福建省福州市八县一中2014-2015学年高一上学期期末数学试卷
福建省福州八县(市)一中高一数学上学期期末联考 新人教版【会员独享】

福建省福州八县(市)一中09-10学年高一上学期期末联考数学试卷考试日期:2010年1月29日 完卷时间: 120分钟 满分: 150分说明:1.答卷前,考生必须将自己的姓名、座号、班级等按要求填写。
2.请将所有题的答案写在指定的答题卷上,考试结束时只交答题卷。
参考公式:锥体体积Sh V 31=(其中S 是底面积,h 是高),球体体积334R V π=(其中R 是半径)。
一.选择题(本大题共12小题,每小题5分,共60分。
每题只有一个正确答案) 1.直线)2,5()1,2(-B A l 、过两点,直线l 的倾斜角为( ) A .030 B .045C .0120D .01352.正方体1111D C B A ABCD -中,异面直线11BD D A 与所成角是( )A .030B .045C .060D .0903.若平面//α平面β,直线//a 平面α,点β∈B ,则在平面β内与过B的所有直线中( )A .不一定存在与a 平行的直线B .只有两条与a 平行的直线C .存在无数条与a 平行的直线D .存在唯一与a 平行的直线直线 4.如图是某几何体的三视图,其中正视图是腰长为3的等腰三角形, 俯视图是半径为1的半圆,则该几何体的体积是( ) A .π32 B .π322 C .π D . 35.已知圆0442:221=+--+y x y x O 与圆036128:222=+--+y x y x O ,两圆的位置关系为( )A .相离B .相交C .外切D .内切6.01)1(=+++my x m 与直线010)1()1(=-++-y m x m 垂直,则m 的值为( ) A .1- B .21 C .31- D .1-或21 7.下列命题:①垂直于同一直线的两直线平行; ②垂直于同一直线的两平面平行;③垂直于同一平面的两直线平行;④垂直于同一平面的两平面平行;其中正确的有( ).A .③和④B .①、②和④C .②和③D .②、③和④8.三棱锥四个面中( ).正视图 俯视图侧视图D CB A D 1C 1B 1A 1A .一定都不是直角三角形B .至多只能有一个直角三角形C .至多只能有三个直角三角形D .可能都是直角三角形9.一平面图形的直观图是一边在x '轴上且边长为1,另一边长为2的矩形,则该平面图形的面积是( )A .24B .22C . 2D .110.若直线2+=kx y 与圆422=+y x 交于Q P 、两点,且OQ OP ⊥(O 为坐标原点),则k 的值为( ) A .1或1-B .0C .22-或D . 22-或11.过)4,5(P 作圆C :032222=---+y x y x 的切线,切点分别为B A 、,四边形PACB的面积是( ) A . 5B .10C .15D . 2012.已知函数]2,1[,)1(12∈--=x x y 对于满足2121<<<x x 的任意1x ,2x ,给出下列结论:①1212)()(x x x f x f ->-; ②2112()()x f x x f x >; ③0)]()()[(1212<--x f x f x x . ④0)]()()[(1212>--x f x f x x其中正确结论的个数有( )A . 1B .2C .3D .4 二.填空题(本大题共4小题,每小题4分,共16分)13.已知点B 是点A (-2,-3,5)关于原点O 的对称点,则点B 的坐标为 . 14.对于空间三条直线,有下列四个条件:①三条直线两两相交且不共点;②三条直线两两平行;③三条直线共点;④有两条直线平行,第三条直线和这两条直线都相交。
福建省福州市八县(市)一中高一上学期期末联考试题 数学

福建省福州市八县(市)一中高一上学期期末联考试题数学参考公式: 锥体体积公式:13V Sh =;球的体积公式:343V R π=;圆锥侧面积公式:S rl π=;球的表面积公式:24S R π=***** 祝 考 试 顺 利 *****第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个项选是符合题意要求的)(1)设{3,}M a =,{1,2}N =,{}2=N M ,=N M ( )(A ){}2,1 (B ){}3,1 (C ){1,2,3} (D ){1,2,3,}a(2)经过点),2(m P -和)4,(m Q 两点的直线与直线012=--y x l :平行,则实数m 的值是( )A )2 (B )10 (C )0 (D )-8(3)同学们,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线..与笔所在的直线..( ) (A )平行 (B )相交 (C )异面 (D )垂直(4)直线1l 与直线0122=+-y x l :的交点在x 轴上,且21l l ⊥,则直线1l 在y 轴上的截距是( )(A )2 (B )-2 (C )1 (D )-1 (5)设,m n 为两条不同的直线,α为平面,则下列结论正确的是( ) (A ),//m n m n αα⊥⇒⊥ (B ),//m n m n αα⊥⊥⇒(C )//,////m n m n αα⇒ (D )//,m n m n αα⊥⇒⊥(6)已知直线0=-+m y x l :与圆4)1()1(22=++-y x C :交于A ,B 两点,若ABC ∆ 为直角三角形,则=m ( )(A )2 (B )2± (C )22 (D )22± (7)已知奇函数)(x f 在R 上是减函数,若)51(log 2f a -=,)6(log 2f b =,)2(8.0f c =,则c b a ,,的大小关系为( )(A )c b a << (B ) c a b << (C )a b c << (D )b a c <<(8)已知直线l 的方程为:0123)2(=++++m y x m ,圆622=+y x C :,则直线l 与圆C 的位置关系一定是( )(A )相离 (B )相切 (C )相交 (D )不确定 (9)如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是( )(A )π6 (B )π7 (C )π12 (D )π14(10)如图,在三棱柱111C B A ABC -中,底面ABC 是等边三角形,1AA ⊥底面ABC ,且1,21==AA AB ,则直线1BC 与平面11A ABB 所成角的正弦值为( )(A )515 (B ) 510 (C ) 552 (D ) 55(11)已知函数()()log 21xa f xb =+-()0,1a a >≠的图象如图所示,则,a b 满足的关系是( ) (A )1101b a --<<< (B )101b a -<<< (C )101b a -<<< (D )101a b -<<<(12)已知圆C :9)2()3(22=++-y x ,点)0,2(-A ,)2,0(B ,设点P 是圆C 上一个动点,定义:一个动点到两个定点的距离的平方和叫做“离差平方和”,记作2D ,令222PB PA D +=,则2D 的最小值为( )(A )6 (B )8 (C )12 (D )16第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置)13. 已知函数(),03,0xlnx x f x x >⎧=⎨≤⎩,则1f f e ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是 .14.在如图所示的长方体1111D D C B A ABC 中,已知1B (1,0,3),D (0,2,0),则点1C 的坐标为_________________.15.长度为4的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为 ________________________16.一个半径为2的实心木球加工(进行切割)成一个圆柱,那么加工后的圆柱侧面积...的最大值为____________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)如图,在三棱柱ABC-A 1B 1C 1中,已知1CC ⊥底面ABC ,AC⊥BC,四边形BB 1C 1C 为正方形。
福建省福州市八县高一数学上学期期末考试试题新人教A版

一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的,请把答案填在答题卡相应位置1.过两点A (4,y ),B (2,-3)的直线的倾斜角是1350,则y= ( )A .5B 、-5C 、1D 、-12 已知两条相交直线a 、b ,//a 平面α,则b 与α的位置关系是( )A .b ⊂平面αB .b 与平面α相交C .//b 平面αD .b 与平面α相交或//b 平面α 3.方程052422=+-++m y x y x 表示圆的条件是( )A. 1<mB. 1>mC. 41<m D. 141<<m 4.长方体的一个顶点上三条棱长分别是1、2、3,且它的8个顶点都在同一球面上,则这个球的表面积是( )A π7B π14C π28D π565.一个水平放置的三角形的斜二侧直观图是等腰直角三角形'''A B O ,若''1O B =,那么原∆ABO 的面积是( )A .12B .22C 2D . 226.在空间直坐标系中,点P 在x 轴上,它到P 1(02,3)的距离为32,则点P 的坐标为( )A (0,1,0)或(0,-1,0)B (1,0,0)C (1,0,0)或(-1,0,0)D (0,1,0)或(0,0,1) 7.已知直线l 、m 、n 与平面α、β,给出下列四个命题: ①若m ∥l ,n ∥l ,则m ∥n ②若m ⊥α ,m ∥β, 则α ⊥β③若m ∥α ,n ∥α,则m ∥n ④若m ⊥β ,α ⊥β ,则m ∥α 或m ⊂α 其中假命题...是( ). (A) ① (B) ② (C) ③ (D) ④ 8.一个几何体的三视图如图1所示,它的体积为( ) A. 24π B. 30π C. 48π D. 72π9.已知圆22:40C x y x +-=,直线l :x+my-3=0,则( )A.l 与C 相交B. l 与C 相切C.l 与C 相离D. 以上三个选项均有可能10.如图,三棱柱111A B C ABC -中,侧棱1AA ⊥底面111A B C ,底面三角形111A B C 是正三图1正视图 俯视图侧视图556 35563CM角形,E 是BC 中点,则下列叙述正确的是( )A .1CC 与1B E 是异面直线 B .直线AC ⊥平面11ABB A C .直线A 1C 1与平面1AB E 不相交D .EB B 1∠是二面角B 1-AE-B 的平面角11.若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A. 1或3-B. 1C. 0或23-D. 3-12.若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是( ).A ]60,15[ .B ]90,0[ .C ]60,30[ .D ]75,15[二、填空题:本大题共4小题,每小题4分,满分16分。
福建省福州市2014-2015学年第一学期高三质量检查理科数学试卷

福建省福州市2014-2015学年第一学期高三质量检查理科数学试卷(满分:150分;完卷时间:120分钟)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.)1. 如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等.若复数z 所对应的点为1Z ,则复数z 的共轭复数所对应的点为( ). A .1Z B .2Z C .3ZD .4Z2. 已知πtan()34+=α,则tan α的值是( ).A .2B .12C .1-D .3-3. 已知A ⊂≠B ,则“x A ∈”是“x B ∈”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一个输入的值. 若第一次输入的值为8,则第三次输出的值为( ). A .8 B .15 C .29D .365. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为A .1π( ). C .3πD .126. 已知函数()lg(1)=-f x x 的值域为(,1]-∞,则函数()f x 的定义域为( ).A .[9,)-+∞B .[0,)+∞C .(9,1)-D .[9,1)-7. 已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以第1第4题图第5题图每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数: 101 111 010 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ). A .0.30B .0.35C .0.40D .0.658. ABC △的三个内角,,A B C 所对的边分别为,,a b c .若cos cos A bB a==C 的大小为( ). A .60︒B . 75︒C .90︒D .120︒9. 若双曲线2222:1x y a bΓ-=(0,0a b >>)的右焦点()4,0到其渐近线的距离为,则双曲线Γ的离心率为( ). ABC .2D .410.定义运算“”为:,0,2,0a b ab a a b a +<⎧⎪*=⎨⎪⎩≥.若函数()(1)f x x x =+*,则该函数的图象大致是( ).AC11.已知ABC ∆的三个顶点,,A B C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =,则OA OB OP ++的最小值是( ).A .4-B 1C 1+D 12.