十一.概率与统计
《概率论与数理统计》学习笔记十一

σ 2 = S2 =
2 1 n Xi − X ) ( ∑ n i =1
n −1 2 ⎛ n −1 2 ⎞ n −1 S ⎟= E (S2 ) = 由于 E σ 2 = E S 2 = E ⎜ σ , n n ⎝ n ⎠
n 3 ⎡ X 2 − nX 2 ⎤ ∑ i ⎥ n⎢ ⎣ i =1 ⎦
3 ( X − X )2 i n∑ i =1
n
在总体 X 为离散型随机变量情形, 求未知参数 θ 的矩估计量的方法和连续型 情形完全相同。 极大似然估计法 直观想法:概率最大的事件最可能出现。 设总体 X 为连续型随机变量,具有密度函数 f ( x;θ ) ,其中 θ 是待估未知参 数,又设 ( x1 ,L , xn ) 是样本 ( X 1 ,L , X n ) 的一个观测值,则样本 ( X 1 ,L , X n ) 落在观
n
(1)
ˆr , 把上式中的 α r 都换成相应的样本矩 M r = 1 ∑ X ir ,便得到参数 θ r 的矩估计量 θ n i =1
概率论与数理统计—学习笔记十一
即
θˆr = hr ( M 1 ,L , M k ) , r = 1, 2,L , k .
(2)
这种求估计量的方法称为矩估计法(简称矩法) ,由矩估计法得出的估计量称为 矩估计量。 例1 设总体 X 在 [ a, b ] 上服从均匀分布,a,b 未知, X 1 ,L , X n 是总体 X 的 一个样本,试求 a,b 矩估计量。 解 X 的概率密度为 1 , a≤ x≤b ⎧ ⎪ f ( x; a, b ) = ⎨ b − a ⎪ 其它 ⎩ 0,
上节介绍了总体参数的常用点估计方法,对同一参数用不同的估计方法可能 得到不同的估计量,哪个估计量更好些呢?下面给出几种评选估计量好坏的标 准。 无偏估计 估计量是样本的函数,是随机变量,对不同的样本观测值,它有不同的估计 值,我们希望估计量的取值在未知参数真值附近摆动,即希望估计量的数学期望 等于未知参数的真值,这就是无偏性的概念。 定义 设 θˆ ( X 1 ,L , X n ) 是未知参数 θ 的估计量,若
专题十一《概率与统计》

专题十一概率与统计概率统计抛开了数学中的“确定性”,以“不确定”的视角做出量化的、不确定性的推测,是不同与其它数学知识的重要特征.未来的众多社会规律,也都需要利用概率统计的方法去探究,所以概率统计对社会的良性和稳定发展必将起到至关重要的作用.高考以更加贴近学生日常生活的概率统计背景加强对概率统计知识的考查,也说明了高考改革的方向将更加生活化和理性化,更加贴合学生的日常.这也是提醒我们要自觉养成用“不确定性”眼光去研究生活、看待世界的习惯.一、真题再现(一)统计部分1.(2019年新课标Ⅱ理科)演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是()A.中位数B.平均数C.方差D.极差【分析】根据题意,由数据的数字特征的定义,分析可得答案.【解答】解:根据题意,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分,7个有效评分与9个原始评分相比,最中间的一个数不变,即中位数不变,故选:A.【点评】本题考查数据的数字特征,关键是掌握数据的平均数、中位数、方差、极差的定义以及计算方法,属于基础题.2.(2019年新课标Ⅰ文科)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生【分析】根据系统抽样的特征,从1000名学生从中抽取一个容量为100的样本,抽样的分段间隔为10,结合从第4组抽取的号码为46,可得第一组用简单随机抽样抽取的号码.【解答】解:∵从1000名学生从中抽取一个容量为100的样本,∴系统抽样的分段间隔为=10,∵46号学生被抽到,则根据系统抽样的性质可知,第一组随机抽取一个号码为6,以后每个号码都比前一个号码增加10,所有号码数是以6为首项,以10为公差的等差数列,设其数列为{a n},则a n=6+10(n﹣1)=10n﹣4,当n=62时,a62=616,即在第62组抽到616.故选:C.【点评】本题考查了系统抽样方法,关键是求得系统抽样的分段间隔.3.(2019年江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是.【分析】先求出一组数据6,7,8,8,9,10的平均数,由此能求出该组数据的方差.【解答】解:一组数据6,7,8,8,9,10的平均数为:=(6+7+8+8+9+10)=8,∴该组数据的方差为:S2=[(6﹣8)2+(7﹣8)2+(8﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=.故答案为:.【点评】本题考查一组数据的方差的求法,考查平均数、方差等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅲ文理科)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为()A.0.5B.0.6C.0.7D.0.8【分析】作出维恩图,得到该学校阅读过《西游记》的学生人数为70人,由此能求出该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值.【解答】解:某中学为了了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,作出维恩图,得:∴该学校阅读过《西游记》的学生人数为70人,则该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值为:=0.7.