)定义为:E(X) = x1P(X=x1) + x2P(X=x2) + ... + xnP(X=xn)。
这个公式的推导其实很简单,就是每个取值乘以对应的概率再相加。
这个公式也可以写成累加的形式:E(X) = ΣxiP(X=xi)。
其中,Σ表示求和符号,xi表示X的取值,P(X=xi)表示X取值为xi的概率。
离散期望值计算公式的应用。
离散期望值计算公式可以用于各种离散型随机变量的期望值计算。
下面我们通过一个例子来说明其应用。
假设有一个骰子,其点数的概率分布如下:P(X=1) = 1/6。
P(X=2) = 1/6。
P(X=3) = 1/6。
P(X=4) = 1/6。
P(X=5) = 1/6。
P(X=6) = 1/6。
我们可以使用离散期望值计算公式来计算这个骰子的期望值。
根据公式,期望值E(X)为:E(X) = 1P(X=1) + 2P(X=2) + 3P(X=3) + 4P(X=4) + 5P(X=5) + 6P(X=6)。
= 1(1/6) + 2(1/6) + 3(1/6) + 4(1/6) + 5(1/6) + 6(1/6)。
= 3.5。
所以这个骰子的期望值为3.5。
这个结果也很容易理解,因为骰子的点数是均匀分布的,所以其期望值就是所有可能点数的平均值,即(1+2+3+4+5+6)/6=3.5。
除了简单的骰子例子,离散期望值计算公式还可以应用于更复杂的离散型随机变量,比如二项分布、泊松分布等。
在实际问题中,我们可以利用离散期望值计算公式来计算随机变量的期望值,从而帮助我们理解随机变量的平均特征。
概率论中的期望与方差公式整理方法
概率论中的期望与方差公式整理方法在概率论中,期望和方差是两个重要的概念。
它们可以帮助我们描述一个随机变量的分布特征。
在本文中,我们将着重介绍期望和方差的公式整理方法。
一、期望的公式整理方法期望是对随机变量取值的加权平均,它用来表示一个随机变量的平均取值大小。
在概率论中,我们通常用E(X)来表示随机变量X的期望。
对于离散型随机变量,其期望的计算公式为:E(X) = Σ(x * P(X = x))其中,x代表随机变量X的取值,P(X = x)表示X取值为x的概率。
对于连续型随机变量,其期望的计算公式为:E(X) = ∫(x * f(x)) dx其中,f(x)表示X的概率密度函数。
在实际计算中,如果随机变量X服从某种分布,我们可以利用该分布的概率密度函数或者概率质量函数来计算期望。
二、方差的公式整理方法方差用来度量随机变量的取值偏离其期望值的程度。
方差越大,随机变量的取值越分散;方差越小,随机变量的取值越集中。
在概率论中,我们通常用Var(X)或σ^2来表示随机变量X的方差。
对于离散型随机变量,其方差的计算公式为:Var(X) = Σ((x-E(X))^2 * P(X = x))对于连续型随机变量,其方差的计算公式为:Var(X) = ∫((x-E(X))^2 * f(x)) dx方差的计算需要先求出随机变量的期望值,然后再对随机变量取值与期望值之差的平方进行加权平均。
方差的单位为随机变量的单位的平方。
三、应用举例为了更好地理解期望和方差的公式整理方法,我们可以通过一个简单的例子来说明。
假设有一个骰子,我们想要计算这个骰子的期望和方差。
首先,我们知道这个骰子是均匀的,即每个面出现的概率相等。
对于骰子的期望,我们可以计算每个面出现的概率乘以对应的点数,然后将所有结果相加,即:E(X) = 1/6 * 1 + 1/6 * 2 + 1/6 * 3 + 1/6 * 4 + 1/6 * 5 + 1/6 * 6 = 3.5对于骰子的方差,我们首先需要计算每个点数与期望之差的平方,然后再乘以每个面出现的概率,最后将所有结果相加,即:Var(X) = 1/6 * (1-3.5)^2 + 1/6 * (2-3.5)^2 + 1/6 * (3-3.5)^2 + 1/6 * (4-3.5)^2 + 1/6 * (5-3.5)^2 + 1/6 * (6-3.5)^2 ≈ 2.92通过这个例子,我们可以看出,期望和方差通过加权平均的方法给出了随机变量的平均取值和取值的离散程度。
随机变量的几种收敛及其相互关系
论文摘要概率是对大量随机现象的考察中显现出来的,而对于大量的随机现象的描述就要采用极限的方法。
概率统计中的极限定理研究的是随机变量序列的某种收敛性,对随机变量收敛性不同定义将导致不同的极限定理,而随机变量的收敛性的确可以有各种不同的定义。
主要讨论了依概率收敛与依分布收敛,r阶收敛与几乎处处收敛,几乎处处收敛与依概率收敛之间的关系。
给出了由依概率收敛推出几乎处处收敛的条件和由依概率收敛推出r阶收敛的条件,从而比较完全地说明了随机变量序列的各种收敛性之间的关系。
本论文将对随机变量的几种收敛作出较为简单扼要的介绍和讨论.论文结构如下:一、随机变量的几种收敛的概念理论;二、随机变量的几种收敛之间的关系;从以上几个方面对随机变量的几种收敛理论简明扼要地分析,说明随机变量序列收敛理论在实际问题中的应用范围之广,在实际生活中的重要性。
关键词:r阶收敛;几乎处处收敛;依概率收敛;依分布收敛。
AbstractThe Probability is the study of a large number of random phenomena emerge, but for a large number of random phenomena should use extreme methods described. Probability and statistics in the limit theorem is a sequence of random variables convergence, convergence of random variables with different definitions lead to different limit theorem, and indeed the convergence of random variables can have different definitions. Mainly discussed convergence in probability and convergence in distribution, convergence in order r and almost everywhere