已知直线:l y ax b =+与曲线:Γ1x y y=+没有公共点.若平行于的直线与曲线Γ有且只有一个公共点,则符合条件的直线( ). A .不存在B .恰有一条C .恰有两条D .有无数条第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置上.) 13.若变量,x y 满足约束条件0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤,则z x y =+的最小值为 ★★★ .14.已知6234560123456(1)x a a x a x a x a x a x a x +=++++++,则016,,,a a a ⋅⋅⋅中的所有偶数..的和等于 ★★★ . 15.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O 为坐标原点.若点D 是线段1PF 的中点,则1F OD ∆的周长为 ★★★ .16. 若数列{}n a 满足112n n n a a a +-+≥(2n ≥),则称数列{}n a 为凹数列.已知等差数列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为 ★★★ .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等比数列{}n a 的公比1q >,1a ,2a 是方程2320x x -+=的两根. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}2n n a ⋅的前n 项和n S .18.(本小题满分12分)“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记X 为接下来被邀请到的6个人中接受挑战的人数,求X 的分布列和均值(数学期望).19.(本小题满分12分)已知函数()4f x x π⎛⎫= ⎪⎝⎭在同一半周期内的图象过点,,O P Q ,其中O 为坐标原点,P 为函数()f x 图象的最高点,Q 为函数()f x 的图象与x 轴的正半轴的交点.(Ⅰ)试判断OPQ ∆的形状,并说明理由.(Ⅱ)若将OPQ ∆绕原点O 按逆时针方向旋转角02ααπ⎛⎫<< ⎪⎝⎭时,点,P Q ''恰好同时落在曲线ky x=()0x >上(如图所示),求实数k 的值.20.(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (14m ≤≤且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函数关系式近似为)(x f m y ⋅=,其中()10,06,4.4,682x xf x x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.21.(本小题满分12分)已知抛物线Γ的顶点为坐标原点,焦点为(0,1)F . (Ⅰ)求抛物线Γ的方程; (Ⅱ)若点P 为抛物线Γ的准线上的任意一点,过点P 作抛物线Γ的切线PA 与PB ,切点分别为,A B ,求证:直线AB 恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题...,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分). 22.(本小题满分14分)已知函数()()e sin cos ,cos x x f x x x g x x x =-=,其中是自然对数的底数.(Ⅰ)判断函数()y f x =在π(0,)2内的零点的个数,并说明理由;(Ⅱ)12ππ0,,0,22x x ⎡⎤⎡⎤∀∈∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x g x m +≥成立,试求实数m 的取值范围;(Ⅲ)若1x >-,求证:()()0f x g x ->.福州市2014-2015学年度第一学期高三质量检查理科数学试卷参考答案及评分细则一、选择题:本大题共12小题,每小题5分,共60分. 1.C 2.B 3.A 4.A 5.B 6.D 7.B 8.C 9.C 10.D 11.B 12.C二、填空题:本大题共4小题,每小题4分,共16分,13.2- 14.32 15.3+16.(,2]-∞ 三、解答题:本大题共6小题,共74分.17. 本题主要考查一元二次方程的根、等比数列的通项公式、错位相减法求数列的和等基础知识,考查应用能力、运算求解能力,考查函数与方程思想. 解:(Ⅰ)方程2320x x -+=的两根分别为1,2, ·························································· 1分 依题意得11a =,22a =. ································································································ 2分 所以2q =, ······················································································································· 3分 所以数列{}n a 的通项公式为12n n a -=. ·········································································· 4分 (Ⅱ)由(Ⅰ)知22n n n a n ⋅=⋅, ··················································································· 5分 所以212222n n S n =⨯+⨯+⋅⋅⋅+⨯, ············································ ①23121222(1)22n n n S n n +⋅=⨯+⨯+⋅⋅⋅+-⋅+⨯, ························· ② 由①-②得23222n S -=+++⋅⋅⋅122n n n ++-⨯, ················································································ 8分即 1222212n n n S n +-⋅-=-⨯-, ······················································································· 11分 所以12(1)2n n S n +=+-⋅. ····························································································· 12分18.本题主要考查离散型随机变量的概率、分布列、数学期望等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.解法一:(Ⅰ)这3个人接受挑战分别记为A 、B 、C ,则,,A B C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种; ····································································································· 2分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种. 3分 根据古典概型的概率公式,所求的概率为4182P ==. ·················································· 4分 (说明:若学生先设“用(),,x y z 中的,,x y z 依次表示甲、乙、丙三人接受或不接受挑战的情况”,再将所有结果写成(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,不扣分.) (Ⅱ)因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭,()60661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分故X 的分布列为:10分所以()1315515310123456364326416643264E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.故所求的期望为. ··········································································································· 12分 解法二:因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 1分 (Ⅰ)设事件M 为“这3个人中至少有2个人接受挑战”,则2323331111()2222P M C C ⎛⎫⎛⎫⎛⎫=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ·········································································· 4分 (Ⅱ)因为X 为接下来被邀请的6个人中接受挑战的人数,所以1~6,2X B ⎛⎫⎪⎝⎭. ··········································································································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分 故X 的分布列为:10分所以()1632E X =⨯=.故所求的期望为. ········································································································· 12分19.本题主要考查反比例函数、三角函数的图象与性质、三角函数的定义、同角三角函数的基本关系式、二倍角公式、两角和的正弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想. 解法一:(Ⅰ)OPQ ∆为等边三角形. ············································································ 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4, 所以4OQ =. ·················································································································· 2分又因为P 为函数()f x 图象的最高点,所以点P坐标为(2,,所以4OP =, ···································································· 4分 又因为Q 坐标为(4,0),所以4PQ ==,所以OPQ ∆为等边三角形. ··························································································· 6分 (Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,,················ 7分 代入k y x =,得216cos sin 8sin(2π)333k αααππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,且16sin cos 8sin 2k ααα==, ························································································· 9分所以2sin 2sin(2π)3αα=+,结合22sin (2)cos (2)1αα+=,02απ<<,解得1sin 22α=,············································································································· 11分所以4k =,所以所求的实数k 的值为4. ····································································· 12分 解法二:(Ⅰ)OPQ ∆为等边三角形. ·········································································· 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4,所以4OQ =, ··································· 2分 因为P 为函数()f x 的图象的最高点,所以点P坐标为(2,,所以4OP =,所以OP OQ =.