故选:C.【点评】本题考查该学校阅读过《西游记》的学生人数与该学校学生总数比值的估计值的求法,考查维恩图的性质等基础知识,考查推理能力与计算能力,属于基础题.5.(2019年新课标Ⅱ文科)某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.y的分组[﹣0.20,0)[0,0.20)[0.20,0.40)[0.40,0.60)[0.60,0.80)企业数22453147(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)附:≈8.602.【分析】(1)根据频数分布表计算即可;(2)根据平均值和标准差计算公式代入数据计算即可.【解答】解:(1)根据产值增长率频数表得,所调查的100个企业中产值增长率不低于40%的企业为:=0.21=21%,产值负增长的企业频率为:=0.02=2%,用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%;(2)企业产值增长率的平均数(﹣0.1×2+0.1×24+0.3×53+0.5×14+0.7×7)=0.3=30%,产值增长率的方差s2==[(﹣0.4)2×2+(﹣0.2)2×24+02×53+0.22×14+0.42×7]=0.0296,∴产值增长率的标准差s=≈0.17,∴这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17.【点评】本题考查了样本数据的平均值和方差的求法,考查运算求解能力,属基础题.6.(2019年新课标Ⅲ文理科)为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成A、B两组,每组100只,其中A组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如图直方图:记C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.(1)求乙离子残留百分比直方图中a,b的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【分析】(1)由频率分布直方图的性质列出方程组,能求出乙离子残留百分比直方图中a,b.(2)利用频率分布直方图能估计甲离子残留百分比的平均值和乙离子残留百分比的平均值.【解答】解:(1)C为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到P(C)的估计值为0.70.则由频率分布直方图得:,解得乙离子残留百分比直方图中a=0.35,b=0.10.(2)估计甲离子残留百分比的平均值为:=2×0.15+3×0.20+4×0.30+5×0.20+6×0.10+7×0.05=4.05.乙离子残留百分比的平均值为:=3×0.05+4×0.1+5×0.15+6×0.35+7×0.2+8×0.15=6.00.【点评】本题考查频率、平均值的求法,考查频率分布直方图的性质等基础知识,考查推理能力与计算能力,属于基础题.7.(2019年新课标Ⅰ文科)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:K2=.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828【分析】(1)由题中数据,结合等可能事件的概率求解;(2)代入计算公式:K2=,然后把所求数据与3.841进行比较即可判断.【解答】解:(1)由题中数据可知,男顾客对该商场服务满意的概率P==,女顾客对该商场服务满意的概率P==;(2)由题意可知,K2==≈4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.【点评】本题主要考查了等可能事件的概率求解及独立性检验的基本思想的应用,属于基础试题.(二)概率部分1.(2019年江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.【分析】基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数m=+=7,由此能求出选出的2名同学中至少有1名女同学的概率.【解答】解:从3名男同学和2名女同学中任选2名同学参加志愿者服务,基本事件总数n==10,选出的2名同学中至少有1名女同学包含的基本事件个数:m=+=7,∴选出的2名同学中至少有1名女同学的概率是p=.故答案为:.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,考查数形结合思想,是基础题.2.(2019年新课标Ⅲ文科)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A.B.C.D.【分析】利用古典概型求概率原理,首先用捆绑法将两女生捆绑在一起作为一个人排列找出分子,再全部排列找到分母,可得到答案.【解答】解:方法一:用捆绑法将两女生捆绑在一起作为一个人排列,有A33A22=12种排法,再所有的4个人全排列有:A44=24种排法,利用古典概型求概率原理得:p==,方法二:假设两位男同学为A、B,两位女同学为C、D,所有的排列情况有24种,如下:(ABCD)(ABDC)(ACBD)(ACDB)(ADCB)(ADBC)(BACD)(BADC)(BCAD)(BCDA)(BDAC)(BDCA)(CABD)(CADB)(CBAD)(CBDA)(CDAB)(CDBA)(DABC)(DACB)(DBAC)(DBCA)(DCAB)(DCBA)其中两位女同学相邻的情况有12种,分别为(ABCD)、(ABDC)、(ACDB)、(ADCB)、(BACD)、(BADC)、(BCDA)、(BDCA)、(CDAB)、(CDBA)、(DCAB)、(DCBA),故两位女同学相邻的概率是:p==,故选:D.