convergence, almost sure convergence and convergence in probability relationship. Convergence in probability is given by the launch of almost everywhere convergence of conditions and the convergence in probability by the introduction of r-order convergence conditions, which more completely describes the various random variables convergence relationship.This paper will make the convergence of several random variables is more brief presentations and discussions. Paper is structured as follows:1. Convergence of random variables the concept of theory;2. the convergence of several random variables between;From the above aspects of the theory of random variables of several brief analysis of convergence shows that the convergence theory of random variables in the actual problems in the wide range of applications, in real life importance.Keywords: convergence in order r ; almost everywhere or almost surely; convergence in probability; convergence in distribution.目录引言: (4)1 几种收敛性定义 (4)2 依概率收敛与依分布收敛的关系 (5)3 r阶收敛与几乎处处收敛的关系 (11)4 依概率收敛与r阶收敛的关系 (13)5 几乎处处收敛与依概率收敛和依分布收敛的关系 (17)总结 (19)四种收敛性 (19)四种收敛蕴涵关系 (19)致谢 (21)参考文献 (22)引言:概率论最早产生于17世纪,本来是保险事业的发展而产生的,但是来自于赌博者的请求,却是数学家们思考概率论中问题的源泉。
概率论1-3章
2.1 概率的概念
二 概率的性质
1. 2. 3.
非负性 0≤P(A) ≤1 规范性 P(Ω)=1 有限可加性 若A1, A2 ,A3… ,An互 斥,则 P( A ) p(A )
n n k k 1 k 1 k
即有限个互不相容的事件的和事件 的概率等于这些事件的概率之和
2.2 古典概型
记号 ω A 不可能事件
事件的关系和运算
概率论 集合论 空间(全集) 空集 元素 的子集
二 集合与事件的对应关系
必然事件,样本空间 基本事件,样本点 事件
ω∈A
AB A=B A∪B
事件A出现(发生)
事件A出现导致事件B出现(发生) 二事件A,B相等 事件A与B中至少有一个发生
ω 是集合A的元素
引
二 随机试验
随机试验:
1. 2.
言
3.
可以在相同的条件下重复进行; 试验所有可能的结果是已知的或者是可以 确定的; 每次试验究竟将会发生什么结果是事先无 法预知的.
引
言
三 概率论与数理统计的研究对象
概率论—研究和揭示随机现象的统计规律性 的科学; 数理统计—对随机现象统计规律归纳的研究, 就是利用概率论的结果,深入研究统计资料, 观察这些随机现象并发现其内在的规律性, 进而作出一定精确程度的判断,将这些研究 结果加以归纳整理,形成一定的数学模型; 概率论与数理统计这门学科的应用 (天文、地质、物理、军事、医学)等
1.1
样本空间和随机事件
二 随机事件
随机事件:在随机试验中对某些现象或某种情况 的陈述,或简称事件.记作A、B、C等 从集合论的观点来看,任何事件均可表示为样本 空间的某个子集. 例如 对于试验E2 ,以下A 、B、C即为三个随机 事件 A=“至少出一个正面” ={HHH, HHT, HTH, THH,HTT,THT,TTH}; B=“两次出现同一面”={HHH,TTT} C=“恰好出现一次正面”={HTT,THT,TTH} 两个特殊事件:必然事件S 、不可能事件
东华大学《概率论与数理统计》课件-第3章概率论基础
3.5 等可能样本空间
例7 琼斯先生有10本书要放在书架上,其中有 4本数学书,3本化学书,2本历史书,还有1本 语言书。琼斯想把同一种类的书放在一起,共 有几种不同的可能结果?如果是随意放置,恰 好同一种类的书放在一起的概率多大?
分步乘法计数原理:完成一件事,需要分成几 个步骤,每一步的完成有多种不同的方法,则 完成这件事的不同方法总数是各步骤不同方法 数的乘积。
例:网上预订行程,从郑州到上海共有12种不 同选择,从上海到香港共有4种不同的选择,那 么从郑州经上海到香港共有4×12=48种不同的 选择。
3.5 等可能样本空间
解法一:宿舍是无编号的,
解法二:宿舍是有编号的,
3.5 等可能样本空间
例11 如果一个房间里有n个人,没有两个人的 生日是同一天的概率是多大?如果希望概率小 于0.5,需要多少人?
习题
P53 ex18, ex20
引例: (1)假设某人投掷一对骰子,两个骰子点数之
和为8概率多大?
(2)如果已知第一个骰子最终朝上的数字为3, 那么两个骰子点数之和为8的概率为多少?
3.3文图和事件的代数表示
3.3文图和事件的代数表示
德·摩根律
例2
掷骰子一次,A=“掷出奇数点”,B=“点数不超 过3”,C=“点数大于2”,D=“掷出5点”。求
A B, B C, AB, BD, Ac , AcC
3.4 概率论公理
集函数P(E)称为事件E的概率,如果它满足下 列三条公理
3.5 等可能样本空间
例8 概率论课程上有6个男生,4个女生。对学 生进行考试,按照成绩排名。假定没有两个学 生的成绩是一样的,