······································· 4分 又因为直线OP的斜率k ==,所以60POQ ∠=︒, 所以OPQ ∆为等边三角形. ··························································································· 6分(Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,,·················· 7分 因为点P ',Q '在函数(0)ky x x=>的图象上,所以16cos sin ,3316sin cos k k ⎧ππ⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=⎩αααα, ················································································ 8分 所以28sin(2π),38sin 2k k ⎧=+⎪⎨⎪=⎩αα, ·································································································· 9分 消去k 得, 2sin 2sin(2π)3αα=+,所以22sin 2sin 2cos πcos 2sin π33ααα=+,所以3sin 222αα=,所以tan 2α=, ···························································· 10分又因为 02απ<<,所以26απ=,所以1sin 22α=, ···················································· 11分 所以4k =.所以所求的实数k 的值为4. ····································································· 12分 解法三:(Ⅰ)同解法一或同解法二;(Ⅱ)由(Ⅰ)知,OPQ ∆为等边三角形.因为函数(0)ky x x=>的图象关于直线y x =对称, ························································ 8分由图象可知,当12απ=时,点P ',Q '恰在函数(0)ky x x=>的图象上. ······················ 10分此时点Q '的坐标为(4cos 4sin )1212ππ,, ········································································· 11分 所以16sin cos 8sin 412126k πππ===,所以所求的实数k 的值为4.····························· 12分20. 本题主要考查分段函数模型的应用问题、一元二次函数的最值、解不等式等基础知识,考查应用意识、运算求解能力,考查化归与转化思想、分类讨论思想等.解:(I )因为3m =,所以30,06,4312,682x xy x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤. ······················································ 1分当06x <≤时,由3024x+≥,解得x ≤11,此时06x <≤; ······································· 3分 当68x ≤≤时,由31222x -≥,解得203x ≤,此时2063x ≤≤. ····························· 5分综上所述,2003x ≤≤.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时. ······························· 6分(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分因为10822mx x -+-≥对6x ≤≤8恒成立,即281210x x m -+≥对6x ≤≤8恒成立,等价于2max 812)10x x m -+≥(,6x ≤≤8. ······································································ 9分 令2812()10x x g x -+=,则函数2(4)4()10x g x --=在[6,8]是单调递增函数, ·············· 10分当x =8时,函数2812()10x x g x -+=取得最大值为65, ················································ 11分所以65m ≥,所以所求的m 的最小值为65. ································································ 12分解法二:(Ⅰ)同解法一;(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分注意到18y x =-及2102my x =-(14m ≤≤且m ∈R )均关于x 在[6,8]上单调递减,。
福建省福州市第八中学2014-2015学年高一上学期期末考试数学试题

福建省福州市第八中学2014-2015学年高一上学期期末考试数学试题一、选择题(5分×10=50分,请将答案填写在答卷上)1.在空间中,垂直于同一直线的两条直线的位置关系是A .垂直B .平行C .异面D .以上都有可能2.倾斜角为45︒,在y 轴上的截距为1-的直线方程是A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x3. 点P(x ,y)在直线x +y -4=0上,O 是坐标原点,则│OP │的最小值是A .7B. 6C.2 2D.54.直线06:1=++my x l 与直线()0232:2=++-m y x m l 互相平行,则m 的值为A .3B .-1C .-1或3D .05.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为A B C D 6.与圆0352:22=--+x y x C 关于直线x y -=对称的圆的方程为A .36)1(22=+-y xB .36)1(22=++y xC .36)1(22=++y xD .36)1(22=-+y x7.已知直线,a b 和平面α,下列四个说法 ①a ∥α,b ⊂α,则a //b ;②a ∩α=P ,b ⊂α,则a 与b 不平行;③若a ∥b ,b α⊥,则a α⊥;④a //α,b //α,则a //b .其中说法正确的是A .①②B .②③C .③④D .①④8.三个平面两两垂直,它们的三条交线交于点O ,空间一点P 到三条交线的距离分别为2、5、7,则OP 长为A.33B.22C.23D.329.如图,在正方体1111ABCD A B C D -中,二面角1C BD C --的正切值为A.36 B.22C.2D.3310.已知直线b kx y +=上两点P 、Q 的横坐标分别为21,x x ,则|PQ|为 A .2211k x x +⋅-B .k x x ⋅-21C .2211kx x +-D .kx x 21-二、填空题(共4题,每题4分,共16分)11. 已知直线3430x y +-=与直线6140x my ++=平行, 则它们之间的距离 是_________________.12. 已知母线长为6,底面半径为3的圆锥内有一球,球与圆锥的底面及圆锥的所有母线都相切,则球的体积_____________.13. 若)1,2(P 为圆25)1(22=++y x 的弦AB 的中点, 则直线AB 的方程是__ ____ 14.右图是一个几何体的三视图,则该几何体的表面积为 .三、解答题:(共3题,共34分 ,解答应写出文字说明,证明过程或演算步骤) 15.(本题满分10分)已知过点)1,2(-M 的直线l 与y x 、轴正半轴分别交与A 、B 两点,且21=∆ABO S ,求直线l 的方程.(结果用直线的一般方程表示)16.(本题满分12分)如图,三棱柱111C B A ABC -的所有棱长都 相等,且⊥A A 1底面ABC ,D 为1CC 的中点,.,11OD O B A AB 连结相交于点与(Ⅰ)求证:OD ∥ABC 平面 (Ⅱ)求证:⊥1AB 平面BD A 1.17.(本小题满分12分)已知圆22:(3)(4)4C x y -+-=,(Ⅰ)若直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程;(Ⅱ) 若圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.B 卷(共50分) 四、选择题(共2题,每题5分,共10分)18. 点04:,,)0(03),(22=-+>=++y y x C PB PA k y kx y x P 是圆上一动点是直线的两条切线,A ,B 是切点,若四边形PACB 的最小面积是2,则k 的值为A .3B .221C .22D .219. 如图,四面体ABCD 中,O 、E 分别为BD 、BC 的中点, 且,AB = AD = 1,则异面直线AB 与CD 所成角的正切值为 。
2014-2015年福州市第一学期高三期末理科数学质量检查(word版)

福州市2014-2015学年度第一学期高三质量检查理科数学试卷(满分:150分;完卷时间:120分钟)注意事项:1.本科考试分试题卷和答题卷,考生须在答题卷上作答,答题前,请在答题卷的密封线内填写学校、班级、准考证号、姓名;2.本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟.第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中有且只有一个选项是正确的.把正确选项涂在答题卡的相应位置上.) 1. 如图,复平面上的点1234,,,Z Z Z Z 到原点的距离都相等.若复数z所对应的点为1Z ,则复数z 的共轭复数所对应的点为( ). A .1Z B .2Z C .3ZD .4Z2. 已知πtan()34+=α,则tan α的值是( ).A .2B .12C .1-D .3-3. 已知A ⊂≠B ,则“x A ∈”是“x B ∈”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 某班有49位同学玩“数字接龙”游戏,具体规则按如图所示的程序框图执行(其中a 为座位号),并以输出的值作为下一个输入的值. 若第一次输入的值为8,则第三次输出的值为( ). A .8 B .15 C .29D .365. 如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( ). A .1π B .2π C .3πD .12第4题图第5题图6. 已知函数()lg(1)=-f x x 的值域为(,1]-∞,则函数()f x 的定义域为( ).A .[9,)-+∞B .[0,)+∞C .(9,1)-D .[9,1)-7. 已知抛掷一枚质地均匀的硬币,正面朝上的概率为0.5.现采用随机模拟试验的方法估计抛掷这枚硬币三次恰有两次正面朝上的概率:先由计算器产生0或1的随机数,用0表示正面朝上,用1表示反面朝上;再以每三个随机数做为一组,代表这三次投掷的结果.经随机模拟试验产生了如下20组随机数:101 111 010 101 010 100 100 011 111 110 000 011 010 001 111 011 100 000 101 101 据此估计,抛掷这枚硬币三次恰有两次正面朝上的概率为( ). A .0.30B .0.35C .0.40D .0.658. ABC △的三个内角,,A B C 所对的边分别为,,a b c .若cos cos A bB a==C 的大小为( ). A .60︒B . 75︒C .90︒D .120︒9. 若双曲线2222:1x y a bΓ-=(0,0a b >>)的右焦点()4,0到其渐近线的距离为,则双曲线Γ的离心率为( ). ABC .2D .410.定义运算“*”为:,0,2,0a b ab a a b a +<⎧⎪*=⎨⎪⎩≥.若函数()(1)f x x x =+*,则该函数的图象大致是( ).AC11.已知ABC ∆的三个顶点,,A B C 的坐标分别为())()0,1,,0,2-,O 为坐标原点,动点P 满足1CP =,则OA OB OP ++的最小值是( ).A .4-B 1C 1D 12.已知直线:l y ax b =+与曲线:Γ1x y y=+没有公共点.若平行于l 的直线与曲线Γ有且只有一个公共点,则符合条件的直线l ( ). A .不存在B .恰有一条C .恰有两条D .有无数条第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题4分,共16分,把答案填在答题卡的相应位置上.) 13.若变量,x y 满足约束条件0,0,2x y y x ⎧⎪⎨⎪-⎩≤≥≤,则z x y =+的最小值为 ★★★ .14.已知6234560123456(1)x a a x a x a x a x a x a x +=++++++,则016,,,a a a ⋅⋅⋅中的所有偶数..的和等于 ★★★ .15.已知椭圆2239x y +=的左焦点为1F ,点P 是椭圆上异于顶点的任意一点,O 为坐标原点.若点D 是线段1PF 的中点,则1FOD ∆的周长为 ★★★ . 