辽宁高考数学试题及答案经典(理科)
普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)

2011年普通高等学校招生全国统一考试数学理试题(辽宁卷,解析版)注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效. 3. 回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4. 考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1) a 为正实数,i 为虚数单位,2a ii+=,则a=( )(A )2 (B (D)1(3)已知F 是抛物线y 2=x 的焦点,A,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为( ) (A)34 (B) 1 (C)54 (D)74答案: C解析:设A 、B 的横坐标分别是m 、n ,由抛物线定义,得AF BF 3+==m+14+n+14= m+n+12=3,故m+n=52,524m n +=,故线段AB 的中点到y 轴的距离为54.(4)△ABC 的三个内角A 、B 、C 所对的边分别为a ,b ,c ,asin AsinB+bcos 2则ba=( )(A)(6)执行右面的程序框图,如果输入的n 是4,则输出的P 是(A) 8 (B) 5 (C) 3 (D) 2答案:C解析:第一次执行结果:p=1,s=1,t=1,k=2; 第二次执行结果:p=2,s=1,t=2,k=3;第三次执行结果:p=3,s=2,t=3,k=4;结束循环,输出p 的值4.(7)设sin 1+=43πθ(),则sin 2θ=( ) (A) 79- (B) 19- (C) 19 (D)79答案: A解析:217sin 2cos 22sin 121.2499ππθθθ⎛⎫⎛⎫=-+=+-=⨯-=- ⎪ ⎪⎝⎭⎝⎭(8)如图,四棱锥S-ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是( )(A) AC ⊥SB (B) AB ∥平面SCD(C) SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 (D)AB 与SC 所成的角等于DC 与SA 所成的角 答案: D解析:对于A:因为SD ⊥平面ABCD ,所以DS ⊥AC.因为四边形ABCD 为正方形,所以AC ⊥BD ,故AC ⊥平面ABD,因为SB ⊂平面ABD,所以AC ⊥SB ,正确.对于B :因为AB//CD,所以AB//平面SCD. 对于C:设ACBD O =.因为AC ⊥平面ABD ,所以SA 和SC 在平面SBD 内的射影为SO ,则∠ASO 和∠CSO 就是SA 与平面SBD 所成的角和SC 与平面SBD 所成的角,二者相等,正确.故选D.(9)设函数f (x )=⎩⎨⎧≤,>,,,1x x log -11x 22x -1则满足f (x )≤2的x 的取值范围是( )(A )[-1,2] (B )[0,2] (C )[1,+∞) (D )[0,+∞)(11)函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ’(x)>2,则f (x )>2x+4的解集为( )(A )(-1,1) (B )(-1,+∞) (C )(-∞,-1) (D )(-∞,+∞) 答案: B解析:设g(x)= f(x)-(2x+4), g ’(x)= f ’(x)-2.因为对任意x R ∈,f ’(x )>2,所以对任意x R ∈,g ’(x)>0,则函数g(x)在R 上单调递增.又因为g(-1)= f(-1)-(-2+4)=0,故g(x)>0,即f(x)>2x+4的解集为(-1,+∞).(12)已知球的直径SC=4,A,B 是该球球面上的两点,AB=3,︒=∠=∠30B SC ASC ,则棱锥S-ABC 的体积为( )(A )33 (B )32 (C )3 (D )1第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.(13)已知点(2,3)在双曲线C :1by -a x 2222=(a >0,b >0)上,C 的焦距为4,则它的离心率为_____________. 答案: 2解析:由题意得,24,2c c ==,22491a b-=,224a b +=,解得a=1,故离心率为2. (14) 调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:^y =0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_______万元.(16)已知函数f (x )=Atan (ωx+ϕ)(ω>0,2π<ω),y=f (x )的部分图像如下图,则f (24π)=____________.解析:函数f(x)的周期是32882πππ⎛⎫-= ⎪⎝⎭,故22πωπ==,由tan 1,3tan 20,8A A ϕπϕ=⎧⎪⎨⎛⎫⋅+= ⎪⎪⎝⎭⎩得,14A πϕ==.所以()tan 24f x x π⎛⎫=+ ⎪⎝⎭,故tan 224244f πππ⎛⎫⎛⎫=⋅+= ⎪ ⎪⎝⎭⎝⎭三、解答题:解答应写文字说明,证明过程或演算步骤. (17)(本小题满分12分) 已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.(18)(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA=AB=12PD.(I )证明:平面PQC ⊥平面DCQ(II )求二面角Q-BP-C 的余弦值.即PQ DQ ⊥,PQ DC ⊥.故PQ ⊥平面DCQ , 又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ.(II )依题意得B(1,0,1),(1,1,0),(1,2,1)CB BP ==--,设n =(x,y,z)是平面PBC 的法向量,则0,0.n CB n BP ⎧⋅=⎪⎨⋅=⎪⎩即0,20.x x y z =⎧⎨-+-=⎩因此,取n =(0,-1,-2).设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取m =(1,1,1),所以cos ,5m n <>=-, 故二面角Q-BP-C 的余弦值为19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据x 1,x 2,…,x a 的样本方差()()()2222111n s x x x x x x n ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦,其中x 为样本平均数.解析:(I )X 可能的取值为0,1,2,3,4,且()48110,70P X C === ()13444881,35C C P X C === ()224448182,35C C P X C === ()31444883,35C C P X C ===()48110,70P X C ===即X 的分布列为X 的数学期望是:()1818810123427035353570E X =⨯+⨯+⨯+⨯+⨯=. (II )品种甲的每公顷产量的样本平均数和样本方差分别是:()14033973904043884004124064008x =+++++++=甲, ()()()()22222222213310412012657.258s =+-+-++-+++=甲. 品种乙的每公顷产量的样本平均数和样本方差分别是:()14194034124184084234004134128x =+++++++=乙, ()()()()22222222217906411-121568s =+-+++-+++=乙, 由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. (20)(本小题满分12分)如图,已知椭圆C1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C2的短轴为MN ,且C1,C2的离心率都为e ,直线l ⊥MN ,l 与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D.(I )设12e =,求BC 与AD 的比值;(II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由解析:(I )因为C 1,C 2的离心率相同,故依题意可设()22222122242:1,:1,0x y b y x C C a b a b a a+=+=>>. 设直线:(||)l x t t a =<分别和C 1,C 2联立,求得,A t B t ⎛⎛ ⎝⎝. 当12e =时,2b a =,分别用y A ,y B 表示A 、B 的纵坐标,可知 |BC|:AD|=222||3.2||4B A y b y a == (II )t=0时的l 不符合题意,t ≠0时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即a b t t a=-, 解得222221ab e t a a b e-=-=-⋅-. 因为||t a <,又01e <<,所以2211e e-<,解得12e <<.所以当02e <≤时,不存在直线l ,使得BO//AN ;当12e <<时,存在直线l 使得BO//AN. (21)(本小题满分12分)已知函数f (x )=lnx-ax 2+(2-a )x.(I)讨论f (x )的单调性;(II )设a >0,证明:当0<x <1a 时,f (1a +x )>f (1a-x ); (III )若函数y=f (x )的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f ’( x 0)<0.解析:(I)f(x)的定义域为(0,+∞),()()()()2111'22x ax f x ax a x x+-=-+-=-, ①若a ≤0,()'0f x >,所以f(x)在(0,+∞)单调增加;②若a>0,则由()'0f x =得1x a =,且当10,x a ⎛⎫∈ ⎪⎝⎭时,()'0f x >,当1x a >时,()'0f x <,所以f(x)在10,a ⎛⎫ ⎪⎝⎭单调增加,在1,a ⎛⎫+∞ ⎪⎝⎭单调减少. (II )设()11g x f x f x a a ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭,则()()()ln 1ln 12g x ax ax ax =+---, ()32222'2111a a a x g x a ax ax a x=+-=+--, 当10x a<<时,()'0,g x >而()00g =,所以()0g x >. 故当10x a <<时, 11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑.(22)(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC=ED.(I)证明:CD//AB;(II)延长CD到F,延长DC到G,使得EF=EG,证明:A,B,G,F四点共圆.(23)(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy中,曲线C1的参数方程为cos,sin,xyϕϕ=⎧⎨=⎩(ϕ为参数)曲线C2的参数方程为cos,sin,x ay bϕϕ=⎧⎨=⎩(0a b>>,ϕ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II)设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=-4π时,l 与C 1, C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积. 解析:(I )C 1为圆,C 2为椭圆.当α=0时,射线l 与C 1,C 2交点的直角坐标分别是(1,0),(a,0),因为这两点间的距离为2,所以a=3. 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别是(0,1),(0,b),因为这两点重合,所以b=1.(II )C 1,C 2的普通方程分别为22221,19x x y y +=+=,当4πα=时,射线l 与C 1交点A 1的横坐标是2x =,与C 2交点B 1的横坐标是'10x =; 当4πα=-时,射线l 与C 1 、C 2的两个交点A 2 、B 2的分别与A 1、B 1 关于x 轴对称,因此,四边形与A 1 A 2B 2B 1 为梯形.故四边形与A 1 A 2B 2B 1 的面积为()()2'2'325x x x x +-=.(24)(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x-2|-|x-5|.(I )证明:-3≤f (x )≤3;(II )求不等式f(x )≥x 2-8x+15的解集.。