【点评】本题考查排列组合的综合应用.考查古典概型的计算.3.(2019年新课标Ⅰ理科)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.B.C.D.【分析】基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,由此能求出该重卦恰有3个阳爻的概率.【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m==20,则该重卦恰有3个阳爻的概率p===.故选:A.【点评】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.4.(2019年新课标Ⅱ文科)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C.D.【分析】本题根据组合的概念可知从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标是从3只侧过的里面选2,从未测的选1,组合数为.即可得出概率.【解答】解:法一:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为,恰有2只测量过该指标的所有情况数为.∴p==.法二:设其中做过测试的3只兔子为a,b,c,剩余的2只为A,B,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}10种,其中恰好有两只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}6种,故恰有两只做过测试的概率为=.故选:B.【点评】本题主要考查组合的相关概念及应用以及简单的概率知识,本题属基础题.5.(2019年新课标Ⅰ理科)甲、乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该队获胜,决赛结束).根据前期比赛成绩,甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,则甲队以4:1获胜的概率是0.18.【分析】甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,②前5场比赛中,第二场负,另外4场全胜,③前5场比赛中,第三场负,另外4场全胜,④前5场比赛中,第四场负,另外4场全胜,由此能求出甲队以4:1获胜的概率.【解答】解:甲队的主客场安排依次为“主主客客主客主”.设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛结果相互独立,甲队以4:1获胜包含的情况有:①前5场比赛中,第一场负,另外4场全胜,其概率为:p1=0.4×0.6×0.5×0.5×0.6=0.036,②前5场比赛中,第二场负,另外4场全胜,其概率为:p2=0.6×0.4×0.5×0.5×0.6=0.036,③前5场比赛中,第三场负,另外4场全胜,其概率为:p3=0.6×0.6×0.5×0.5×0.6=0.054,④前5场比赛中,第四场负,另外4场全胜,其概率为:p4=0.6×0.6×0.5×0.5×0.6=0.054,则甲队以4:1获胜的概率为:p=p1+p2+p3+p4=0.036+0.036+0.054+0.054=0.18.故答案为:0.18.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查运算求解能力,是基础题.6.(2019年上海)某三位数密码,每位数字可在0﹣9这10个数字中任选一个,则该三位数密码中,恰有两位数字相同的概率是.【分析】分别运用直接法和排除法,结合古典概率的公式,以及计数的基本原理:分类和分步,计算可得所求值.【解答】解:方法一、(直接法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中恰有两位数字相同的个数为C C=270,则其中恰有两位数字相同的概率是=;方法二、(排除法)某三位数密码锁,每位数字在0﹣9数字中选取,总的基本事件个数为1000,其中三位数字均不同和全相同的个数为10×9×8+10=730,可得其中恰有两位数字相同的概率是1﹣=.故答案为:.【点评】本题考查古典型概率的求法,注意运用直接法和排除法,考查排列组合数的求法,以及运算能力,属于基础题.7.(2019年新课标Ⅱ理科)11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.(1)求P(X=2);(2)求事件“X=4且甲获胜”的概率.【分析】(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P (X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P(),由此能求出结果.(2)P(X=4且甲获胜)=P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4),由此能求出事件“X=4且甲获胜”的概率.【解答】解:(1)设双方10:10平后的第k个球甲获胜为事件A k(k=1,2,3,…),则P(X=2)=P(A1A2)+P()=P(A1)P(A2)+P()P()=0.5×0.4+0.5×0.6=0.5.