16. 若数列{}n a 满足112n n n a a a +-+≥(2n ≥),则称数列{}n a 为凹数列.已知等差数 列{}n b 的公差为d ,12b =,且数列n b n ⎧⎫⎨⎬⎩⎭是凹数列,则d 的取值范围为 ★★★ .三、解答题(本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知等比数列{}n a 的公比1q >,1a ,2a 是方程2320x x -+=的两根. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}2n n a ⋅的前n 项和n S .18.(本小题满分12分)“ALS 冰桶挑战赛”是一项社交网络上发起的筹款活动,活动规定:被邀请者要么在24小时内接受挑战,要么选择为慈善机构捐款(不接受挑战),并且不能重复参加该活动.若被邀请者接受挑战,则他需在网络上发布自己被冰水浇遍全身的视频内容,然后便可以邀请另外3个人参与这项活动.假设每个人接受挑战与不接受挑战是等可能的,且互不影响.(Ⅰ)若某被邀请者接受挑战后,对其他3个人发出邀请,则这3个人中至少有2个人接受挑战的概率是多少?(Ⅱ)假定(Ⅰ)中被邀请到的3个人中恰有两人接受挑战.根据活动规定,现记X 为接下来被邀请到的6个人中接受挑战的人数,求X 的分布列和均值(数学期望).19.(本小题满分12分)已知函数()4f x x π⎛⎫= ⎪⎝⎭在同一半周期内的图象过点,,O P Q ,其中O 为坐标原点,P 为函数()f x 图象的最高点,Q 为函数()f x 的图象与x的正半轴的交点.(Ⅰ)试判断OPQ ∆的形状,并说明理由.(Ⅱ)若将O P Q ∆绕原点O 按逆时针方向旋转02ααπ⎛⎫<< ⎪⎝⎭时,顶点,P Q ''恰好同时落在曲线k y x =()0x >(如图所示),求实数k 的值.20.(本小题满分12分)一种药在病人血液中的含量不低于2克时,它才能起到有效治疗的作用.已知每服用m (14m ≤≤且m ∈R )个单位的药剂,药剂在血液中的含量y (克)随着时间x (小时)变化的函数关系式近似为)(x f m y ⋅=,其中()10,06,4.4,682x xf x x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤(Ⅰ)若病人一次服用3个单位的药剂,则有效治疗时间可达多少小时?(Ⅱ)若病人第一次服用2个单位的药剂,6个小时后再服用m 个单位的药剂,要使接下来的2小时中能够持续有效治疗,试求m 的最小值.21.(本小题满分12分)已知抛物线Γ的顶点为坐标原点,焦点为(0,1)F . (Ⅰ)求抛物线Γ的方程;(Ⅱ)若点P 为抛物线Γ的准线上的任意一点,过点P 作抛物线Γ的切线PA 与PB ,切点分别为,A B ,求证:直线AB 恒过某一定点;(Ⅲ)分析(Ⅱ)的条件和结论,反思其解题过程,再对命题(Ⅱ)进行变式和推广.请写出一个你发现的真命题...,不要求证明(说明:本小题将根据所给出的命题的正确性和一般性酌情给分). 22.(本小题满分14分)已知函数()()e sin cos ,cos x x f x x x g x x x =-=,其中e 是自然对数的底数.(Ⅰ)判断函数()y f x =在π(0,)2内的零点的个数,并说明理由;(Ⅱ)12ππ0,,0,22x x ⎡⎤⎡⎤∀∈∃∈⎢⎥⎢⎥⎣⎦⎣⎦,使得不等式12()()f x g x m +≥成立,试求实数m 的取值范围;(Ⅲ)若1x >-,求证:()()0f x g x ->.第19题图福州市2014-2015学年度第一学期高三质量检查理科数学试卷参考答案及评分细则一、选择题:本大题共12小题,每小题5分,共60分. 1.C 2.B 3.A 4.A 5.B 6.D 7.B 8.C 9.C 10.D 11.B 12.C二、填空题:本大题共4小题,每小题4分,共16分,13.2- 14.32 15.316.(,2]-∞ 三、解答题:本大题共6小题,共74分.17. 本题主要考查一元二次方程的根、等比数列的通项公式、错位相减法求数列的和等基础知识,考查应用能力、运算求解能力,考查函数与方程思想. 解:(Ⅰ)方程2320x x -+=的两根分别为1,2, ·························································· 1分 依题意得11a =,22a =. ································································································ 2分 所以2q =,······················································································································· 3分 所以数列{}n a 的通项公式为12n n a -=. ·········································································· 4分 (Ⅱ)由(Ⅰ)知22n n n a n ⋅=⋅, ··················································································· 5分 所以212222n n S n =⨯+⨯+⋅⋅⋅+⨯, ············································ ①23121222(1)22n n n S n n +⋅=⨯+⨯+⋅⋅⋅+-⋅+⨯, ························· ② 由①-②得23222n S -=+++⋅⋅⋅122n n n ++-⨯, ··············································································· 8分 即 1222212nn n S n +-⋅-=-⨯-, ······················································································· 11分 所以12(1)2n n S n +=+-⋅. ····························································································· 12分 18.本题主要考查离散型随机变量的概率、分布列、数学期望等基础知识,考查运算求解能力以及应用意识,考查必然与或然思想等.解法一:(Ⅰ)这3个人接受挑战分别记为A 、B 、C ,则,,A B C 分别表示这3个人不接受挑战.这3个人参与该项活动的可能结果为:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C .共有8种; ································································ 2分 其中,至少有2个人接受挑战的可能结果有:{},,A B C ,{},,A B C ,{},,A B C ,{},,A B C ,共有4种. ······················································································································ 3分根据古典概型的概率公式,所求的概率为4182P ==. ·················································· 4分(说明:若学生先设“用(),,x y z 中的,,x y z 依次表示甲、乙、丙三人接受或不接受挑战的情况”,再将所有结果写成(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,(),,A B C ,不扣分.) (Ⅱ)因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 5分所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分 故X10分所以()1315515310123456364326416643264E X =⨯+⨯+⨯+⨯+⨯+⨯+⨯=.故所求的期望为3. ········································································································ 12分 解法二:因为每个人接受挑战与不接受挑战是等可能的,所以每个人接受挑战的概率为12,不接受挑战的概率也为12. ···································· 1分 (Ⅰ)设事件M 为“这3个人中至少有2个人接受挑战”,则2323331111()2222P M C C ⎛⎫⎛⎫⎛⎫=⋅+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ·········································································· 4分 (Ⅱ)因为X 为接下来被邀请的6个人中接受挑战的人数,所以1~6,2X B ⎛⎫⎪⎝⎭.··········································································································· 5分 所以()060611102264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()51611631226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()2426111522264P X C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭,()3336112053226416P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()4246111542264P X C ⎛⎫⎛⎫==⋅= ⎪⎪⎝⎭⎝⎭,()515611635226432P X C ⎛⎫⎛⎫==⋅== ⎪ ⎪⎝⎭⎝⎭, ()6661116.2264P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭······················································································· 9分故X10分所以()1632E X =⨯=.故所求的期望为3. ······································································································ 12分 19.本题主要考查反比例函数、三角函数的图象与性质、三角函数的定义、同角三角函数的基本关系式、二倍角公式、两角和的正弦公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想、函数与方程思想. 解法一:(Ⅰ)OPQ ∆为等边三角形. ············································································ 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==π,所以函数()f x 的半周期为4, 所以4OQ =. ·················································································································· 2分 又因为P 为函数()f x 图象的最高点,所以点P坐标为(2,,所以4OP =, ···································································· 4分 又因为Q 坐标为(4,0),所以4PQ =,所以OPQ ∆为等边三角形. ··························································································· 6分 (Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ················ 7分代入k y x =,得216cos sin 8sin(2π)333k αααππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭,且16sin cos 8sin 2k ααα==, ························································································· 9分所以2sin 2sin(2π)3αα=+,结合22sin (2)cos (2)1αα+=,02απ<<,解得1sin 22α=,············································································································· 