辽宁高考数学理科卷解析

一、选择题(每小题5分,共60分). 1.已知集合{}{}35,55M x x N x x =-<=-<<,则MN =( )A. {}55x x -<< B. {}35x x -<< C. {}55x x-< D. {}35x x -<【测量目标】集合的基本运算.【考查方式】给出两个集合运用集合间的交集运算求解交集表示的范围. 【难易程度】容易 【参考答案】B【试题解析】直接利用交集性质求解,或者画出数轴求解. 2.已知复数12i z =-,那么1z=( )A.55+ B.i 55- C.12i 55+ D.12i 55- 【测量目标】复数的基本运算、共轭复数.【考查方式】给出复数的共轭复数的分数形式求其值. 【难易程度】容易 【参考答案】D 【试题解析】21112i 12i 12i 12i (12i)(12i)1255z --====-++-+. 3.平面向量a 与b 的夹角为60︒,(2,0)=a ,1=b 则2+=a b( )【测量目标】平面向量的数量积运算.【考查方式】给出平面向量之间的夹角及一个向量的坐标表示求模. 【难易程度】容易 【参考答案】B【试题解析】由已知2222,2444421cos60412︒=+=++=+⨯⨯⨯+=a a b a a b b ,∴2+=a b 4. 已知圆C 与直线0x y -=及40x y --=都相切,圆心在直线0x y +=上,则圆C 的方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C.22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=【测量目标】直线与圆的位置关系,圆的方程.【考查方式】已知圆与一条已知直线之间的位置关系和圆心所在的直线方程求圆的一般方程. 【难易程度】容易 【参考答案】B【试题解析】圆心在0x y +=上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可.5.从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有 ( ) A.70种 B. 80种 C. 100种 D.140种 【测量目标】排列组合.【考查方式】给出实际问题运用排列组合的性质运算求解答案. 【难易程度】容易 【参考答案】A【试题解析】直接法:一男两女,有1254C C =5×6=30种,两男一女,有2154C C =10×4=40种,共计70种.间接法:任意选取39C =84种,其中都是男医生有35C =10种,都是女医生有14C =4种,于是符合条件的有84-10-4=70种. 6.设等比数列{}n a 的前n 项和为n S ,若633S S =,则69SS = ( )A. 2 B. 73C. 83D.3【测量目标】等比数列的前n 项和,等比数列的性质.【考查方式】给出等比数列的前n 项和的比的形式求解其值.【难易程度】容易 【参考答案】B【试题解析】设公比为q ,则3336333(1)132S q S q q S S +==+=⇒=.于是63693112471123S q q S q ++++===++. 7.曲线2xy x =-在点(1,1)-处的切线方程为( ) A. 2y x -= B.32y x =-+ C. 23y x =- D. 21y x =-+ 【测量目标】函数的导数,切线方程.【考查方式】给出一个曲线的解析式求其在某个定点的切线方程. 【难易程度】中等 【参考答案】D【试题解析】2222(2)(2)x x y x x ---'==--,当1x =时切线斜率为2k =-. 8.已知函数()cos()f x A x ωϕ=+的图象如图所示,π2()23f =-,则(0)f = ( )第8题图A.23-B.23C.12-D. 12【测量目标】函数sin()y A x ωϕ=+的图像与性质.【考查方式】给出函数sin()y A x ωϕ=+的图像,运用其性质求解未知数. 【难易程度】中等 【参考答案】B【试题解析】由图象可得最小正周期为2π3于是2π(0)()3f f =,注意到2π3与π2关于7π12对称所以2ππ2()()323f f =-=. 9.已知偶函数()f x 在区间[0,)+∞单调增加,则满足1(21)()3f x f -<的x 取值范围是( )A. 12(,)33B.12,33⎡⎫⎪⎢⎣⎭ C. 12(,)23 D. 12,23⎡⎫⎪⎢⎣⎭【测量目标】利用函数的单调性求参数范围.【考查方式】已知函数在某个区间的单调性求未知参数的取值范围. 【难易程度】中等 【参考答案】A【试题解析】由于()f x 是偶函数,故()()f x f x =∴得1(21)()3f x f -<,再根据()f x 的单调性得1213x -<解得1233x <<. 10.某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,... N a ,其中收入记为正数,支出记为负数.该店用下边的程序框图计算月总收入S 和月净盈利V ,那么在图中空白的判断框和处理框中,应分别填入下列四个选项中的( )第10题图A.0,A V S T >=-B.0,A V S T <=-C.0,A V S T >=+D.0,A V S T <=+【测量目标】循环结构的程序框图.【考查方式】已知某个循环结构的程序框图,给出输出结果逆推出原程序框图中的残缺部分. 【难易程度】容易 【参考答案】C 【试题解析】月总收入为S,因此0A >时归入S ,判断框内填0A >支出T 为负数,因此月盈利V S T =+.11.正六棱锥P -ABCDEF 中,G 为PB 的中点,则三棱锥D -GAC 与三棱锥 P -GAC 体积之比为( )A. 1:1B. 1:2C. 2:1D. 3:2 【测量目标】锥的体积.【考查方式】求解已知几何体中部分几何体的体积之比. 【难易程度】中等 【参考答案】C【试题解析】由于G 是PB 的中点,故P -GAC 的体积等于B -GAC 的体积. 在底面正六边形ABCDEF 中3tan 303BH AB AB ︒==而3BD AB =故DH =2BH 于是22D GAC B GAC P GAC V V V ---==第11题图12.若1x 满足225xx +=, 2x 满足222log (1)5x x +-=, 12x x +=( )A.52 B.3 C. 72D.4 【测量目标】对数函数、指数函数的性质.【考查方式】给出满足对数函数、指数函数的未知数,运用对数函数、指数函数的性质求解未知数之和.【难易程度】中等 【参考答案】C【试题解析】由题意225xx += ①222log (1)5x x +-= ②(步骤1)所以112252,log (52)xx x x =-=-即12122log (52)x x =-(步骤2)令1272x t =-,代入上式得22722log (22)22log (1)t t t -=-=+-2522log (1)t t ∴-=-与②式比较得2t x = 于是12272x x =-(步骤3)1272x x ∴+=,故选C.(步骤4) 13.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分 层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命 的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为 980h ,1020h ,1032h ,则抽取的100件产品的使用寿命的平均值为_________h. 【测量目标】分层抽样.【考查方式】给出实际问题运用分层抽样的方法求解答案. 【难易程度】容易 【参考答案】1013 【试题解析】9801102021032110134x ⨯+⨯+⨯==.14.等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = . 【测量目标】数列的通项公式{}n a 与前n 项和n S 的关系.【考查方式】已知数列的通项与其前n 项和之间的关系求解数列的未知项.【难易程度】中等 【参考答案】13【试题解析】∵11(1)2n S na n n d =+-∴5131510,33S a d S a d =+=+. ∴5311114653060(1515)154515(3)15S S a d a d a d a d a -=+-+=+=+=. ∵53655,S S -=故413a =. 15.设某几何体的三视图如下(尺寸的长度单位为m ).则该几何体的体积为 3m .第15题图【测量目标】三视图,求几何体的体积【考查方式】给出几何体的三视图,求其体积. 【难易程度】容易 【参考答案】4【试题解析】这是一个三棱锥,高为2,底面三角形一边为4,这边上的高为3, 体积等于16×2×4×3=4.16.已知F 是双曲线221412x y -=的左焦点,(1,4),A P 是双曲线右支上的动点,则PF PA +的最小值为 .【测量目标】双曲线的简单几何性质.【考查方式】给出双曲线的标准方程,运用其简单的几何性质求两条线段模的最值. 【难易程度】中等 【参考答案】9【试题解析】注意到P 点在双曲线的两只之间,且双曲线右焦点为(4,0)F ', 于是由双曲线性质24PF PF a '-==而5PA PF AF ''+=两式相加得9PF PA+,当且仅当,,A P F '三点共线时等号成立.17.(本小题满分12分)如图,A,B,C,D 都在同一个与水平面垂直的平面内,B ,D 为两岛上的两座灯塔的塔顶.测量船于水面A 处测得B 点和D 点的仰角分别为75︒,30︒,于水面C 处测得B 点和D 点的仰角均为60︒,0.1AC = km.试探究图中B ,D 间距离与另外哪两点间距离相等,然后求B ,D 的距离(计算结果精确到0.01km ,2≈1.414, 6≈2.44)第17题图【测量目标】正弦定理的实际应用.【考查方式】运用正弦定理在实际问题中构建三角形求解实际问题. 【难易程度】中等【试题解析】在ABC △中,30,6030DAC ADC DAC ︒︒︒∠=∠=-∠=.(步骤1)所以0.1CD AC == 又180606060BCD ︒︒︒︒∠=--=,(步骤2)故CB 是CAD △底边AD 的中垂线,所以BD BA =,(步骤3)在ABC △中,sin sin AB ACBCA ABC=∠∠即sin 60326sin1520AC AB ︒︒+==(步骤4)因此,3260.33km 20BD +=≈.故B ,D 的距离约为0.33km. (步骤5)18.(本小题满分12分)如图,已知两个正方行ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点 .(1)若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正值弦;(2)用反证法证明:直线ME 与 BN 是两条异面直线.第18题图【测量目标】面面垂直,异面直线之间的关系.【考查方式】给出立体几何体,由已知知识点求解面面垂直与异面直线之间的关系. 【难易程度】较难【试题解析】(1)解法一:取CD 的中点G ,连接MG ,NG .设正方形ABCD ,DCEF 的边长为2,则MG ⊥CD ,MG =2,NG 2=(步骤1)因为平面ABCD ⊥平面DCED ,所以MG ⊥平面DCEF ,可得∠MNG 是MN 与平面DCEF 所成的角. (步骤2)因为MN 6=,所以6sin 3MNG ∠=为MN 与平面DCEF 所成角的正弦值.