(2)P(X=4且甲获胜)=P()+P()=P(A1)P()P(A3)P(A4)+P()P(A2)P(A3)P(A4)=0.5×0.6×0.5×0.4+0.5×0.4×0.5×0.4=0.1.【点评】本题考查概率的求法,考查相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.8.(2019年天津文科)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.(Ⅰ)应从老、中、青员工中分别抽取多少人?(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如表,其中“〇”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.A B C D E F子女教育〇〇×〇×〇继续教育××〇×〇〇大病医疗×××〇××住房贷款利息〇〇××〇〇住房租金××〇×××赡养老人〇〇×××〇(i)试用所给字母列举出所有可能的抽取结果;(ii)设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.【分析】(Ⅰ)根据分层抽样各层所抽比例相等可得结果;(Ⅱ)(i)用列举法求出基本事件数;(ii)用列举法求出事件M所含基本事件数以及对应的概率;【解答】解:(Ⅰ)由已知,老、中、青员工人数之比为6:9:10,由于采用分层抽样从中抽取25位员工,因此应从老、中、青员工中分别抽取6人,9人,10人;(Ⅱ)(i)从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种;(ii)由表格知,符合题意的所有可能结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种,所以,事件M发生的概率P(M )=.【点评】本题考查了用列举法求古典概型的概率问题以及根据数据分析统计结论的问题,是基础题目9.(2019年北京文科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:不大于2000元大于2000元仅使用A27人3人仅使用B24人1人(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,求出A,B两种支付方式都使用的人数有40人,由此能估计该校学生中上个月A,B两种支付方式都使用的人数.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,由此能求出该学生上个月支付金额大于2000元的概率.(Ⅲ)从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【解答】解:(Ⅰ)由题意得:从全校所有的1000名学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴估计该校学生中上个月A,B两种支付方式都使用的人数为:1000×=400人.(Ⅱ)从样本仅使用B的学生有25人,其中不大于2000元的有24人,大于2000元的有1人,从中随机抽取1人,基本事件总数n=25,该学生上个月支付金额大于2000元包含的基本事件个数m=1,∴该学生上个月支付金额大于2000元的概率p==.(Ⅲ)不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化,理由如下:上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元的概率为,虽然概率较小,但发生的可能性为.故不能认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化.【点评】本题考查频数、概率的求法,考查频数分布表、概率等基础知识,考查推理能力与计算能力,属于基础题.(三)随机变量部分1.(2019年新课标Ⅱ文理科)我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为0.98.【分析】利用加权平均数公式直接求解.【解答】解:∵经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,∴经停该站高铁列车所有车次的平均正点率的估计值为:=(10×0.97+20×0.98+10×0.99)=0.98.故答案为:0.98.【点评】本题考查经停该站高铁列车所有车次的平均正点率的估计值的求法,考查加权平均数公式等基础知识,考查推理能力与计算能力,属于基础题.2.(2019年浙江)设0<a<1.随机变量X的分布列是X0a1P则当a在(0,1)内增大时,()A.D(X)增大B.D(X)减小C.D(X)先增大后减小D.D(X)先减小后增大【分析】方差公式结合二次函数的单调性可得结果【解答】解:E(X)=0×+a×+1×=,D(X)=()2×+(a﹣)2×+(1﹣)2×=[(a+1)2+(2a﹣1)2+(a﹣2)2]=(a2﹣a+1)=(a﹣)2+∵0<a<1,∴D(X)先减小后增大故选:D.【点评】本题考查方差的求法,利用二次函数的单调性是关键,考查推理能力与计算能力,是中档题.3.(2019年天津理科)设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(Ⅰ)用X表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X的分布列和数学期望;(Ⅱ)设M为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M发生的概率.