11分所以4k =,所以所求的实数k 的值为4. ····································································· 12分 解法二:(Ⅰ)OPQ ∆为等边三角形. ·········································································· 1分 理由如下:因为函数()4f x x π⎛⎫= ⎪⎝⎭,所以2π84T ==,所以函数()f x 的半周期为4,所以4OQ =, ··································· 2分 因为P 为函数()f x 的图象的最高点,所以点P坐标为(2,,所以4OP =,所以OP OQ =. ······································ 4分 又因为直线OP的斜率k ==60POQ ∠=︒, 所以OPQ ∆为等边三角形. ··························································································· 6分(Ⅱ)由(Ⅰ)知,4OP OQ ==,所以点P ',Q '的坐标分别为4cos 4sin 33αα⎛⎫ππ⎛⎫⎛⎫++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,(4cos 4sin )αα,, ·················· 7分 因为点P ',Q '在函数(0)ky x x=>的图象上,所以16cos sin ,3316sin cos k k ⎧ππ⎛⎫⎛⎫=++⎪ ⎪ ⎪⎝⎭⎝⎭⎨⎪=⎩αααα, ················································································ 8分 所以28sin(2π),38sin 2k k ⎧=+⎪⎨⎪=⎩αα, ·································································································· 9分 消去k 得, 2sin 2sin(2π)3αα=+,所以22sin 2sin 2cos πcos2sin π33ααα=+,所以3sin 222αα=,所以tan 2α=,····························································· 10分又因为 02απ<<,所以26απ=,所以1sin 22α=, ···················································· 11分所以4k =.所以所求的实数k 的值为4. ····································································· 12分 解法三:(Ⅰ)同解法一或同解法二;(Ⅱ)由(Ⅰ)知,OPQ ∆为等边三角形.因为函数(0)ky x x=>的图象关于直线y x =对称, ························································ 8分由图象可知,当12απ=时,点P ',Q '恰在函数(0)ky x x =>的图象上. ······················ 10分此时点Q '的坐标为(4cos 4sin )1212ππ,, ········································································· 11分 所以16sin cos 8sin 412126k πππ===,所以所求的实数k 的值为4. ···························· 12分20. 本题主要考查分段函数模型的应用问题、一元二次函数的最值、解不等式等基础知识,考查应用意识、运算求解能力,考查化归与转化思想、分类讨论思想等.解:(I )因为3m =,所以30,06,4312,682x xy x x ⎧<⎪⎪+=⎨⎪-⎪⎩≤≤≤. ······················································ 1分当06x <≤时,由3024x+≥,解得x ≤11,此时06x <≤; ······································· 3分 当68x ≤≤时,由31222x -≥,解得203x ≤,此时2063x ≤≤. ····························· 5分综上所述,2003x ≤≤.故若一次服用3个单位的药剂,则有效治疗的时间可达203小时. ······························ 6分 (Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分因为10822mx x -+-≥对6x ≤≤8恒成立,即281210x x m -+≥对6x ≤≤8恒成立,等价于2max 812)10x x m -+≥(,6x ≤≤8.······································································ 9分 令2812()10x x g x -+=,则函数2(4)4()10x g x --=在[6,8]是单调递增函数, ·············· 10分当x =8时,函数2812()10x x g x -+=取得最大值为65, ················································ 11分所以65m ≥,所以所求的m 的最小值为65. ································································ 12分解法二:(Ⅰ)同解法一;(Ⅱ)当6x ≤≤8时,110102(4)[]824(6)2my x m x x x =⨯-+=-++--, ······················· 8分注意到18y x =-及2102my x =-(14m ≤≤且m ∈R )均关于x 在[6,8]上单调递减,则1082my x x =-+-关于x 在[6,8]上单调递减, ····························································· 10分故10588823m m y -+=-≥,由523m≥,得65m ≥, ······················································· 11分 所以所求的m 的最小值为65. ······················································································· 12分21. 本题主要考查抛物线的标准方程与性质、直线与抛物线的位置关系、归纳推理等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、数形结合思想、特殊与一般思想等. 解:(Ⅰ)依题意可设抛物线Γ的方程为:22x py =(0p >). ··································· 1分由焦点为(0,1)F 可知12p=,所以2p =.······································································· 2分所以所求的抛物线方程为24x y =. ················································································ 3分 (Ⅱ)方法一:设切点A 、B 坐标分别为221212,,,44x x x x ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由(Ⅰ)知,12y x '=.则切线PA PB 、的斜率分别为12112211,22x x x x k y x k y x ==''====, 故切线PA PB 、的方程分别为211111()42y x x x x -=-,222211()42y x x x x -=-, ············· 4分。
福建省福州市第八中学2015-2016学年高一上学期期末考试数学试题解析(解析版)

福建省福州市第八中学2015-2016学年高一上学期期末考试数学试题考试时间:120分钟 试卷满分:150分2016.1.26第Ⅰ卷(100分)一、选择题(本大题共8小题,每小题5分,共40分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)1.直线x=1的倾斜角和斜率分别是A.45°,1B.135°,-1C.90°,不存在D.180°,不存在【答案】C【解析】试题分析:直线和x 轴垂直,所以倾斜角为90︒,斜率不存在.故选c.考点:直线的倾斜角和斜率.2.直线y 2mx m -=+经过一定点,则该点的坐标为 ( )A.(-1,2)B.(2,- 1)C.(1,2)D.(2,1)【答案】A【解析】试题分析:直线可变为y 2m x 1-=+(),根据直线的点斜式方程可知,直线经过定点()1,2-.故选A. 考点:直线的点斜式方程.3.对于直线m,n 和平面α,β,能得出α⊥β的一个条件是 ( )A. m ⊥n, m ∥α,n ∥βB. m ⊥n, α∩β=m, n ⊂αC. m ∥n, n ⊥β,m ⊂αD. m ∥n, m ⊥α, n ⊥β【答案】C【解析】试题分析:判定两平面垂直的常用方法就是面面垂直的判定定理,选项C 就是.故选C.考点:面面垂直的判定定理.4.如图所示,直观图四边形A B C D ''''是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A 2+B 1-C D .【答案】A【解析】试题分析:由题可得A'D'A'B'1==,B'C'1=+ ,所以原平面图形中AD=1,AB=2,BC 1=+,根据梯形的面积计算公式可得2S ==故选A. 考点:斜二测画法. 5.与圆O 1:x 2+y 2+4x -4y +7=0和圆O 2:x 2+y 2-4x -10y +13=0都相切的直线条数是( ) A .4 B .3 C .2 D .1【答案】B【解析】试题分析:圆O 1:x 2+y 2+4x -4y +7=0可变为()()22221x y ++-=,圆心为()2,2-,半径为11r =;圆O 2:x 2+y 2-4x -10y +13=0可变为()()222516x y -+-=,圆心为()2,5,半径为24r =;所以15O O =,125r r +=,所以两圆相切;所以与两圆都相切的直线有3条.故选B. 考点:圆与圆的位置关系.6.正方体的内切球和外接球的体积之比为( )A .1∶ 3B .1∶3C .1∶9D .1∶33【答案】D【解析】试题分析:设正方体的棱长为1,则其内切球的直径为1,半径为12,根据球的体积公式可知两球的体积之比为3311:2⎛⎫=⎪⎝⎭故选D. 考点:正方体内切球和外接球的体积.7.如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,O 是底面ABCD 的中心,M ,N 分别是棱DD 1,D 1C 1的中点,则直线OM( )A .与AC ,MN 均垂直相交B .与AC 垂直,与MN 不垂直 C .与MN 垂直,与AC 不垂直D .与AC ,MN 均不垂直【答案】A【解析】试题分析:方法(1):此题的条件使得建立空间坐标系方便,且选项中研究的位置关系也适合用空间向量来证明其垂直关系,故应先建立坐标系,设出边长,据几何特征,给出各点的坐标,验证向量内积是否为零.以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系.设正方体的棱长为2a ,则D (0,0,0)、D 1(0,0,2a )、M (0,0,a )、A (2a ,0,0)、C (0,2a ,0)、O (a ,a ,0)、N (0,a ,2a ).∴=(-a ,-a ,a ),=(0,a ,a ),=(-2a ,2a ,0).∴•=0,•=0,∴OM ⊥AC ,OM ⊥MN .方法(2):由三垂线定理可证OM ⊥AC ,由勾股定理逆定理可证OM ⊥MN.故选A .考点:向量语言表述线线的垂直、平行关系;三垂线定理;线线垂直的判定与性质.8.设A 为圆(x -1)2+y 2=1上的动点,PA 是圆的切线且|PA|=1,则P 点的轨迹方程是( )A .(x -1)2+y 2=4B .(x -1)2+y 2=2C .y 2=2xD .y 2=-2x 【答案】B【解析】试题分析:由已知得,圆22(x 1)y 1-+=的圆心()1,0O ,半径为1;由PA 是圆的切线且|PA|=1,得(),P x y =22(x 1)y 2-+=.故选B.考点:点的轨迹方程的求法. 二、填空题(本大题共4小题,每小题5分,共20分)9.直线x +2ay -1=0与直线(a -1)x -ay -1=0平行,则a 的值是________.【答案】0或12. 【解析】试题分析:由直线平行的充要条件得:()21a a a -=-,解得102a =或.故答案为0或12. 考点:直线平行的充要条件.10.若点P(-4,-2,3)关于坐标平面xOy 及y 轴的对称点的坐标分别是(a,b,c),(e,f,d),则c+e= .【答案】1.【解析】试题分析:∵点P(-4,-2,3)关于坐标平面xoy的对称点为(-4,-2,-3),点P(-4,-2,3)关于y 轴的对称点的坐标(4,-2,-3),点P(-4,-2,3)关于坐标平面xoy及y轴的对称点的坐标分别是(a,b,c)、(e,f,d),∴c=-3,e=4,∴c+e=1,故答案为:1.