(步骤3) 解法二:设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为,,x y z 轴正半轴建立空间直角坐标系如图. (步骤1)则M (1,0,2),N (0,1,0),可得(1,1,2)MN =-(步骤2) 又(0,2,2)DA =为平面DCEF 的法向量,可得6cos(,)3MN DA MN DA MN DA==-· 所以MN 与平面DCEF 所成角的正弦值为6cos ,3MN DA =(步骤3)第18题(1)图(2)假设直线ME 与BN 共面,则AB ⊂平面MBEN ,且平面MBEN 与平面DCEF 交于EN 由已知,两正方形不共面,故AB ⊄平面DCEF .又AB //CD ,所以AB //平面DCEF .而EN 为平面MBEN 与平面DCEF 的交线,所以AB //EN .又AB //CD //EF ,所以EN //EF ,这与ENEF =E 矛盾,故假设不成立.所以ME 与BN 不共面,它们是异面直线. 19.(本小题满分12分)某人向一目射击4次,每次击中目标的概率为13.该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6.击中目标时,击中任何一部分的概率与其面积成正比.(1)设X 表示目标被击中的次数,求X 的分布列;(2)若目标被击中2次,A 表示事件“第一部分至少被击中1次或第二部分被击中2次”,求()P A【测量目标】数学期望,分布列.【考查方式】运用数学期望的相关知识求解实际问题. 【难易程度】中等【试题解析】(1)依题意X 的分列为X 0 1 2 3 4P1681 3281 2481 881 181(2)设A 1表示事件“第一次击中目标时,击中第i 部分”,1,2i =.B 1表示事件“第二次击中目标时,击中第i 部分”,1,2i =依题意知P (A 1)=P (B 1)=0.1,P (A 2)=P (B 2)=0.3,(步骤1)11111122A A B A B A B A B =,(步骤2)所求的概率为11111122()()()()P A P A B P A B PA B P A B =+++() =11111122()()())()()()P A B P A P B PA PB P A P B +++( =0.10.90.90.10.10.10.30.30.28⨯+⨯+⨯+⨯= . (步骤3)20.(本小题满分12分)已知,椭圆C 过点A 3(1,)2,两个焦点为(1,0),(1,0)-.(1) 求椭圆C 的方程;(2) E,F 是椭圆C 上的两个动点,如果直线AE 的斜率与AF 的斜率互为相反数,证明直线EF 的斜率为定值,并求出这个定值.【测量目标】椭圆的标准方程,直线与椭圆的位置关系.【考查方式】已知椭圆的几个参数求解椭圆的标准方程,判断直线与椭圆的位置关系. 【难易程度】较难【试题解析】(1)由题意,c =1,可设椭圆方程为2219114b b+=+,(步骤1)解得23b =,234b =-(舍去)所以椭圆方程为22143x y +=. (步骤2) (2)设直线AE 方程为:3(1)2y k x =-+,代入22143x y +=得 2223(34)4(32)4()1202k x k k x k ++-+--=(步骤3)设(,)E E E x y ,(,)F F F x y ,因为点3(1,)2A 在椭圆上,所以2234()12234F k x k--=+,32E E y kx k =+-(步骤4) 又直线AF 的斜率与AE 的斜率互为相反数,在上式中以k -代k ,可得2234()12234F k x k +-=+32E Ey kx k =-++(步骤5)所以直线EF 的斜率()212F E F E EF F E F E y y k x x k k x x x x --++===--即直线EF 的斜率为定值,其值为12. (步骤6) 21.(本小题满分12分)已知函数21()(1)ln ,12f x x ax a x a =-+->. (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有1212()()1f x f x x x ->--.【测量目标】函数的单调性.【考查方式】已知函数解析式求解函数的单调性,已知参数范围求解区间内函数的单调性. 【难易程度】较难【试题解析】(1)()f x 的定义域为(0,)+∞.211()a x ax a f x x a x x--+-'=-+= (1)(1)x x a x-+-=(步骤1)(i )若11a -=即2a =,则2(1)()x f x x-'=故()f x 在(0,)+∞单调增加. (步骤2)(ii)若11a -<,而1a >,故12a <<,则当(1,1)x a ∈-时,()0f x '<;(步骤3) 当(0,1)x a ∈-及(1,)x ∈+∞时,()0f x '>故()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤4)(iii)若11a ->,即2a >,同理可得()f x 在(1,1)a -单调减少,在(0,1),(1,)a -+∞单调增加. (步骤5)(2)考虑函数 ()()g x f x x =+21(1)ln 2x ax a x x =-+-+(步骤6)则211()(1)2(1)1(11)a a g x x a x a a x x--'=--+--=---(步骤7) 由于15a <<,故()0g x '>,即()g x 在(4, +∞)单调增加,从而当120x x >>时有12()()0g x g x ->,(步骤8)即1212()()0f x f x x x -+->,故1212()()1f x f x x x ->--,当120x x <<时,有12211221()()()()1f x f x f x f x x x x x --=>---.(步骤9) 22.(本小题满分10分)已知ABC △中,AB =AC , D 是ABC △外接圆劣弧AC 上的点(不与点A ,C 重合),延长BD 至E .(1)求证:AD 的延长线平分∠CDE ;(2)若∠BAC =30︒,ABC △中BC 边上的高为2+3, 求ABC △外接圆的面积.第22题图【测量目标】直线与圆的位置关系,圆的简单几何性质.【考查方式】给出圆与直线的位置关系,运用其简单几何性质求解角与线的关系.【难易程度】中等【试题解析】(1)如图,设F 为AD 延长线上一点∵A ,B ,C ,D 四点共圆,∴∠CDF=∠ABC (步骤1) 又AB =AC ∴∠ABC =∠ACB ,且∠ADB =∠ACB , ∴∠ADB =∠CDF , (步骤2)对顶角∠EDF =∠ADB , 故∠EDF =∠CDF ,即AD 的延长线平分∠CDE . (步骤3)第22题图(2)设O 为外接圆圆心,连接AO 交BC 于H ,则AH ⊥BC .连接OC , OA 由题意∠OAC =∠OCA =15︒, ∠ACB =75︒,∴∠OCH =60︒.(步骤4)设圆半径为r ,则r +23r =2+3,a 得r =2,外接圆的面积为4π.(步骤5) 23.(本小题满分10分)选修4-4 :坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为πcos()3ρθ-=1,M,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M,N 的极坐标;(2)设MN 的中点为P ,求直线OP 的极坐标方程.【测量目标】坐标系与参数方程.【考查方式】建立坐标系求解参数方程.【难易程度】中等【试题解析】(1)由πcos()13ρθ-=得13(cos )12ρθθ+=(步骤1) 从而C 的直角坐标方程为13122x y +=即32x +=(步骤2) 0θ=时,2,ρ=所以(2,0)M π2θ=时,3=3ρ所以3π()32N (步骤3) (2)M 点的直角坐标为(2,0)N 点的直角坐标为3(0,3(步骤4) 所以P 点的直角坐标为3,则P 点的极坐标为23π()6所以直线OP 的极坐标方程为π,(,)6θρ=∈-∞+∞(步骤5) 24.(本小题满分10分)设函数()|1|||f x x x a =-+-.(1)若1,a =-解不等式()3f x ; (2)如果x ∀∈R ,()2f x ,求a 的取值范围.【测量目标】不等式.【考查方式】给出函数解析式求解不等式.【难易程度】中等【试题解析】(1)当1a =-时,()11f x x x =-++.由()3f x 得113x x -++(步骤1) ○1当1x -时,不等式化为113x x---即23x -(步骤2)○2当1x >时,联立不等式组1()3x f x >⎧⎨⎩解得其解集为3+2⎛⎫∞ ⎪⎝⎭,,综上得()3f x 的解集为33,,22⎛⎫⎡⎫-∞-+∞ ⎪⎪⎢⎝⎭⎣⎭.(步骤3) (2)若1,()21a f x x ==-,不满足题设条件.○1若1a <,21,,()1,1,2(1),1x a x a f x a a x x a x -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤4) ○2若1,a >21,1,()1,1,2(1),x a x f x a x a x a x a -++⎧⎪=-<<⎨⎪-+⎩()f x 的最小值为1a -(步骤5) 所以()2x f x ∀∈R ,的充要条件是12a -,从而a 的取值范围为][13∞-+∞(-,,).(步骤6)。
2023高考辽宁(理)全解全析

2023年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A 、B 互斥,那么 球地表面积公式P(A+B)=P(A)+P(B) S=42Rπ如果事件A 、B 相互独立,那么 其中R 表示球地半径 P(A ·B)=P(A)·P(B) 球地体和只公式如果事件A 在一次试验中发生地概率是p ,那么n 次独立重复试验中事件A 恰好发生k 次地概率 V =243R π ()(1)(0,1,2,,)kkn kn n P k C P p k n -=-= 其中R 表示球地半径一、选择题1.已知集合{}30,31x M xN x x x ⎧+⎫=<=-⎨⎬-⎩⎭…,则集合{}1x x …为( )A.M NB.M NC.()R M N ðD.()R M N ð解析:C解析:本小题主要考查集合地相关运算知识。
依题{}{}31,3M x x N x x =-<<=-…,∴{|1}M N x x ⋃=<,()R M N = ð{}1.x x …2.135(21)lim(21)n n n n →∞++++-+ 等于( )A.14 B.12C.1D.2解析:B解析:本小题主要考查对数列极限地求解。
依题22135(21)1lim lim .(21)22n n n n n n n n →∞→∞++++-==++ 3.圆221x y +=与直线2y kx =+没有公共点地充要条件是( )A.(k ∈B.(,)k ∈-∞+∞C.(k ∈D.(,)k ∈-∞+∞ 解析:C解析:本小题主要考查直线和圆地位置关系。
依题圆221x y +=与直线2y kx =+没有公共点1d ⇔=>⇔(k ∈4.复数11212i i +-+-地虚部是( ) A.15i B.15 C.15i - D.15-解析:B解析:本小题主要考查复数地相关运算及虚部概念。
2023年辽宁省高考数学真题及答案解析

2023年辽宁省高考数学真题及参考答案一、选择题:本大题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在复平面内,()()13i 3i +-对应的点位于().A.第一象限B.第二象限C.第三象限D.第四象限2.设集合{}0,A a =-,{}1,2,22B a a =--,若A B ⊆,则=a ().A.2B.1C.23D.1-3.某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有().A .4515400200C C ⋅种B.2040400200C C ⋅种C .3030400200C C ⋅种D.4020400200C C ⋅种4.若()()21ln 21x f x x a x -=++为偶函数,则=a ().A.1- B.0C.12D.15.已知椭圆22:13x C y +=的左、右焦点分别为1F ,2F ,直线y x m =+与C 交于A ,B两点,若1F AB △ 面积是2F AB △ 面积的2倍,则m =().A.23B.3C.23-D.23-6.已知函数()e ln xf x a x =-在区间()1,2上单调递增,则a 的最小值为().A.2e B.eC.1e -D.2e -7.已知α为锐角,15cos 4α+=,则sin 2α=().A.358B.158- C.354- D.154-+8.记n S 为等比数列{}n a 的前n 项和,若45S =-,6221S S =,则8S =().A.120B.85C.85- D.120-二、选择题:本题共4小题,每小题5分,共20分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得5分,部分选对的得2分,有选错的得0分。