【分析】(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(),可求分布列及期望;(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X =3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,利用相互对立事件的个概率公式可求【解答】解:(I)甲上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,故X~B(3,),从而P(X=k )=,k=0,1,2,3.所以,随机变量X的分布列为:X0123P随机变量X的期望E(X)=3×=2.(II)设乙同学上学期间的三天中7:30到校的天数为Y,则Y~B(3,),且M={X=3,Y=1}∪{X=2,Y=0},由题意知{X=3,Y=1}与{X=2,Y=0}互斥,且{X=3}与{Y=1},{X=2}与{Y=0}相互独立,由(I)知,P(M)=P({X=3,Y=1}∪{X=2,Y=0}=P({X=3,Y=1}+P{X=2,Y =0}=P(X=3)P(Y=1)+P(X=2)P(Y=0)==【点评】本题主要考查了离散型随机变量的分布列与期望,互斥事件与相互独立事件的概率计算公式,考查运算概率公式解决实际问题的能力.4.(2019年北京理科)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(0,1000](1000,2000]大于2000仅使用A18人9人3人仅使用B10人14人1人(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【分析】(Ⅰ)从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,从而A,B两种支付方式都使用的人数有40人,由此能求出从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率.(Ⅱ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,求出P(E)=,答案示例1:可以认为有变化.P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,可以认为有变化.答案示例2:无法确定有没有变化.事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,无法确定有没有变化.【解答】解:(Ⅰ)由题意得:从全校所有学生中随机抽取的100人中,A,B两种支付方式都不使用的有5人,仅使用A的有30人,仅使用B的有25人,∴A,B两种支付方式都使用的人数有:100﹣5﹣30﹣25=40,∴从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率p==0.4.(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,则X的可能取值为0,1,2,样本仅使用A的学生有30人,其中支付金额在(0,1000]的有18人,超过1000元的有12人,样本仅使用B的学生有25人,其中支付金额在(0,1000]的有10人,超过1000元的有15人,P(X=0)===,P(X=1)===,P(X=2)===,∴X的分布列为:X012P数学期望E(X)==1.(Ⅲ)记事件E为“从样本仅使用A的学生中随机抽查3人,他们本月的支付金额都大于2000元”,假设样本仅使用A的学生中,本月支付金额额大于2000元的人数没有变化,则由上个月的样本数据得P(E)==,答案示例1:可以认为有变化,理由如下:P(E)比较小,概率比较小的事件一般不容易发生,一旦发生,就有理由认为本月的支付金额发生了变化,∴可以认为有变化.答案示例2:无法确定有没有变化,理由如下:事件E是随机事件,P(E)比较小,一般不容易发生,但还是有可能发生,∴无法确定有没有变化.【点评】本题考查概率、离散型随机变量的分布列、数学期望的求法,考查古典概型、相互独立事件概率乘法公式等基础知识,考查推理能力与计算能力,是中档题.5.(2019年新课标Ⅰ理科)为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得﹣1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得﹣1分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.(1)求X的分布列;(2)若甲药、乙药在试验开始时都赋予4分,p i(i=0,1,…,8)表示“甲药的累计得分为i时,最终认为甲药比乙药更有效”的概率,则p0=0,p8=1,p i=ap i﹣1+bp i+cp i+1。
数学高考复习名师精品教案:第91课时:第十一章 概率与统计率-抽样方法、总体分布的估计