考点:空间中的点的坐标.11.一个圆锥的轴截面是个边长为2的正三角形,这个圆锥的侧面积等于 .【答案】2π.【解析】试题分析:∵圆锥的轴截面是一个边长为2的等边三角形,∴底面半径为1,底面周长为2π,∴圆锥的侧面积=12222ππ⨯⨯=,故答案为:2π.考点:圆的周长公式和扇形面积公式;圆锥的轴截面;圆锥的侧面积.12..如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有_____________.(请写出所有符合条件的序号)【答案】①②③.【解析】试题分析:由展开图恢复原几何体如图所示:①在△PAD中,由PE=EA,PF=FD,根据三角形的中位线定理可得EF∥AD,又∵AD∥BC,∴EF∥BC,因此四边形EFBC是梯形,故B,E,F,C四点共面,所以①正确;②由点A不在平面EFCB内,直线BE不经过点F,根据异面直线的定义可知:直线BE与直线AF异面,所以②正确;③由①可知:EF∥B C,EF⊄平面PBC,BC⊂平面PBC,∴直线EF∥平面PBC,故③正确;④如图:假设平面BCEF⊥平面PAD.过点P作PO⊥EF分别交EF、AD于点O、N,在BC上取一点M,连接PM、OM、MN,∴PO⊥OM,又PO=ON,∴PM=MN.若PM≠MN时,必然平面BCEF与平面PAD不垂直.故④不一定成立.⑤可画出该几何体沿底面正方形的边及侧棱PD剪开后所得的平面展开图,由该展开图即可求得从B点出发,绕过平面PAD,到达点C的最短距离,从而判断出该结论是错误的.综上可知:只有①②③正确.考点:棱锥的结构特征;空间中直线与直线的位置关系.三、解答题(本大题共有4个小题,共40分.解答应写出文字说明、演算步骤或证明过程.)13.(本小题满分10分)如图,已知点A(2,3),B(4,1),△ABC是以AB为底边的等腰三角形,点C在直线l:x-2y+2=0上.(1)求AB边上的高CE所在直线的方程;(2)求△ABC的面积.--=; (2)2.【答案】(1)x y10考点:直线的方程;三角形的面积.14.(本小题满分10分)下图为一简单组合体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD,且PD=AD=2EC=2.(1)请画出该几何体的三视图;(2)求四棱锥B—CEPD的体积.【答案】(1)见解析;(2)2.【解析】试题分析:(1)根据空间几何体三视图的画法即可画出;(2)由已知可得四棱锥B—CEPD的底面是直角梯形,只需求得其高即可.由PD⊥平面ABCD,PD⊂平面PDCE,得平面PDCE⊥平面ABCD;四边形ABCD为正方形,得BC⊥CD;又因为平面PDCE∩平面ABCD=CD,BC⊂平面ABCD,得BC⊥平面PDCE,所以BC是四棱锥的高,代入棱锥的体积公式即可求得.试题解析:解: (1)该组合体的三视图如图所示.-----------3分(2)∵PD ⊥平面ABCD ,PD ⊂平面PDCE ,∴平面PDCE ⊥平面ABCD . ----------5分∵四边形ABCD 为正方形,∴BC ⊥CD ,且BC =DC =AD =2.又∵平面PDCE ∩平面ABCD =CD ,BC ⊂平面ABCD .∴BC ⊥平面PDCE . -----------7分∵PD ⊥平面ABCD ,DC ⊂平面ABCD ,∴PD ⊥DC .又∵EC ∥PD ,PD =2,EC =1,∴四边形PDCE 为一个直角梯形,其面积:S 梯形PDCE =12(PD +EC )·DC =12×3×2=3, ∴四棱锥B —CEPD 的体积V B —CEPD =13S 梯形PDCE ·BC =13×3×2=2. -------10分 考点:空间几何体的三视图;棱锥的体积.15.(本小题满分10分)已知圆C 经过点(1,0)A -和(3,0)B ,且圆心在直线0x y -=上.(1)求圆C 的方程;(2)若点(,)P x y 为圆C 上任意一点,求点P 到直线240x y ++=的距离的最大值和最小值.【答案】(1) 22(1)(1)5x y -+-= ;(2)最大值为. 【解析】试题分析:(1) 由圆心在圆的弦的中垂线上和直线0x y -= ,可得圆心的坐标;由圆心到圆上点的距离等于半径,可得圆的半径的长,代入圆的标准方程即可求得;(2)先判断直线和圆的位置关系,再根据圆上点P 到直线的距离最大值为圆心到直线距离加半径,最小值为圆心到直线距离减半径即可求得.试题解析:解:(1) AB 的中点坐标为(1,0),∴圆心在直线1x =上, ………… 1分又知圆心在直线0x y -=上,∴圆心坐标是(1,1),圆心半径是r =, …………3分∴圆的方程是22(1)(1)5x y -+-= ………… 5分(2)设圆心到直线240x y ++=的距离d >7分 ∴直线240x y ++=与圆C 相离,∴点P 到直线240x y ++=+=, ………9分-=………… 10分 考点:圆的标准方程;直线与圆的位置关系.16.(本小题满分10分)如图,AB 是圆O 的直径,PA 垂直圆O 所在的平面,C 是圆O 上的点.(1)求证:BC ⊥平面PAC ;(2)设Q 为PA 的中点,G 为AOC ∆的重心,求证:QG //平面PBC .【答案】(1)(2)证明见解析.【解析】试题分析:(1)要证直线BC 与平面PAC 垂直只需在面PAC 内找两条相交直线与BC 垂直即得;(2)要证线面平行方法有两个:一是在面内找一条直线与面外的直线平行即可,二是利用面面平行亦可证得线面平行,本题用的是方法二.试题解析:证明:(1)AB 是圆O 的直径,得AC BC ⊥,… 1分由PA ⊥平面ABC ,BC平面ABC ,得PA BC ⊥,………3分又PA AC A =, PA 平面PAC ,AC 平面PAC ,……… 4分所以BC ⊥平面PAC .……… 5分(2)连OG 并延长交AC 于M ,连接,QM QO ,由G 为AOC ∆的重心,得M 为AC 中点.……… 6分由Q 为PA 中点,得//QM PC ,又O 为AB 中点,得//OM BC ,……… 7分因为,QM MO M =QM 平面QMO ,MO 平面QMO ,,BC PC C =BC 平面PBC ,PC 平面PBC所以平面//QMO 平面PBC .……… 9分因为QG 平面QMO ,所以//QG 平面PBC .……… 10分考点:直线与直线、直线与平面、平面与平面平行与垂直的判定与性质.第Ⅱ卷一、选择题(本大题共4小题,每小题4分,共16分.每题有且只有一个选项是正确的,请把答案填在答卷相应位置上)17.已知平面α外不共线的三点A ,B ,C 到α的距离相等,则正确的结论是( )A .平面ABC 必平行于αB .平面ABC 必不垂直于αC .平面ABC 必与α相交D .存在△ABC 的一条中位线平行于α或在α内【答案】D【解析】试题分析:已知平面α外不共线的三点A 、B 、C 到α的距离都相等,则可能三点在α的同侧,即.平面ABC 平行于α,这时三条中位线都平行于平面α;也可能一个点A 在平面一侧,另两点B 、C 在平面另一侧,则存在一条中位线DE ∥BC ,DE 在α内,故选D .考点:空间中直线与平面之间的位置关系.18.函数f(x)=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B . (0,1)C . (-1,0)D .(1,2)【答案】B【解析】试题分析:因为()010f =-<,()110f e =->,所以函数零点在区间()0,1.故选B.考点:函数零点的判定定理.19.已知集合M ={(x ,y )|y =9-x 2,y ≠0},N ={(x ,y )|y =x +b },若M ∩N ≠φ,则实数b 的取值范围是( )A .[-32,32]B .[-3,3]C .(-3,32]D .[-32,3)【答案】C【解析】试题分析:方法一:由M ∩N ≠空集,即x b +=有解,两边平方,得22229x bx b x ++=-,即222290x bx b ++-=有解,则根的判别式()224890b b ∆=--≥, 218b ≤,即b -≤≤;由M ={(x ,y )|y =9-x 2,y ≠0},根据被开方数是正数,得290x ->,33x -<<;由b>-x 得b>-3综上所述:3b -<≤;20.已知定义在R 上的偶函数()f x 满足(4)()f x f x -=,且在区间 [0,2]上()f x x =,若关于x 的方程()log a f x x =有三个不同的根,则a 的范围为( )A .)4,2(B .)22,2(C .D .【答案】D【解析】试题分析:因为(4)()f x f x -=所以此函数为周期函数,且周期为4;因为在区间[0,2]上()f x x =,且函数()f x 为定义在上的偶函数,则在区间[20]-,上()f x x =-;当[]0,10x ∈时函数图像如图所示;要使方程有三个不同的根则有,解得a <<故选D.考点:函数的奇偶性和单调性.二、填空题(本大题共2小题,每小题4分,共8分)21.设点A(-3,5)和B(2,15),在直线l :3x -4y +4=0上找一点P ,使|PA|+|PB|为最小,则这个最小值为________ 【答案】513. 【解析】试题分析:由题意知,点A,B 在直线l 的同一侧;由平面几何性质可知,先作出点A 关于直线l 的对称点'A ,然后连接'A B ,则直线'A B 与l 的交点P 即为所求的点,线段'A B 的长即为PA PB +的最小值.设点()',A a b ,则543335344022b a a b -⎧=-⎪⎪+⎨-+⎪⨯-⨯+=⎪⎩,解得33a b =⎧⎨=-⎩,则()'3,3A -,=,即PA PB +的最小值为.考点:线段的垂直平分线的性质;求两直线的交点坐标.22.矩形ABCD 中,AB =4,BC =3,沿AC 将矩形ABCD 折成一个直二面角B -AC -D ,则四面体ABCD 的外接球的体积为 【答案】1256π.【解析】试题分析:因为球心到球面各点的距离相等,即可知道外接球的半径,就可以求出其体积了.由题意知,球心到四个顶点的距离相等,所以球心在对角线AC 上,且其半径为AC 长度的一半,矩形对角线AC=5,则345125==326V ππ⎛⎫⨯ ⎪⎝⎭球.考点:球的体积和表面积.三、解答题(本大题共有2个小题,共26分.解答应写出文字说明、演算步骤或证明过程.)23.(本小题满分12分)如图,在平面直角坐标系xOy 中,A(a,0)(a>0),B(0,a),C(-4,0),D(0,4),设△AOB 的外接圆圆心为E.(1)若圆E 与直线CD 相切,求实数a 的值.(2)设点P 在圆E 上,使△PCD 的面积等于12的点P 有且只有3个,试问这样的圆E 是否存在?若存在,求出圆E 的标准方程;若不存在,说明理由.【答案】(1)4;(2) ()()22x 5y 550-+-=. 【解析】试题分析:(1)先求出圆心坐标和半径,由圆心到切线的距离等于半径,解出实数a 的值;(2)要使 △PCD 的面积等于12的点P 有且只有3个,则⊙E 上到直线CD 的距离为,圆心E 到直线CD 的距离为2错误!未找到引用源。
福建省八县一中高一数学上学期期末考试试题

福建省八县一中2014-2015学年高一上学期期末考试数学试题第Ⅰ卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.用任意一个平面截一个几何体,各个截面都是圆面,则这个几何体一定是( )A .圆柱B .圆锥C .球体D .圆柱、圆锥、球的组合体 2.已知A (-1,3)、B (3,-1),则直线AB 的倾斜角为( )A. 45oB. 60o B. 120o D. 135o3.已知直线1:21l y x =+,若直线2l 与1l 关于直线1x =对称,则2l 的斜率为( )A .-2B .-12 C.12D .24.123,,l l l 是空间三条不同的直线,则下列命题正确的是( )A .1223,l l l l ⊥⊥13l l ⇒PB .1223,l l l l ⊥P 13l l ⇒⊥C .123l l l P P 123,l l l ⇒,共面D .123,l l l ,共点123,l l l ⇒,共面5.在空间直角坐标系中一点P (1,3,4)到x 轴的距离是( )A .5B .10C .17D .266.若两条平行线12,l l 的方程分别是2x +3my -m +2=0, mx +6y -4=0,记12,l l 之间的距离为d ,则m ,d 分别为( )A. m=2,d=41313B. m=2,d=105C. m=2,d=2105D. m=–2,d=1057.设, l m 是两条不同直线,, αβ是两个不同平面,下列命题正确的是( ) A .若,l m m α⊥⊂,则lα⊥ B .若,l l αβP P ,则αβ//C .若,l l m α⊥P ,则m α⊥D .若,l ααβ⊥P ,则l β⊥8.直线y =—3x 绕原点按逆时针方向旋转090后所得直线与圆 (x-2)2+y 2=1的位置关系是( )A .直线过圆心B .直线与圆相交,但不过圆心C .直线与圆相切D .直线与圆没有公共点9.平面α的斜线l 与平面α所成的角是45°,则斜线l 与平面α内所有不过斜足的直线所成的角中,最大的角是( ) A .30° B .45° C .60° D .90°10.一个正八面体的八个顶点都在同一个球面上,.则这个球的表面积为( ) A .πB .2πC .4πD .2π11.点P (4,-2)与圆224x y +=上任一点连线的中点的轨迹方程是( ) A .22(2)1)1x y -++(=B .22(2)1)4x y -++(=C .22(4)2)4x y +-+(=D .22(2)1)1x y +-+(=12.设集合{(,)|}A x y y x ==与集合{(,)|}B x y x a a R ==∈,若A B ⋂的元素只有一个,则实数a 的取值范围是( )A .a =.11a -<<或a =C .a =或11a -≤< D .11a -<≤或a =第Ⅱ卷二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置上.) 13.若直线3y x b =+过圆22240x y x y ++-=的圆心,则b =________.14.一个圆锥的轴截面是个边长为2的正三角形,这个圆锥的侧面积等于 . 15.在直角三角形ABC 中,点D 是斜边AB 的中点,点P 为线段CD 的中点,则|PA |2+|PB |2|PC |2=__________. 16.如图是一几何体的平面展开图,其中ABCD 为正方形,E ,F 分别为PA ,PD 的中点.在此几何体中,给出下面四个结论:①B ,E ,F ,C 四点共面; ②直线BF 与AE 异面; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面PAD ;.⑤折线B →E →F →C 是从B 点出发,绕过三角形PAD 面,到达点C 的一条最短路径.其中正确的有_____________.(请写出所有符合条件的序号)三、解答题(本大题共6小题,共74分.解答应写出文字说明、演算步骤或推证过程) 17.(本大题12分)已知直线l :kx -y +1-2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 交x 轴正半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,且|OA |=|OB |,求k 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