9.已知圆锥的顶点为P ,底面圆心为O ,AB 为底面直径,120APB ∠=︒,2PA =,点C 在底面圆周上,且二面角P AC O --为45°,则().A.该圆锥的体积为πB.该圆锥的侧面积为C.AC =D.PAC △的10.设O 为坐标原点,直线)1y x =-过抛物线()2:20C y px p =>的焦点,且与C 交于M ,N 两点,l 为C 的准线,则().A.2p = B.83MN =C.以MN 为直径的圆与l 相切 D.OMN 为等腰三角形11.若函数()()2ln 0b cf x a x a x x =++≠既有极大值也有极小值,则().A.0bc > B.0ab > C.280b ac +> D.0ac <12.在信道内传输0,1信号,信号的传输相互独立.发送0时,收到1的概率为(01)αα<<,收到0的概率为1α-;发送1时,收到0的概率为(01)ββ<<,收到1的概率为1β-.考虑两种传输方案:单次传输和三次传输.单次传输是指每个信号只发送1次,三次传输是指每个信号重复发送3次.收到的信号需要译码,译码规则如下:单次传输时,收到的信号即为译码;三次传输时,收到的信号中出现次数多的即为译码(例如,若依次收到1,0,1,则译码为1).A.采用单次传输方案,若依次发送1,0,1,则依次收到l ,0,1的概率为2(1)(1)αβ--B.采用三次传输方案,若发送1,则依次收到1,0,1的概率为2(1)ββ-C.采用三次传输方案,若发送1,则译码为1的概率为23(1)(1)βββ-+-D.当00.5α<<时,若发送0,则采用三次传输方案译码为0的概率大于采用单次传输方案译码为0的概率三、填空题:本大题共4小题,每小题5分,共20分。
2021年高考辽宁卷理科数学试题及解答

普通高等学校招生全国统一考试(辽宁卷)数 学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式 ()()()P A B P A P B +=+24πS R = 如果事件A B ,相互独立,那么其中R 表示球的半径 ()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(012)k kn k n n P k C p p n n -=-=,,,,一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合{12345}U =,,,,,{13}A =,,{234}B =,,,则=⋂)B C ()A (C U U ( )A .{1}B .{2}C .{24},D .{1234},,,2.若函数()y f x =的反函数图象过点(15),,则函数()y f x =的图象必过点( ) A .(11), B .(15), C .(51), D .(55),3.若向量a 与b 不共线,0≠a b ,且⎛⎫⎪⎝⎭a a c =a -b a b ,则向量a 与c 的夹角为( ) A .0B .π6C .π3D .π24.设等差数列{}n a 的前n 项和为n S ,若39S =,636S =,则789a a a ++=( )A .63B .45C .36D .275.若35ππ44θ⎛⎫∈⎪⎝⎭,,则复数(cos sin )(sin cos )i θθθθ++-在复平面内所对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限6.若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( )A .(12)--,B .(12)-,C .(12)-,D .(12),7.若m n ,是两条不同的直线,αβγ,,是三个不同的平面,则下列命题中的真命题是( ) A .若m βαβ⊂⊥,,则m α⊥ B .若m αγ=n βγ=,m n ∥,则αβ∥C .若m β⊥,m α∥,则αβ⊥D .若αγ⊥,αβ⊥,则βγ⊥8.已知变量x y ,满足约束条件20170x y x x y -+⎧⎪⎨⎪+-⎩≤,≥,≤,则y x 的取值范围是( )A .965⎛⎫ ⎪⎝⎭,B .[)965⎛⎤-∞+∞ ⎥⎝⎦,,C .(][)36-∞+∞,,D .[36],A .122B .111 C .322D .211 10.设p q ,是两个命题:21251:log (||3)0:066p x q x x ->-+>,,则p 是q 的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件11.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( )A.B .12C.D .2412.已知()f x 与()g x 是定义在R 上的连续函数,如果()f x 与()g x 仅当0x =时的函数值为0,且()()f x g x ≥,那么下列情形不可能...出现的是( ) A .0是()f x 的极大值,也是()g x 的极大值 B .0是()f x 的极小值,也是()g x 的极小值C .0是()f x 的极大值,但不是()g x 的极值D .0是()f x 的极小值,但不是()g x 的极值第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.已知函数2cos (0)()1(0)a x x f x x x ⎧=⎨-<⎩≥,在点0x =处连续,则a = .14.设椭圆2212516x y +=上一点P 到左准线的距离为10,F 是该椭圆的左焦点,若点M 满足1()2OM OP DF =+,则||OM = .15的正六棱柱的所有顶点都在一个球的面上,则此球的体积为 .16.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种(用数字作答).三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 已知函数2ππ()sin sin 2cos 662x f x x x x ωωω⎛⎫⎛⎫=++--∈ ⎪ ⎪⎝⎭⎝⎭R ,(其中0ω>)(I )求函数()f x 的值域;(II )若对任意的a ∈R ,函数()y f x =,(π]x a a ∈+,的图象与直线1y =-有且仅有两个不同的交点,试确定ω的值(不必证明),并求函数()y f x x =∈R ,的单调增区间. 18.(本小题满分12分)如图,在直三棱柱111ABC A B C -中,90ACB ∠=,AC BC a ==,D E ,分别为棱AB BC ,的中点,M 为棱1AA 上的点,二面角M DE A --为30. (I )证明:111A B C D ⊥;(II )求MA 的长,并求点C 到平面MDE 的距离.19.(本小题满分12分)某企业准备投产一批特殊型号的产品,已知该种产品的成本C 与产量q 的函数关系式为3232010(0)3q C q q q =-++> 该种产品的市场前景无法确定,有三种可能出现的情况,各种情形发生的概率及产品价格p 与产量q 的函数关系式如下表所示:市场情形 概率价格p 与产量q 的函数关系式 好 0.41643p q =- 中 0.41013p q =- 差 0.2 704p q =- 设123L L L ,,分别表示市场情形好、中差时的利润,随机变量k ξ,表示当产量为q ,而市场前景无法确定的利润.(I )分别求利润123L L L ,,与产量q 的函数关系式; (II )当产量q 确定时,求期望k E ξ;(III )试问产量q 取何值时,k E ξ取得最大值.20.(本小题满分14分)已知正三角形OAB 的三个顶点都在抛物线22y x =上,其中O 为坐标原点,设圆C 是OAB 的内接圆(点C 为圆心) (I )求圆C 的方程;(II )设圆M 的方程为22(47cos )(7cos )1x y θθ--+-=,过圆M 上任意一点P 分别作圆C 的两1A 1C1BCBAMDE条切线PE PF ,,切点为E F ,,求CE CF ,的最大值和最小值. 21.(本小题满分12分)已知数列{}n a ,{}n b 与函数()f x ,()g x ,x ∈R 满足条件:n n a b =,1()()()n n f b g b n +=∈N*.(I )若()102f x tx t t +≠≠≥,,,()2g x x =,()()f b g b ≠,lim n n a →∞存在,求x 的取值范围;(II )若函数()y f x =为R 上的增函数,1()()g x f x -=,1b =,(1)1f <,证明对任意n ∈N*,lim nn a →∞(用t 表示).22.(本小题满分12分)已知函数2222()2()21t f x x t x x x t =-++++,1()()2g x f x =.(I )证明:当t <时,()g x 在R 上是增函数;(II )对于给定的闭区间[]a b ,,试说明存在实数 k ,当t k >时,()g x 在闭区间[]a b ,上是减函数; (III )证明:3()2f x ≥.绝密★启用前2007年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)试题答案与评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数.选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,满分60分. (1)B (2)C (3)D (4)B (5)B (6)A (7)C (8)A (9)D (10)A (11)B (12)C二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. (13)-1(14)2(15)π34(16)30 三、解答题(17)本小题主要考查三角函数公式,三角函数图象和性质等基础知识,考查综合运用三角函数有关知识的能力.满分12分.(Ⅰ)解:)1(cos cos 21sin 23cos 21sin 23)(+--++=x x x x x x f ωωωωω 1)cos 21sin 23(2--=x x ωω1)6πsin(2--=x ω ···························································· 5分 由1-≤)6πsin(-x ω≤,得3-≤2)6πsin(-x ω1-≤1.可知函数)(x f 的值域为[-3,1]. ··············································· 7分(Ⅱ)解:由题设条件及三角函数图象和性质可知,)(x f y =的周期为ω又由π,>0,得π2π2=,即得.2=ω ·········································································· 9分 于是有1)2π2sin(2)(--=x x f ,再由2π2-πk ≤6π2-x ≤2π2+πk )(Z ∈k ,解得 6π-πk ≤x ≤3π+πk )(Z ∈k . 所以)(x f y =的单调增区间为[6π-πk ,3π+πk ])(Z ∈k . ········ 12分 (18)本小题主要考查空间中的线面关系,解三角形等基础知识,考查空间想象能力与思维满分12分.(Ⅰ)证明:连结CD.∵三棱柱ABC-A ,BC 是直三棱柱. ∴.1ABC CC 平面⊥∴CD 为C 1D 在平面ABC 内的射影. ∵△ABC 中,AC =BC ,D 为AB 中点. ∴,CD AB ⊥∴,1D C AB ⊥ ∵,//11AB B A∴.111D C B A ⊥(Ⅱ)解法一:过点A 作CE 的平行线,交ED 的延长线于F ,连结MF . ∵D 、E 分别为AB 、BC 的中点. ∵,//AC DE又,,//AC CE CE AF ⊥ ∴,DE AF ⊥∵AF 为MF 在平面ABC 内的射影, ∴,DE MF ⊥∴MFA ∠为二面角A DE M --的平面角,︒=∠30MFA . 在Rt △MAF 中,,221aBC AF == ︒=∠30MFA , ∴.63a AM =作MF AG ⊥,垂足为G. ∵,,DE AF DE MF ⊥⊥ ∴.AMF DE 平面⊥∴.AMF MDE 平面平面⊥ ∴.MDE AG 平面⊥在Rt △GAF 中, ︒=∠30MFA ,AF =,2a ∴4a AG =,即A 到平面MDE 的距离为4a.∵,//DE CA ∴,//MDE CA 平面∴C 到平面MDE 的距离与A 到平面MDE 的距离相等,为4a , 解法二:过点A 作CE 的平行线,交ED 的延长线于F ,连结MF . ∵D 、E 分别为AB 、CB 的中点, ∴,//AC DE又∵,,//AC CE CE AF ⊥ ∴,DE AF ⊥∵,ABC MA 平面⊥∴AF 为MF 在平面ABC 内的射影, ∴,DE MF ⊥∴MFA ∠为二面角A DE M --的平面角,︒=∠30MFA . 在Rt △MAF 中,,221aBC AF == ︒=∠30MFA , ∴.63a AM =设C 到平面MDE 的距离为h . ∵MDE C CNE M V V --=,∴.·31·31h S MA S MDE CDE ∆∆= ,63,8·212a MA a DE CE S CDE ===∆,6330cos ,21·212a AF DE MF CE S MDE =︒==∆∴,12383122h a a ⨯⨯⨯∴4a h =,即C 到平面MDE 的距离相等,为4a(19)本小题主要考查数学期望,利用导数求多项式函数最值等基础知识,考查运用概率和函数知识建模解决实际问题的能力.满分12分 .(Ⅰ)解:由题意可得L 1=)102033()?3164(22++---q q q q q 1014433-+-=q q (q >0).同理可得1081332-+-=q q L (q >0)1050333-+-=q q L (q >0) ··············· 4分(Ⅱ) 解:由期望定义可知3212.04.04.0L L L E ++=ξ)10503(2.0)10813(4.0)101443(4.0333-+-⨯+-+-⨯+-+-⨯=q q q q q q.1010033-+-=q q(Ⅲ) 解:由(Ⅱ)可知ξE 是产量q 的函数,设 101003)(3-+-==q q E q f ξ(q >0)得='+-=')(.100)(2q f q q f 令0解得 10,10-==q q (舍去).由题意及问题的实际意义(或当0<q <10时,f ′(q )>0;当q >10时, f (q ) <0=可知,当q=10时, f (q )取得最大值,即ξE 最大时的产量q 为10.(20)本小题主要考查平面向量,圆与抛物线的方程及几何性质等基本知识,考查综合运用解析几何知识解决问题的能力.满分14分.(Ⅰ)解法一:设A 、B 两点坐标分别为),2(),,2(222121y y y y ,由题设知 .)()22()2()2(221222212222221221y y y y y y y y -+-=+=+解得 ,122221==y y所以).32,6(),32,6()32,6(),32,6(B A B A --或 设圆心C 的坐标为(r ,0),则.4632=⨯=r 因此圆C 的方程为 .16)4(22=+-y x ··················· 4分 解法二:设A 、B 两点坐标分别为),,(),,(2211y x y x 由题设知22222121y x y x +=+.又因为,22,2,2222121222121x x x x x y x y +=+==可得即.0)2)((2121=++-x x x x由x 1>0,x 2>0,可知x 1=x 2,故A 、B 两点关于x 轴对称,所以圆心C 在x 轴上. 设C 点的坐标为(r ,0),则A 点坐标为)23,23(r r ,于是有r r 232)23(2⨯=,解得r =4,所以圆C 的方程为.16)4(22=+-y x ··················· 4分(Ⅱ)解:设∠ECF =2a ,则16cos 322cos 162|穋os |穦|·2-===a a a CF CE CF CE . ·· 8分在Rt △PCE 中,||4||cos PC PC r a ==.由圆的几何性质得 ||PC ≤,8171||=+=+MC ||PC ≥,6171||=-=-MC · 10分所以21≤αcos ≤32,由此可得8-≤CF CE ·≤916-. 故CF CE ·的最大值为916-,最小值为8-. ········· 14分(21)本小题主要考查数列的定义,数列的递推公式,等比数列,函数,不等式等基础知识,考查数学归纳法解法问题的能力.满分12分.(Ⅰ)解法一:由题设知⎩⎨⎧=++=++,21111n n n b a tbn a 得112++=n n a ta ,又已知2≠t ,可得).22(2221-+=-++t a t t a n n由⎭⎬⎫⎩⎨⎧-+≠≠-+=-+≠≠≠22,02,0222,0,2),()(1t a t t t tb t a t t b g b f n 所以可知 是等比其首项为2,2tt t tb 公比为-+.于是.2)2)(2()2)(2(221,1---++-+=-+--t t t t t tb a t t t tb t a n n n n 即又lim a n 存在,可得0<|2|t<1,所以-2<t <2且.0≠t.22lim ta n n -=∞→ 解法二.由题设知tb n +1=2b n +1,且.2≠t 可得).21(2211-+=-++t b t t b n n由,0,2),()(≠≠≠t t b g b f 可知02,021≠≠-+t t b ,所以⎭⎬⎫⎩⎨⎧-+21t b n 是首项为21-+t b ,公2t的等比数列. .21)2)(21(,)2)(21(2111---+=-+=-+--t t t b b t t b t b n n n n 即由12++n n b a 可知,若n n a ∞→lim 存在,则n n b ∞→lim 存在.于是可得0<|2|t<1,所以-1<t 0≠.n n a ∞→lim =2n n b ∞→lim .22t-=解法三:由题设知tb n +1=2b n +1,即,2121+=+n n b t b ① 于是有,21212+=++n n b t b ② ②-①得得令,),(21112n n n n n n n b b c b b tb b -=-=-++++.21n n c tc =+由02,021)2(10,2),()(12≠≠+-=-=≠≠≠tb t b bc t t b g b f 可知,所以{}n c 是首项为b 公比为2t的等比数列,于是 .)(21)2(1)(121211b b b t t b c c c b nn n +---=++⋯⋯++=+ tt b a n n n --==+2])2(1[421(b 2-b 1)+2b . 又n n a ∞→lim 存在,可得0<|2|t<1,所以-2<t <2且.0≠t .222)(24lim 12tb b b t a n n -=+--=∞→ 说明:数列{}n a 通项公式的求法和结果的表达形式均不唯一,其他过程和结果参照以标准.(Ⅱ)证明:因为)(),)(),()(11(111n n n n n a f b b fb g a x fx g ====++-+-即所以.下面用数学归纳法证明1+n a <*)(N ∈n an . (1)当n =1时,由f (x )为增函数,且)1(f <1,得)1()(11f b f a ==<1 )1()(12f a f b ==<1 )(22b f a =<1)1(a f =, 即2a <1a ,结论成立.(2)假设n=k 时结论成立,即1+k a <k a .由f (x )为增函数,得)(1+k a f <f k a 即2+k b <1+k b 进而得 )(1+k a f <f (1+k b )即2+k a <1+k a .这就是说当n =k +1时,结论也成立.根据(1)和(2)可知,对任意的*)(N ∈n ,1+n a <n a .(22)本小题主要考查二次函数,利用导数研究函数的单调性和极值,函数的最大值和最小值,考查综合运用数学知识解决问题的能力.满分12分.(Ⅰ)证明:由题设得.12)(,)1()(22+-='++-=x x x xte e x g x e t ex g又由x x e e -+2≥22,且t <22得t <x x e e -+2,即12)(2+-='x x te e x g >0.由此可知,)(x g 为R 上的增函数.(Ⅱ)证法一:因为)(x g '<0是)(x g 为减函数的充分条件,所以只要找到实数k ,使得t 12)(2+-='x x te e x g <0,即t >x x e e -+2在闭区间[a ,b ]上成立即可.因此y =x x e e -+2在闭区间[a ,b ]上连续,故在闭区[a ,b ]上有最大值,设其为k ,t >k 时, )(x g '<0在闭区间[a ,b ]上恒成立,即)(x g 在闭区间[a ,b ]上为减函数.证法二:因为)(x g '<0是)(x g 为减函数的充分条件,所以只要找到实数k ,使得t >k 时12)(2+-='x x te e x g <0,在闭区间[a ,b ]上成立即可.令,xe m =则)(x g '<0(],[b a x ∈)当且仅当122+-tm m <0(],[b a e e m ∈).而上式成立只需⎩⎨⎧+-+-,012,01222 b b a a te e te e 即⎩⎨⎧++--bb aa e e t e e t 22 成立.取a a e e -+2与b b e e -+2中较大者记为k ,易知当t >k 时,)(x g '<0在闭区[a ,b ]成立,即)(x g 在闭区间[a ,b ]上为减函数.(Ⅲ)证法一:设即,1)(22)(222++++-=x e t x e t t F x x,1)(21)2(2)(22+-++-=x e x e t t F xx 易得)(t F ≥1)(212+-x e x .令,)(x e x H x -=则,)(x e x H x-='易知0)0(='H 当x >0时, )(x H '>0;当x <0,)(x H ' <0.故当x =0时,)(x H 取最小值,1)0(=H 所以1)(212+-x e x ≥23, 于是对任意x 、t ,有)(t F ≥23,即)(x f ≥23.证法二:设)(t F =,1)(22222++++-x e t x e t x x)(t F ≥23,当且仅当21)(22222-+++-x e t x e t x x ≥0只需证明)21(42)(4222--⨯-+x e x e x x ≤0,即2)(x e x -≥1以下同证法一.证法三:设)(t F =1)(22222++++-x et x e t xx,则).(24)(x e t t F x +-='易得.0)2(=+'x e F x 当t >2x e x +时, )(t F '>0; t <2x e x +时, )(t F '<0,故当t =2xe )(t F 取最小值.1)(212+-x e x 即)(t F ≥.1)(212+-x e x以下同证法一.证法四: )(x f 1)()(22+-+-=t x t e x设点A 、B 的坐标分别为),(),(t t 、e x x,易知点B 在直线y =x 上,令点A 到直线y =离为d ,则 )(x f 1||2+=AB ≥.1)(21122+-=+x e d x以下同证法一.。
2021年普通高等学校招生全国统一考试(辽宁卷)理科数学试题及解答