福建省福州市八县一中2014-2015学年高一上学期期末数学试卷一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.(5分)用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体2.(5分)已知A(﹣1,3)、B(3,﹣1),则直线AB的倾斜角为()A.45°B.60°C.120°D.135°3.(5分)已知直线l1:y=2x+1,若直线l2与l1关于直线x=1对称,则l2的斜率为()A.﹣2 B.﹣C.D.24.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面5.(5分)在空间直角坐标系中一点P(1,3,4)到x轴的距离是()A.5B.C.D.6.(5分)若两条平行线l1,l2的方程分别是2x+3my﹣m+2=0,mx+6y﹣4=0,记l1,l2之间的距离为d,则m,d分别为()A.m=2,d=B.m=2,d=C.m=2,d=D.m=﹣2,d=7.(5分)设l、m是两条不同的直线,α、β是两个不同的平面,则下列论述正确的是()A.若l∥α,m∥α,则l∥m B.若l∥α,l∥β,则α∥βC.若l∥m,l⊥α,则m⊥αD.若l∥α,α⊥β,则l⊥β8.(5分)直线y=﹣x绕原点按逆时针方向旋转90°后所得直线与圆(x﹣2)2+y2=1的位置关系是()A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点9.(5分)平面α的斜线l与平面α所成的角是45°,则l与平面α内所有不过斜足的直线所成的角中,最大的角是()A.45°B.90°C.135°D.60°10.(5分)一个正八面体的八个顶点都在同一个球面上,如果该正八面体的棱长为.则这个球的表面积为()A.πB.2πC.4πD.11.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y ﹣2)2=1 D.(x+2)2+(y﹣1)2=112.(5分)设集合A={(x,y)|y=x}与集合B={(x,y)|x=a+,a∈R},若A∩B的元素只有一个,则实数a的取值范围是()A.a=±B.﹣1<a<1或a=±C.a=或﹣1≤a<1 D.﹣1<a≤1或a=﹣二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置上.)13.(4分)若直线y=3x+b过圆x2+y2+2x﹣4y=0的圆心,则b=.14.(4分)已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于.15.(4分)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=.16.(4分)如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有.(请写出所有符合条件的序号)三、解答题(本大题共6小题,共74分.解答应写出文字说明、演算步骤或推证过程)17.(12分)已知直线l:kx﹣y+1﹣2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l交x轴正半轴于点A,交y轴正半轴于点B,O为坐标原点,且|OA|=|OB|,求k的值.18.(12分)有100件规格相同的铁件(铁的密度是7.8g/cm3),该铁件的三视图如图所示,其中正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成(图中单位cm).(1)指出该几何体的形状特征;(2)根据图中的数据,求出此几何体的体积;(3)问这100件铁件的质量大约有多重(π取3.1,取1.4)?19.(12分)已知点M(2,0),两条直线l1:2x+y﹣3=0与l2:3x﹣y+6=0,直线l经过点M,并且与两条直线l1•l2分别相交于A(x1,y1)•B(x2,y2)两点,若A与B重合,求直线l 的方程,若x1+x2=0,求直线l的方程.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.21.(12分)如图,已知正三角形ABC的边长为6,将△ABC沿BC边上的高线AO折起,使BC=3,得到三棱锥A﹣BOC.动点D在边AB上.(1)求证:OC⊥平面AOB;(2)当点D为AB的中点时,求异面直线AO、CD所成角的正切值;(3)求当直线CD与平面AOB所成角最大时的正切值.22.(14分)已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.福建省福州市八县一中2014-2015学年高一上学期期末数学试卷参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题意要求的.)1.(5分)用任意一个平面截一个几何体,各个截面都是圆,则这个几何体一定是()A.圆柱B.圆锥C.球体D.圆柱、圆锥、球体的组合体考点:平行投影及平行投影作图法.专题:常规题型;空间位置关系与距离.分析:由各个截面都是圆知是球体.解答:解:∵各个截面都是圆,∴这个几何体一定是球体,故选C.点评:本题考查了球的结构特征,属于基础题.2.(5分)已知A(﹣1,3)、B(3,﹣1),则直线AB的倾斜角为()A.45°B.60°C.120°D.135°考点:直线的倾斜角.专题:直线与圆.分析:先求出直线的斜率,再求出直线的倾斜角.解答:解:∵A(﹣1,3)、B(3,﹣1),∴k AB==﹣1,∴直线AB的倾斜角α=135°.故选:D.点评:本题考查直线的倾斜角的求法,是基础题,解题时要认真审题,注意斜率公式的合理运用.3.(5分)已知直线l1:y=2x+1,若直线l2与l1关于直线x=1对称,则l2的斜率为()A.﹣2 B.﹣C.D.2考点:直线的斜率.专题:直线与圆.分析:由已知条件作出直线l1,直线l2与直线x=1的图象,结合图象,得到直线l2与l1的倾斜角互补,由此能求出l2的斜率.解答:解:∵直线l1:y=2x+1,直线l2与l1关于直线x=1对称,作出图象,如图,结合图象,得直线l2与l1的倾斜角互补,∵直线l1:y=2x+1的斜率k=2,∴l2的斜率为k′=﹣2.故选:A.点评:本题考查直线的斜率的求法,是基础题,解题时要认真审题,注意数形结合思想的合理运用.4.(5分)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面考点:平面的基本性质及推论;空间中直线与直线之间的位置关系.专题:证明题.分析:通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.解答:解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.点评:本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.5.(5分)在空间直角坐标系中一点P(1,3,4)到x轴的距离是()A.5B.C.D.考点:空间两点间的距离公式.专题:空间位置关系与距离.分析:欲求P(1,3,4)到x轴的距离,转化为长方体中求点到棱的距离即可,利用长方体的性质得,即求某个面上对角线的长.解答:解:∵点(x,y,z)到x轴的距离d等于:d=.∴点P(1,3,4)到x轴的距离d等于:d==5.故选:A.点评:本小题主要考查点、线、面间的距离计算、空间直角坐标系的应用等基础知识,考查运算求解能力,考查空间想象力.属于基础题.6.(5分)若两条平行线l1,l2的方程分别是2x+3my﹣m+2=0,mx+6y﹣4=0,记l1,l2之间的距离为d,则m,d分别为()A.m=2,d=B.m=2,d=C.m=2,d=D.m=﹣2,d=考点:两条平行直线间的距离.专题:直线与圆.分析:直接利用两条直线平行求出m,通过平行线之间的距离求出d即可.解答:解:两条平行线l1,l2的方程分别是2x+3my﹣m+2=0,mx+6y﹣4=0,可得:,解得m=2,两条平行线l1,l2的方程分别是2x+6y=0,2x+6y﹣4=0,平行线之间的距离为:d==.故选:B.点评:本题考查平行线的应用,平行线之间的距离的求法,考查计算能力.7.(5分)设l、m是两条不同的直线,α、β是两个不同的平面,则下列论述正确的是()A.若l∥α,m∥α,则l∥m B.若l∥α,l∥β,则α∥βC.若l∥m,l⊥α,则m⊥αD.若l∥α,α⊥β,则l⊥β考点:空间中直线与直线之间的位置关系.专题:空间位置关系与距离.分析:利用空间中线线、线面、面面间的位置关系进行判断.解答:解:由l、m是两条不同的直线,α、β是两个不同的平面,知:若l∥α,m∥α,则l与m相交、平行或异面,故A错误;若l∥α,l∥β,则α与β平行或相交,故B错误;若l∥m,l⊥α,则由直线与平面垂直的判定定理知m⊥α,故C正确;若l∥α,α⊥β,则l相交β、平行或l⊂β,故D错误.故选:C.点评:本题考查命题的真假判断,是基础题,解题时要认真审题,注意空间能力的培养.8.(5分)直线y=﹣x绕原点按逆时针方向旋转90°后所得直线与圆(x﹣2)2+y2=1的位置关系是()A.直线过圆心B.直线与圆相交,但不过圆心C.直线与圆相切D.直线与圆没有公共点考点:直线与圆的位置关系.专题:直线与圆.分析:由题意可得,所得直线与原直线垂直,再利用点斜式求得所得直线的方程.再根据圆心(2,0)到所得直线的距离正好等于圆的半径,可得所得直线与圆相切.解答:解:把直线y=﹣x绕原点按逆时针方向旋转90°后所得直线与原直线垂直,所得直线的斜率为,故所得直线的方程为y=x,即x﹣3y=0.再根据圆心(2,0)到所得直线x﹣3y=0的距离为=1,正好等于圆的半径,故所得直线与圆(x﹣2)2+y2=1相切,故选:C.点评:本题主要考查两直线垂直的性质,直线和圆相切的性质,点到直线的距离公式的应用,属于基础题.9.(5分)平面α的斜线l与平面α所成的角是45°,则l与平面α内所有不过斜足的直线所成的角中,最大的角是()A.45°B.90°C.135°D.60°考点:两直线的夹角与到角问题;直线与平面所成的角.专题:计算题.分析:根据斜线与平面所成角的范围,说明直线与斜线垂直时,所成角最大.解答:解:因为一个斜线跟平面上的直线所成的角要小于等于90°,在平面α任意做一条垂直于该斜线在平面α内的射影的直线,该直线与斜线成90°为最大角.故选B点评:本题考查两直线的夹角与到角问题,直线与平面所成的角,考查空间想象能力,是基础题.10.(5分)一个正八面体的八个顶点都在同一个球面上,如果该正八面体的棱长为.则这个球的表面积为()A.πB.2πC.4πD.考点:球的体积和表面积.专题:综合题;空间位置关系与距离.分析:正八面体的各个顶点都在同一个球面上,则其中四点所组成的截面在球的一个大圆面上,可得,此四点组成的正方形是球的大圆的一个内接正方形,其对角线的长度即为球的直径,由此求出球的表面积.解答:解:由题意正八面体的各个顶点都在同一个球面上,则其中四点所组成的截面在球的一个大圆面上,因为正八面体的棱长为,所以底面四点组成的正方形的对角线的长为2,球的半径是1所以此球的表面积4π.故选:C.点评:本题考查球的表面积公式,解此题的关键是理解得出球的直径恰好是正八面体中间那个正方形的对角线的长度.11.(5分)点P(4,﹣2)与圆x2+y2=4上任一点连线的中点轨迹方程是()A.(x﹣2)2+(y+1)2=1 B.(x﹣2)2+(y+1)2=4 C.(x+4)2+(y ﹣2)2=1 D.(x+2)2+(y﹣1)2=1考点:轨迹方程.专题:直线与圆.分析:设圆上任意一点为(x1,y1),中点为(x,y),则,由此能够轨迹方程.解答:解:设圆上任意一点为(x1,y1),中点为(x,y),则代入x2+y2=4得(2x﹣4)2+(2y+2)2=4,化简得(x﹣2)2+(y+1)2=1.故选A.点评:本题考查点的轨迹方程,解题时要仔细审题,注意公式的灵活运用.12.(5分)设集合A={(x,y)|y=x}与集合B={(x,y)|x=a+,a∈R},若A∩B的元素只有一个,则实数a的取值范围是()A.a=±B.