普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至4页,考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题共60分)参考公式:如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =如果事件A B ,相互独立,那么 其中R 表示球的半径()()()P A B P A P B =球的体积公式如果事件A 在一次试验中发生的概率是P ,那么 34π3V R =n 次独立重复试验中事件A 恰好发生k 次的概率()(1)(012)k kn k n n P k C P p k n -=-=,,,,其中R 表示球的半径一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{}3|0|31x M x x N x x x +⎧⎫==<=-⎨⎬-⎩⎭,≤,则集合{}|1x x ≥=( ) A .M N B .M NC .()MM ND .()MM N2.135(21)lim(21)x n n n →∞++++-=+( )A .14B .12C .1D .23.圆221x y +=与直线2y kx =+没有..公共点的充要条件是( )A .(k ∈B .((2)k ∈-+,∞C .(k ∈D .((3)k ∈-+∞,,∞4.复数11212i i +-+-的虚部是( ) A .15i B .15 C .15i - D .15-5.已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足20AC CB +=,则OC =( )A .2OA OB - B .2OA OB -+C .2133OA OB - D .1233OA OB -+6.设P 为曲线C :223y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为04π⎡⎤⎢⎥⎣⎦,,则点P 横坐标的取值范围为( ) A .112⎡⎤--⎢⎥⎣⎦,B .[]10-,C .[]01,D .112⎡⎤⎢⎥⎣⎦,7.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .348.将函数21xy =+的图象按向量a 平移得到函数12x y +=的图象,则( )A .(11)=--,aB .(11)=-,aC .(11)=,aD .(11)=-,a9.一生产过程有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两工人中安排1人,第四道工序只能从甲、丙两工人中安排1人,则不同的安排方案共有( ) A .24种 B .36种 C .48种 D .72种 10.已知点P 是抛物线22y x =上的一个动点,则点P 到点(0,2)的距离与P 到该抛物线准线的距离之和的最小值为( ) AB .3CD .9211.在正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为棱AA 1,CC 1的中点,则在空间中与三条直线A 1D 1,EF ,CD 都相交的直线( ) A .不存在 B .有且只有两条 C .有且只有三条 D .有无数条 12.设()f x 是连续的偶函数,且当x >0时()f x 是单调函数,则满足3()4x f x f x +⎛⎫= ⎪+⎝⎭的所有x 之和为( ) A .3-B .3C .8-D .8第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.函数100x x x y e x +<⎧=⎨⎩,,,≥的反函数是__________.14.在体积为的球的表面上有A ,B ,C 三点,AB =1,BC,A ,C两点的球面距离为3,则球心到平面ABC 的距离为_________.15.已知231(1)nx x x x ⎛⎫+++ ⎪⎝⎭的展开式中没有..常数项,n ∈*N ,且2≤n ≤8,则n =______. 16.已知()sin (0)363f x x f f ωωπππ⎛⎫⎛⎫⎛⎫=+>= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,且()f x 在区间63ππ⎛⎫⎪⎝⎭,有最小值,无最大值,则ω=__________.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 在ABC △中,内角A B C ,,对边的边长分别是a b c ,,,已知2c =,3C π=. (Ⅰ)若ABC △a b ,;(Ⅱ)若sin sin()2sin 2C B A A +-=,求ABC △的面积.18.(本小题满分12分)某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:周销售量 2 3 4 频数205030(Ⅰ)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;(Ⅱ)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元).若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.19.(本小题满分12分)如图,在棱长为1的正方体ABCD A B C D ''''-中,AP=BQ=b (0<b <1),截面PQEF ∥A D ',截面PQGH ∥AD '.(Ⅰ)证明:平面PQEF 和平面PQGH 互相垂直; (Ⅱ)证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;(Ⅲ)若D E '与平面PQEF 所成的角为45,求D E '与平 面PQGH 所成角的正弦值.A B CD E FP Q H A ' B 'C 'D ' G20.(本小题满分12分)在直角坐标系xOy 中,点P到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C ,直线1y kx =+与C 交于A ,B 两点. (Ⅰ)写出C 的方程;(Ⅱ)若OA ⊥OB ,求k 的值;(Ⅲ)若点A 在第一象限,证明:当k >0时,恒有|OA |>|OB |. 21.(本小题满分12分)在数列||n a ,||n b 中,a 1=2,b 1=4,且1n n n a b a +,,成等差数列,11n n n b a b ++,,成等比数列(n ∈*N )(Ⅰ)求a 2,a 3,a 4及b 2,b 3,b 4,由此猜测||n a ,||n b 的通项公式,并证明你的结论; (Ⅱ)证明:1122111512n n a b a b a b +++<+++….22.(本小题满分14分) 设函数ln ()ln ln(1)1xf x x x x=-+++. (Ⅰ)求f (x )的单调区间和极值;(Ⅱ)是否存在实数a ,使得关于x 的不等式()f x a ≥的解集为(0,+∞)?若存在,求a 的取值范围;若不存在,试说明理由.2008年普通高等学校招生全国统一考试(辽宁卷) 数学(供理科考生使用)试题参考答案和评分参考说明:一、本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二、对解答题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三、解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四、只给整数分数,选择题和填空题不给中间分.一、选择题:本题考查基本知识和基本运算.每小题5分,共60分. 1.D 2.B 3.C 4.B 5.A 6.A 7.C 8.A 9.B 10.A 11.D 12.C 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.11ln 1.x x y x x -<⎧=⎨⎩,,, ≥14.3215.516.143三、解答题17.本小题主要考查三角形的边角关系,三角函数公式等基础知识,考查综合应用三角函数有关知识的能力.满分12分.解:(Ⅰ)由余弦定理及已知条件得,224a b ab +-=, 又因为ABC △,所以1sin 2ab C =4ab =. ························ 4分 联立方程组2244a b ab ab ⎧+-=⎨=⎩,,解得2a =,2b =. ·············································· 6分(Ⅱ)由题意得sin()sin()4sin cos B A B A A A ++-=,即sin cos 2sin cos B A A A =, ········································································ 8分 当cos 0A =时,2A π=,6B π=,a =b =当cos 0A ≠时,得sin 2sin B A =,由正弦定理得2b a =,联立方程组2242a b ab b a ⎧+-=⎨=⎩,,解得a =b =.所以ABC △的面积1sin 2S ab C ==. ······················································ 12分 18.本小题主要考查频率、概率、数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分. 解:(Ⅰ)周销售量为2吨,3吨和4吨的频率分别为0.2,0.5和0.3. ····················· 3分 (Ⅱ)ξ的可能值为8,10,12,14,16,且 P (ξ=8)=0.22=0.04, P (ξ=10)=2×0.2×0.5=0.2, P (ξ=12)=0.52+2×0.2×0.3=0.37, P (ξ=14)=2×0.5×0.3=0.3, P (ξ=16)=0.32=0.09.ξ的分布列为··················································································· 9分E ξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元) ····························· 12分 19.本小题主要考查空间中的线面关系,面面关系,解三角形等基础知识,考查空间想象能力与逻辑思维能力。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,解析版)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x <5} (B) {x|-3<x <5} (C) {x|-5<x ≤5} (D) {x|-3<x ≤5}【解析】直接利用交集性质求解,或者画出数轴求解. 【答案】B(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - 【解析】211121212(12)(12)12i i i i i z --===++-+=1255i - 【答案】D(3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 【解析】由已知|a|=2,|a +2b|2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4=12 ∴2a b +=23【答案】B(4) 已知圆C 与直线x -y=0 及x -y -4=0都相切,圆心在直线x+y=0上,则圆C 的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=【解析】圆心在x +y =0上,排除C 、D,再结合图象,或者验证A 、B 中圆心到两直线的距离等于半径2即可. 【答案】B(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种【解析】直接法:一男两女,有C 51C 42=5×6=30种,两男一女,有C 52C 41=10×4=40种,共计70种间接法:任意选取C 93=84种,其中都是男医生有C 53=10种,都是女医生有C 41=4种,于是符合条件的有84-10-4=70种. 【答案】A(6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69SS =(A ) 2 (B )73 (C ) 83(D )3 【解析】设公比为q ,则36333(1)S q S S S +==1+q 3=3 ⇒ q 3=2 于是63693112471123S q q S q ++++===++ 【答案】B (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x -2 (B) y=-3x+2 (C)y=2x -3 (D)y=-2x+1 【解析】y ’=2222(2)(2)x x x x ---=--,当x =1时切线斜率为k =-2 【答案】D(8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23-(B) 23 (C)- 12 (D) 12【解析】由图象可得最小正周期为2π3于是f(0)=f(2π3),注意到2π3与π2关于7π12对称所以f(2π3)=-f(π2)=23【答案】B(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是 (A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 【解析】由于f(x)是偶函数,故f(x)=f(|x|)∴得f(|2x -1|)<f(13),再根据f(x)的单调性 得|2x -1|<13 解得13<x <23【答案】A10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)

2020年普通高等学校招生全国统一考试数学理(辽宁卷,含答案)一- 选择题(每小题5分,共60分)(1)已知集合M={x|-3<x ≤5},N={x|-5<x<5},则M ∩N=(A) {x|-5<x<5} (B) {x|-3<x<5}(C) {x|-5<x ≤5} (D) {x|-3<x ≤5}(2)已知复数12z i =-,那么1z= (A )52555i + (B )52555i - (C )1255i + (D )1255i - (3)平面向量a 与b 的夹角为060,(2,0)a =,1b = 则2a b += (A )3 (B) 23 (C) 4 (D)12 (4) 已知圆C 与直线x-y=0 及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为(A )22(1)(1)2x y ++-= (B) 22(1)(1)2x y -++= (C) 22(1)(1)2x y -+-= (D) 22(1)(1)2x y +++=(5)从5名男医生、4名女医生中选3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有(A )70种 (B ) 80种 (C ) 100种 (D )140种 (6)设等比数列{ n a }的前n 项和为n S ,若63S S =3 ,则 69S S = (A ) 2 (B ) 73 (C ) 83(D )3 (7)曲线y=2xx -在点(1,-1)处的切线方程为 (A )y=x-2 (B) y=-3x+2 (C)y=2x-3 (D)y=-2x+1 (8)已知函数()f x =Acos(x ωϕ+)的图象如图所示,2()23f π=-,则(0)f = (A )23- (B) - 12 (C) 23 (D) 12(9)已知偶函数()f x 在区间[0,)+∞单调增加,则满足(21)f x -<1()3f 的x 取值范围是(A )(13,23) (B) [13,23) (C)(12,23) (D) [12,23) 10)某店一个月的收入和支出总共记录了 N 个数据1a ,2a ,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年普通高等学校招生全国统一考试(辽宁卷)数学(供理科考生使用)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.a 为正实数,i 为虚数单位,2=+iia ,则=a A .2B 3C 2D .12.已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若I N ð=M I ∅,则=N M YA .MB .NC .ID .∅3.已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,=3AF BF +,则线段AB 的中点到y 轴的距离为A .34B .1C .54D .744.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =a 2,则=abA .23B .22C 3D 25.从1,2,3,4,5中任取2各不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B ︱A )= A .18 B .14C .25D .126.执行右面的程序框图,如果输入的n 是4,则输出的P 是 A .8 B .5 C .3 D .27.设sin 1+=43πθ(),则sin 2θ=A .79-B .19-C .19D .798.如图,四棱锥S —ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确...的是 A .AC ⊥SBB .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角D .AB 与SC 所成的角等于DC 与SA 所成的角9.设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x x f x ,则满足2)(≤x f 的x 的取值范围是A .1[-,2]B .[0,2]C .[1,+∞]D .[0,+∞]10.若a ,b ,c 均为单位向量,且0=⋅b a ,0)()(≤-⋅-c b c a ,则||c b a -+的最大值为A .12-B .1C .2D .211.函数)(x f 的定义域为R ,2)1(=-f ,对任意R ∈x ,2)(>'x f ,则42)(+>x x f 的解集为A .(1-,1)B .(1-,+∞)C .(∞-,1-)D .(∞-,+∞)12.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,ο30=∠=∠BSC ASC ,则棱锥S—ABC 的体积为 A .33B .32C .3D .1第Ⅱ卷本卷包括必考题和选考题两部分.第13题-第21题为必考题,每个试题考生都必须做答.第22题-第24题为选考题,考生根据要求做答. 二、填空题:本大题共4小题,每小题5分.13.已知点(2,3)在双曲线C :)0,0(12222>>=+b a by a x 上,C 的焦距为4,则它的离心率为 .14.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归直线方程:321.0254.0ˆ+=x y.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加____________万元.15.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 .16.已知函数)(x f =A tan (ωx +ϕ)(2||,0πϕω<>),y =)(x f的部分图像如下图,则=)24(πf .三、解答题:解答应写文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知等差数列{a n }满足a 2=0,a 6+a 8=-10 (I )求数列{a n }的通项公式;(II )求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和. 18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12P D .(I )证明:平面PQC ⊥平面DCQ ; (II )求二面角Q —BP —C 的余弦值.19.(本小题满分12分)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙.(I )假设n =4,在第一大块地中,种植品种甲的小块地的数目记为X ,求X 的分布列和数学期望;(II )试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的2品种甲 403 397 390 404 388 400 412 406 品种乙419403412418408423400413种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.20.(本小题满分12分)如图,已知椭圆C 1的中心在原点O ,长轴左、右端点M ,N 在x 轴上,椭圆C 2的短轴为MN ,且C 1,C 2的离心率都为e ,直线l ⊥MN ,l 与C 1交于两点,与C 2交于两点,这四点按纵坐标从大到小依次为A ,B ,C ,D .(I )设12e =,求BC 与AD 的比值; (II )当e 变化时,是否存在直线l ,使得BO ∥AN ,并说明理由.21.(本小题满分12分)已知函数x a ax x x f )2(ln )(2-+-=. (I )讨论)(x f 的单调性; (II )设0>a ,证明:当a x 10<<时,)1()1(x af x a f ->+; (III )若函数)(x f y =的图像与x 轴交于A ,B 两点,线段AB 中点的横坐标为x 0,证明:f '(x 0)<0.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题计分.做答是用2B 铅笔在答题卡上把所选题目对应题号下方的方框涂黑. 22.(本小题满分10分)选修4-1:几何证明选讲如图,A ,B ,C ,D 四点在同一圆上,AD 的延长线与BC 的延长线交于E 点,且EC =ED . (I )证明:CD //AB ;(II )延长CD 到F ,延长DC 到G ,使得EF =EG ,证明:A ,B ,G ,F四点共圆.23.(本小题满分10分)选修4-4:坐标系统与参数方程在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧==ϕϕsin cos y x (ϕ为参数),曲线C 2的参数方程为⎩⎨⎧==ϕϕsin cos b y a x (0>>b a ,ϕ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线l :θ=α与C 1,C 2各有一个交点.当α=0时,这两个交点间的距离为2,当α=2π时,这两个交点重合.(I )分别说明C 1,C 2是什么曲线,并求出a 与b 的值; (II )设当α=4π时,l 与C 1,C 2的交点分别为A 1,B 1,当α=4π-时,l 与C 1,C 2的交点为A 2,B 2,求四边形A 1A 2B 2B 1的面积.24.(本小题满分10分)选修4-5:不等式选讲已知函数)(x f =|x -2||-x -5|. (I )证明:3-≤)(x f ≤3;(II )求不等式)(x f ≥x 28-x +15的解集.参考答案评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题不给中间分 一、选择题1—5 BACDB 6—10 CADDB 11—12 BC 二、填空题13.2 14.0.254 15. 161.正确答案B提示一 本题考查复数和模的运算,考查学生基本计算能力,清晰分母实数化是解题的前提. 提示二 首先化简复数,然后利用模的运算得到含有a 的等式,进而求解. 提示三12,1a i ai i +-+===即23a =,又a Q为正实数,a ∴=2.正确答案A提示一 本题考查韦恩图的应用,考查学生数形结合能力,清晰集合的概念是解题的前提.提示二 根据I N ð=M I ∅画出韦恩图,然后明确.M N U 提示三 作出满足条件的韦恩(Venn )图,易知M N M =U 3.正确答案C提示一 本题考查抛物线定义的应用,考查学生的等价转换能力, 利用转化思想得到AM BN AF +=+BF 是解题的关键. 提示二 利用梯形的中位线的性质进行过渡求解中点C 的横坐标. 提示三如图,由抛物线的定义知,AM BN AF +=+33,,2BF CD ==所以中点C 的横坐标为315244-=.4.正确答案D提示一提示二 利用正弦定理将已知表达式中的边转化为角是解题的关键.提示三2sin sin cos ,a A B b A +=Q 由正弦定理可得:22sin sin sin cos 2,A B B A A +=sin 2B A ∴=,即2ba=5.正确答案B提示一 此题考查古典概率,考查学生识别事件的能力,清晰事件的计算公式是解题的前提. 提示二 准确计算出()()P A P AB 、是解题的关键.提示三222232225541(),()1010C C C P A P AB C C +====Q ,()1()()4P AB P B A P A ∴==.6.正确答案C提示一 本题考查流程图,考查学生的识图能力.清晰框图的流程过程是解题的前提. 提示二 抓住流程图的限制条件k n <是解题的关键. 提示三 初始值1,0,1,1,p s t k ====循环开始,第一次:1,1,1,2,p s t k ====第二次:2,1,2,3,p s t k ====第三次:3,2,3,4,p s t k ====此时,k n <不成立,跳出循环, 输出3p =.7.正确答案A提示一 此题考查三角函数求值,考查学生划归能力,清晰两角和的公式和二倍角公式是解题的前提.提示二 利用平方技巧过渡是解题的关键. 