﹣1<a<1或a=±C.a=或﹣1≤a<1 D.﹣1<a≤1或a=﹣考点:交集及其运算;元素与集合关系的判断.专题:集合.分析:利用数形结合求出B对应的图象,结合直线和圆的位置关系,即可得到结论.解答:解:由x=a+,得(x﹣a)2+y2=1,(x≥a),即集合B表示圆心在(a,0),半径为1的圆的右半部分,由图象知当直线y=x经过点A(a,1)时,直线和半圆有一个交点,此时a=1,当直线y=x经过点B(a,﹣1)时,直线和半圆有2个交点,此时a=﹣1,当直线和半圆相切时,圆心(a,0)到直线y=x的距离d=,交点a=(舍)或a=﹣,若A∩B的元素只有一个,则a=﹣或﹣1<a≤1,故选:D.点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.二、填空题:(本大题共4小题,每小题4分,共16分.将答案填在答题卡的相应位置上.)13.(4分)若直线y=3x+b过圆x2+y2+2x﹣4y=0的圆心,则b=5.考点:直线与圆的位置关系.专题:直线与圆.分析:把圆的方程化为标准形式,可得它的圆心,再根据直线y=3x+b过圆x2+y2+2x﹣4y=0的圆心,求出b的值.解答:解:圆x2+y2+2x﹣4y=0 即圆(x+1)2+(y﹣2)2 =5,它的圆心为(﹣1,2),再根据直线y=3x+b过圆x2+y2+2x﹣4y=0的圆心,可得2=﹣3+b,求得b=5,故答案为:5.点评:本题主要考查圆的标准方程,直线和圆的位置关系,属于基础题.14.(4分)已知圆锥的轴截面是一个边长为2的正三角形,则圆锥的侧面积等于2π.考点:旋转体(圆柱、圆锥、圆台).专题:计算题.分析:易得圆锥的底面半径及母线长,那么圆锥的侧面积=底面周长×母线长×.解答:解:∵圆锥的轴截面是一个边长为2的等边三角形,∴底面半径=1,底面周长=2π,∴圆锥的侧面积=×2π×2=2π,故答案为:2π.点评:本题利用了圆的周长公式和扇形面积公式、圆锥的轴截面等基础知识,考查运算求解能力、化归与转化思想.属于基础题.15.(4分)在直角三角形ABC中,点D是斜边AB的中点,点P为线段CD的中点,则=10.考点:向量在几何中的应用.专题:平面向量及应用.分析:建立坐标系,利用坐标法,确定A,B,D,P的坐标,求出相应的距离,即可得到结论.解答:解:建立如图所示的平面直角坐标系,设|CA|=a,|CB|=b,则A(a,0),B(0,b)∵点D是斜边AB的中点,∴,∵点P为线段CD的中点,∴P∴===∴|PA|2+|PB|2==10()=10|PC|2∴=10.故答案为:10点评:本题考查坐标法,考查距离公式的运用,考查学生的计算能力,属于中档题.16.(4分)如图是一几何体的平面展开图,其中ABCD为正方形,E,F分别为PA,PD的中点.在此几何体中,给出下面四个结论:①B,E,F,C四点共面;②直线BF与AE异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD;.⑤折线B→E→F→C是从B点出发,绕过三角形PAD面,到达点C的一条最短路径.其中正确的有①②③.(请写出所有符合条件的序号)考点:棱锥的结构特征;空间中直线与直线之间的位置关系.专题:空间位置关系与距离;空间角.分析:首先可根据几何体的平面展开图画出其直观图,然后根据中位线的性质,两条平行直线可确定一个平面,异面直线的概念,线面平行的判定定理,二面角的平面角的定义及求法,即可判断每个结论的正误,而对于结论⑤,可画出该几何体沿底面正方形的边,及侧棱PD 剪开后所得的平面展开图,由该展开图即可求出从B点出发,绕过平面PAD,到达点C的最短距离,从而判断出该结论的正误.解答:解:根据几何体的平面展开图,画出它的直观图如下:①根据已知,EF∥AD∥BC;∴EF∥BC;∴B,E,F,C四点共面;∴该结论正确;②由图可看出BF和AE异面;∴该结论正确;③由①EF∥BC,EF⊄平面PBC,BC⊂平面PBC;∴EF∥平面PBC;∴该结论正确;④分别取AD,EF,BC的中点G,H,M,并连接GH,HM,MG,则GH⊥EF,HM⊥EF;而EF是平面BCE和平面PAD的交线;∴∠GHM为平面BCE与平面PAD形成的二面角的平面角;若设该几何体的侧棱长为2,则:GH=,HM=,MG=2;显然GH2+HM2≠MG2;∴∠GHM≠90°;∴平面BCE与平面PAD不垂直;∴该结论错误;⑤把该正四棱锥沿底面各边及侧棱PD剪开,得到的展开图如下:BH⊥PA,∴B到侧棱PA的最短距离为BE,BE=;过E作EN⊥PD,则EN是点E到PD的最短距离,且EN=,NP=;而N到C的最短距离便是线段NC的长,NC=;∴从B点出发,绕过PAD面到达C点的最短距离为;而BE+EF+FC=;∴该结论错误;综上得正确的结论为①②③.故答案为:①②③.点评:考查中位线的性质,两平行直线可确定一个平面,能根据几何体的平面展开图画出它的直观图,线面平行的判定定理,以及二面角的平面角的概念及求法,将立体图形转变成平面图形解题的方法.三、解答题(本大题共6小题,共74分.解答应写出文字说明、演算步骤或推证过程)17.(12分)已知直线l:kx﹣y+1﹣2k=0(k∈R).(1)证明:直线l过定点;(2)若直线l交x轴正半轴于点A,交y轴正半轴于点B,O为坐标原点,且|OA|=|OB|,求k的值.考点:恒过定点的直线.专题:计算题;直线与圆.分析:(1)设直线过定点(x0,y0),则kx0﹣y0+1﹣2k=0对任意k∈R恒成立,即(x0﹣2)k﹣y0+1=0恒成立,即可证明直线l过定点;(2)求出直线l在y轴上的截距为1﹣2k,在x轴上的截距为2﹣,利用|OA|=|OB|,即可求k的值.解答:(1)证明:设直线过定点(x0,y0),则kx0﹣y0+1﹣2k=0对任意k∈R恒成立,即(x0﹣2)k﹣y0+1=0恒成立,∴x0﹣2=0,﹣y0+1=0,解得x0=2,y0=1,故直线l总过定点(2,1).…(6分)(2)解:因直线l的方程为y=k x﹣2k+1,则直线l在y轴上的截距为1﹣2k,在x轴上的截距为2﹣,依题意:1﹣2k=2﹣>0解得k=﹣1 或k=(经检验,不合题意)所以所求k=﹣1 …(12分)点评:本题考查恒过定点的直线,考查直线的一般式方程,考查学生分析解决问题的能力,属于中档题.18.(12分)有100件规格相同的铁件(铁的密度是7.8g/cm3),该铁件的三视图如图所示,其中正视图,侧视图均是由三角形与半圆构成,俯视图由圆与内接三角形构成(图中单位cm).(1)指出该几何体的形状特征;(2)根据图中的数据,求出此几何体的体积;(3)问这100件铁件的质量大约有多重(π取3.1,取1.4)?考点:由三视图求面积、体积;简单空间图形的三视图.专题:空间位置关系与距离.分析:(1)由三视图可知,该几何体是个组合体;上部分是个正三棱锥,其三条侧棱两两垂直;下部分为一个半球;(2)分别求出棱锥的体积和半球的体积,相加可得答案;(3)计算出这100件铁件的体积和,乘以密度后可得质量.解答:解:(1)由三视图可知,该几何体是个组合体;上部分是个正三棱锥,其三条侧棱两两垂直;下部分为一个半球,并且正三棱锥的一个侧面与半球的底面相切.…(3分)(2)由图可知:…(5分)球半径…(6分)…(8分)所以该几何体体积V=…(9分)(3)这100件铁件的质量m:…(11分)答:这批铁件的质量超过694g.…(12分)点评:本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.19.(12分)已知点M(2,0),两条直线l1:2x+y﹣3=0与l2:3x﹣y+6=0,直线l经过点M,并且与两条直线l1•l2分别相交于A(x1,y1)•B(x2,y2)两点,若A与B重合,求直线l 的方程,若x1+x2=0,求直线l的方程.考点:待定系数法求直线方程.专题:直线与圆.分析:(1)若A与B重合,可得直线过l1•l2的交点N的坐标,可得方程;(2)①直线l过点M且斜率不存在时,不满足x1+x2=0;②直线l过点M且斜率存在时,设其方程为y=k(x﹣2),分别解方程组可得x1和x2,由x1+x2=0可得k的方程,解方程可得k值,可得直线方程.解答:解:(1)若A与B重合,则直线过l1•l2的交点N,联立2x+y﹣3=0与3x﹣y+6=0可解得x=且y=,∴直线过点M(2,0)和N(,),∴直线的斜率k MN==,∴直线的方程为y﹣0=(x﹣2),即21x+13y﹣42=0;(2)①直线l过点M且斜率不存在时,不满足x1+x2=0;②直线l过点M且斜率存在时,设其方程为y=k(x﹣2),联立y=k(x﹣2)和2x+y﹣3=0可解得x1=(k≠﹣2),联立y=k(x﹣2)和3x﹣y+6=0可解得x2=(k≠3),∵x1+x2=0,∴+=0,解得k=或k=﹣1,可得方程为x+y﹣2=0或3x+4y﹣6=0;综合①②可得直线的方程为:21x+13y﹣42=0或x+y﹣2=0或3x+4y﹣6=0点评:本题考查待定系数法求直线的方程,涉及分类讨论的思想,属中档题.20.(12分)如图,四棱锥P﹣ABCD中,底面ABCD是正方形,O是正方形ABCD的中心,PO⊥底面ABCD,E是PC的中点.求证:(Ⅰ)PA∥平面BDE;(Ⅱ)平面PAC⊥平面BDE.考点:直线与平面平行的判定;平面与平面垂直的判定.专题:空间角.分析:对(I),通过作平行线的方法,由线线平行来证线面平行.对(II),只需证明平面BDE内的一条直线BD垂直于平面PAC内的两条相交直线即可.解答:证明:(Ⅰ)连接OE.∵O是AC的中点,E是PC的中点,∴OE∥AP,又∵OE⊂平面BDE,PA⊄平面BDE,∴PA∥平面BDE.(Ⅱ)∵PO⊥底面ABCD,PO⊥BD,又∵AC⊥BD,且AC∩PO=O,∴BD⊥平面PAC.∵BD⊂平面BDE,∴平面PAC⊥平面BDE.点评:本题考查线面平行的判定与面面垂直的判定.证明线面平行常有两种思路:一是线线平行⇒线面平行;二是面面平行⇒线面平行.证明面面垂直的常用方法是:线面垂直⇒面面垂直.21.(12分)如图,已知正三角形ABC的边长为6,将△ABC沿BC边上的高线AO折起,使BC=3,得到三棱锥A﹣BOC.动点D在边AB上.(1)求证:OC⊥平面AOB;(2)当点D为AB的中点时,求异面直线AO、CD所成角的正切值;(3)求当直线CD与平面AOB所成角最大时的正切值.考点:直线与平面所成的角;异面直线及其所成的角;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;空间向量及应用.分析:(1)对比折叠前后便可得出,AO⊥平面BOC,从而OC⊥AO,并且可说明△BOC 为直角三角形,OC⊥OD,从而得到OC⊥平面AOB;(2)根据上面可分别以OC,OB,OA三直线为x,y,z轴,建立空间直角坐标系,从而求出向量,的坐标.设异面直线AO、CD所成角为θ,由cos即可求出cosθ,再求出sinθ,从而求出tanθ;(3)根据条件并结合图形可设D(),并且说明是平面AOB的法向量,设直线CD与平面AOB所成角为α,从而根据sin即可求得α最大时sinα值,从而求出cosα,tanα.解答:解:(1)证明:根据条件,AO⊥OB,AO⊥OC,OB∩OC=O;∴AO⊥底面BCO,OC⊂平面BCO;∴AO⊥OC,即OC⊥AO;又OB=OC=3,BC=3;∴OB2+OC2=BC2;∴OC⊥OB,AO∩OB=O;∴OC⊥平面AOB;∴OC,OB,OA三直线两两垂直,分别以这三直线为x,y,z轴,建立如图所示空间直角坐标系,则:O(0,0,0),A(0,0,3),B(0,3,0),C(3,0,0);D为AB中点,∴D(0,);∴,;设异面直线AO,CD所成角为θ,则cosθ=|cos|=;∴,tan;即异面直线AO、CD所成角的正切值为;(3)由(1)知,为平面AOB的法向量,设直线CD与平面AOB所成角为α,D(0,),(),则:sin==;∴时,sinα取最大值,此时α最大;∴此时cosα=,tanα=;∴当直线CD与平面AOB所成角最大时的正切值为.点评:考查对折叠前后图形的认识,线面垂直的判定,线面垂直的性质,以及通过建立空间直角坐标系,利用空间向量求线线角及线面角的方法,平面法向量的概念,直线和平面所成角与直线的方向向量和平面法向量夹角的关系,以及清楚异面直线所成角和线面角的范围.22.(14分)已知圆C:x2+y2﹣2x+4my+4m2=0,圆C1:x2+y2=25,以及直线l:3x﹣4y﹣15=0.(1)求圆C1:x2+y2=25被直线l截得的弦长;(2)当m为何值时,圆C与圆C1的公共弦平行于直线l;(3)是否存在m,使得圆C被直线l所截的弦AB中点到点P(2,0)距离等于弦AB长度的一半?若存在,求圆C的方程;若不存在,请说明理由.考点:相交弦所在直线的方程;圆与圆的位置关系及其判定.专题:直线与圆.分析:(1)根据直线和圆相交的弦长公式即可求圆C1:x2+y2=25被直线l截得的弦长;(2)求出两圆的公共弦结合直线平行的条件即可求出直线l;(3)根据两点间的距离公式结合弦长关系即可得到结论.解答:解:(1)因为圆的圆心O(0,0),半径r=5,所以,圆心O到直线l:3x﹣4y﹣15=0的距离d:,由勾股定理可知,圆被直线l截得的弦长为.…(4分)(2)圆C与圆C1的公共弦方程为2x﹣4my﹣4m2﹣25=0,因为该公共弦平行于直线3x﹣4y﹣15=0,则≠,解得:m=…(7分)经检验m=符合题意,故所求m=;…(8分)(3)假设这样实数m存在.设弦AB中点为M,由已知得|AB|=2|PM|,即|AM|=|BM|=|PM|所以点P(2,0)在以弦AB为直径的圆上.…(10分)设以弦AB为直径的圆方程为:x2+y2﹣2x+4my+4m2+λ(3x﹣4y﹣15)=0,则消去λ得:100m2﹣144m+216=0,25m2﹣36m+54=0因为△=362﹣4×25×54=36(36﹣25×6)<0所以方程25m2﹣36m+54=0无实数根,所以,假设不成立,即这样的圆不存在.…(14分)点评:本题主要考查圆与圆的位置关系的应用,以及直线和圆相交的弦长公式的计算,考查学生的计算能力.。