提示三 由1sin(),43πθ+=得221,223θθ+=即2sin cos 3θθ+=两边平方,得 21sin 2,9θ+=7sin 29θ∴=-.8.正确答案D提示一 此题考查立体几何的位置关系和角的判断,考查学生的空间形象能力.清晰线面垂直的性质定理、线面平行的判定定理和线面角、异面直线所成的角的定义是解题的前提. 提示二 采用逐一判断的方法进行分析.提示三,,,SD ABCD AC ABCD SD AC ABCD ⊥⊂∴⊥Q Q 面面又为正方形,,,AC BD SD BD D ∴⊥⋂=又,.AC SBD AC SB ∴⊥⊥面故A 对; ,,AB CD CD CDS AB CDS AB SCD ⊂∴Q ∥面在面外,∥面,故B 对;设,AC BD O ⋂=由上面的分析知,ASO CSO ∠∠与分别是,SA SBD SC SBD 与面与面所成的角,易知ASO CSO ∠∠与相等,故C 对;选D. 9.正确答案D提示一 此题考查分段函数的性质,考查学生转化能力,清晰分段函数的性质是解题的前提. 提示二 判断函数在定义域上的单调性是解题的关键. 提示三 易知,()f x R 在上是减函数,由122,0,xx -==得所以x 的取值范围是[)0+∞,.10.正确答案B提示一 此题考查向量模的最值.考查学生运算能力.清晰数量积的运算是解题的前提. 提示二 利用将||c b a -+平方的技巧进行转化是解题的关键.提示三2)()()1()0,a c b c a b a b c c a b c -⋅-=⋅-+⋅+=-+⋅≤r r r r r r r r r r r r rQ (()1;a b c ∴+⋅≥r r r222222()2()2()32()a b c a b a b c c a b c a b c a b c +-=+-+⋅+=++-+⋅=-+⋅r r r r r r r r r r r r r r r r r r321≤-=.11.正确答案B提示一 此题考查不等式的解法,考查学生构造能力,通过42)(+>x x f 构造函数()()(24)h x f x x =-+是解题的前提.提示二 利用求导判断函数()()(24)h x f x x =-+单调性是解题的关键.提示三设''()()(24),()()2h x f x x h x f x =-+=-则0>,故()h x R 在上单调递增,又(1)(1)20h f -=--=所以当1x >-时,()0h x >,即()24f x x >+.12.正确答案C提示一 此题考查棱锥的体积,考查学生的画图能力和空间想象能力.利用题设条件准确画出图形是解题的前提.提示二 明确三棱锥的底面面积和高是解题的关键. 提示三 如图,过AB 作与直径SC 垂直的球的截面,交SC 于点D ,在Rt SAC ∆中,cos30sin 30SA SC AD SA =⋅=⋅oo同理BD ABD =∆故为正三角形.1160=42434ABD S ABC S V ∆-==⨯⨯=o 13.正确答案 2提示一 此题考查双曲线的离心率,考查学生基本知识掌握情况,清晰双曲线的几何性质是解题的前提.提示二 利用点在曲线上和焦距得到方程组是解题的关键. 提示三22491a b -=与224a b +=联立,求得1a =,所以2c e a==. 14.正确答案0.254提示一 此题考查回归方程,考查学生的基础知识掌握情况,清晰归回方程的含义是解题的前提.提示二 利用321.0254.0ˆ+=x y求解“年饮食支出平均增加量”是解题的关键. 提示三 家庭收入每增加1万元,对应的回归直线方程中的x 增加1,相应的ˆy的值增加0.254,即年饮食支出平均增加0.254万元.15.正确答案提示一 此题考查几何体的三视图,考查学生的分析解决问题能力和空间形象能力,清晰三视图的观察方法是解题的前提.提示二 根据俯视图和左视图得到几何体的性质是解题的关键. 提示三如图,设底面边长为a ,则侧棱长也为a,24a a ⋅=,故38,2a a ==.左视图与矩形11DCC D 相同,11DCC D S a =⋅=四边形16.提示一 此题考查函数解析式,考查学生视图能力,清晰A ωϕ、、的含义是解题的前提.提示二 利用函数图象得到周期,利用点308π(,)代入解析式确定ϕ,利用(0,1)代入解析式确定A ,进而明确函数的解析式,然后求()24f π. 提示三 由图知,3=-==22882T T πππω∴∴,,,()tan(2),f x A x ϕ∴=+将308π(,)代入得,3tan(2+=08A πϕ⨯)即3tan()0,4πϕ+=又ϕ2π<,=4πϕ∴.()sin(2).4f x A x π∴=+又(0)1,tan1, 1.()tan(2)tan 4242443f A A f πππππ=∴=∴=∴=⨯+== 三、解答题17.解:(I )设等差数列{}n a 的公差为d ,由已知条件可得110,21210,a d a d +=⎧⎨+=-⎩解得11,1.a d =⎧⎨=-⎩故数列{}n a 的通项公式为2.n a n =- ………………5分 (II )设数列1{}2n n n a n S -的前项和为,即2111,122n n n a a S a S -=+++=L 故, 12.2242n n nS aa a =+++L 所以,当1n >时,1C1D1AABCD1B1211111222211121()2422121(1)22n n n n n nn n n nS a a a a a a n n------=+++--=-+++--=---L L=.2nn 所以1.2n n n S -=综上,数列11{}.22n n n n a n n S --=的前项和 ………………12分 18.解:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz.(I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===-u u u r u u u r u u u r所以0,0.PQ DQ PQ DC ⋅=⋅=u u u r u u u r u u u r u u u r即PQ ⊥DQ ,PQ ⊥DC. 故PQ ⊥平面DCQ.又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. …………6分(II )依题意有B (1,0,1),(1,0,0),(1,2,1).CB BP ==--u u u r u u u r设(,,)n x y z =是平面PBC 的法向量,则0,0,20.0,n CB x x y z n BP ⎧⋅==⎧⎪⎨⎨-+-=⋅=⎩⎪⎩u u u ru u u r即 因此可取(0,1,2).n =--设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩u u u ru u u r可取15(1,1,1).cos ,.5m m n =<>=-所以 故二面角Q —BP —C 的余弦值为15.5-………………12分 19.解:(I )X 可能的取值为0,1,2,3,4,且481344482244483144484811(0),708(1),3518(2),358(3),3511(4).70P X C C C P X C C C P X C C C P X C P X C ===============即X 的分布列为………………4分 X 的数学期望为181881()01234 2.7035353570E X =⨯+⨯+⨯+⨯+⨯= ………………6分 (II )品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲………………8分 品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙………………10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙. 20.解:(I )因为C 1,C 2的离心率相同,故依题意可设22222122242:1,:1,(0)x y b y x C C a b a b a a+=+=>>设直线:(||)l x tt a =<,分别与C 1,C 2的方程联立,求得((A t B t ………………4分当1,,,2A B e b y y ==时分别用表示A ,B 的纵坐标,可知 222||3||:||.2||4B A y b BC AD y a === ………………6分 (II )t=0时的l 不符合题意.0t ≠时,BO//AN 当且仅当BO 的斜率k BO 与AN 的斜率k AN 相等,即,a b t t a=- 解得222221.ab e t a a b e-=-=---因为221||,01,1, 1.2e t a e e e-<<<<<<又所以解得所以当02e <≤时,不存在直线l ,使得BO//AN ;1e <<时,存在直线l 使得BO//AN. ………………12分 21.解:(I )()(0,),f x +∞的定义域为 1(21)(1)()2(2).x ax f x ax a x x +-'=-+-=- (i )若0,()0,()(0,)a f x f x '≤>+∞则所以在单调增加.(ii )若10,()0,a f x x a'>==则由得 且当11(0,),()0,,()0.x f x x f x a a''∈>><时当时 所以1()(0,)f x a 在单调增加,在1(,)a+∞单调减少. ………………4分 (II )设函数11()()(),g x f x f x a a =+--则 3222()ln(1)ln(1)2,2()2.111g x ax ax ax a a a x g x a ax ax a x=+---'=+-=+-- 当10,()0,(0)0,()0x g x g g x a'<<>=>时而所以.故当10x a <<时,11()().f x f x a a+>- ………………8分 (III )由(I )可得,当0,()a y f x ≤=时函数的图像与x 轴至多有一个交点,故0a >,从而()f x 的最大值为11(),()0.f f a a >且不妨设1212121(,0),(,0),0,0.A x B x x x x x a <<<<<则 由(II )得111211()()()0.f x f x f x a a a-=+->= 从而1221021,.2x x x x x a a+>-=>于是 由(I )知,0()0.f x '< ………………12分22.解:(I )因为EC=ED ,所以∠EDC=∠ECD.因为A ,B ,C ,D 四点在同一圆上,所以∠EDC=∠EBA.故∠ECD=∠EBA ,所以CD//AB. …………5分(II )由(I )知,AE=BE ,因为EF=FG ,故∠EFD=∠EGC从而∠FED=∠GEC.连结AF ,BG ,则△EFA ≌△EGB ,故∠FAE=∠GBE ,又CD//AB ,∠EDC=∠ECD ,所以∠FAB=∠GBA.所以∠AFG+∠GBA=180°.故A ,B ,G ,F 四点共圆 …………10分23.解:(I )C 1是圆,C 2是椭圆.当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3.当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1.(II )C 1,C 2的普通方程分别为22221 1.9x x y y +=+=和 当4πα=时,射线l 与C 1交点A 1的横坐标为2x =,与C 2交点B 1的横坐标为 310.10x '=当4πα=-时,射线l 与C 1,C 2的两个交点A 2,B 2分别与A 1,B 1关于x 轴对称,因此, 四边形A 1A 2B 2B 1为梯形.故四边形A 1A 2B 2B 1的面积为(22)()2.25x x x x ''+-= …………10分 24.解: (I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤⎧⎪=---=-<<⎨⎪≥⎩当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤ ………………5分(II )由(I )可知,当22,()815x f x x x ≤≥-+时的解集为空集;当225,()815{|55}x f x x x x x <<≥-+-≤<时的解集为; 当25,()815{|56}x f x x x x x ≥≥-+≤≤时的解集为.综上,不等式2()815{|56}.f x x x x x ≥-+-≤≤的解集为 …………10分。