数学高考复习名师精品教案第91课时:第十一章概率与统计率——抽样方法、总体分布的估计课题:抽样方法、总体分布的估计一.复习目标:抽样方法、总体分布的估计1.会用简单随机抽样法、系统抽样法、分层抽样法等常用方法从总体中抽取样本;2.了解统计的基本思想,会用样本频率估计总体分布.二.知识要点:1.(1)统计的基本思想是.(2)平均数的概念.(3)方差公式为.2.常用的抽样方法是.三.课前预习:1.某公司甲、乙、丙、丁四个地区分别有150 个、120个、180个、150个销售点.公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为①;在丙地区中有20个特大型销售点,要从中抽取7个调查其收入和售后服务等情况,记这项调查为②.则完成①、②这两项调查宜采用的抽样方法依次是( B )A分层抽样法,系统抽样法()B分层抽样法,简单随机抽样法()()C 系统抽样法,分层抽样法 ()D 简单随机抽样法,分层抽样法2.已知样本方差由102211(5)10ii sx ==-∑,求得,则1210x x x +++= 50.3.设有n 个样本12,,,n x x x ,其标准差为x s ,另有n 个样本12,,,n y y y ,且35kk y x =+(1,2,,)k n = ,其标准差为ys ,则下列关系正确的是 ( B ) ()A 35y x s s =+ ()B 3y xs s = ()C y x s =()D 5y x s =+4.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( B )()A 0.6小时 ()B 0.9小时 ()C 1.0小时 ()D 1.5小时5.x 是12100,,x x x 的平均数,a 是1240,,x x x 的平均数,b 是4142100,,x x x 的平均数,则x ,a ,b 之间的关系为4060100a b x +=.6.某校有老师200人,男学生1200人,女学生1000人.现用分层抽样的方法从所有师生中抽取一个容量为n 的样本;已知从女学生中抽取的人数为80人,则n =112.7.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分时间(小时)0 1.0成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m k+的个位数字相同,若6m=,则在第7组中抽取的号码是63 .8.在样本的频率分布直方图中,共有11个小长方形,若中间一个小长方形的面,且样本容量为160,则中间一组的频积等于其他10个小长方形的面积之和的14数为 32 .四.例题分析:例1.某中学有员工160人,其中中高级教师48人,一般教师64人,管理人员16人,行政人员32人,从中抽取容量为20的一个样本.以此例说明,无论使用三种常用的抽样方法中的哪一种方法,总体中的每个个体抽到的概率都相同.解:(1)(简单随机抽样)可采用抽签法,将160人从1到160编号,然后从中抽取20个签,与签号相同的20个人被选出.显然每个个体抽到的概率为201=.1608(2)(系统抽样法)将160人从1到160编号,,按编号顺序分成20组,每组8人,先在第一组中用抽签法抽出k号(18+(1,2,3,19)k n≤≤),其余组的8kn= 也被抽到,显然每个个体抽到的概率为1.8(3)(分层抽样法)四类人员的人数比为3:4:1:2,又34⨯=⨯=206,208101012⨯=⨯=,所以从中高级教师、一般教师、管理人员、行政人员中分202,2041010.别抽取6人、8人、2人、4人,每个个体抽到的概率为18例2.质检部门对甲、乙两种日光灯的使用时间进行了破坏性试验,10次试验得到的两种日光灯的使用时间如下表所示,问:哪一种质量相对好一些?解:甲的平均使用寿命为:甲x =101214032130321202211012100⨯+⨯+⨯+⨯+⨯ =2121(h ),甲的平均使用寿命为 : 乙x =101214022130521201211012100⨯+⨯+⨯+⨯+⨯=2121(h ),甲的方差为:2甲S =101999191142122222+⨯+⨯+⨯+=129(h 2),乙的方差为:2乙S =101214022130521201211012100⨯+⨯+⨯+⨯+⨯=109(h 2),∵甲x =乙x ,且2甲S >2乙S ,∴乙的质量好一些.例3.下表给出了某学校120名12岁男生的身高统计分组与频数(单位:cm).(1)列出样本的频率分布表(含累积频率);(2)画出频率分布直方图;(3)根据累积频率分布,估计小于134的数据约占多少百分比.解:(1)样本的频率分布表与累积频率表如下:频率直方下:122 126 130 134 138 142 146 150 154 158 身高(cm)(3)根据累积频率分布,小于134的数据约占23100%19.2%120⨯≈.五.课后作业:1.一个单位有职工160人,其中业务人员96人,管理人员40人,后勤人员24人,为了解职工身体情况,要从中抽取一个容量为20的样本,如用分层抽样,则管理人员应抽到多少个()()A3()B12()C5()D102.欲对某商场作一简要审计,通过检查发票及销售记录的2%来快速估计每月的销售总额.现采用如下方法:从某本50张的发票存根中随机抽一张,如15号,然后按序往后将65号,115号,165号,…发票上的销售额组成一个调查样本.这种抽取样本的方法是()()A简单随机抽样()B系统抽样()C分层抽样()D其它方式的抽样3.在抽查某产品的尺寸过程中,将其尺寸分成若干组,[,]a b是其中一组,抽查出的个体数在该组上的频率为m,该组上的直方图的高为h,则||a b-等于()()A h m()B hm()Cmh()D与,m h无关4.一个总体的个数为n,用简单随机抽样的方法,抽取一个容量为2的样本,个体a 第一次未被抽到,个体a 第一次未被抽到第二次被抽到,以及整个过程中个体a 被抽到的概率分别是 . 5.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件,那么此样本的容量n = .6.有一组数据:)(,,,,321321n nx x x x x x x x ≤≤≤≤ ,它们的算术平均值为10,若去掉其中最大的n x ,余下数据的算术平均值为9;若去掉其中最小的1x ,余下数据的算术平均值为11,则1x 关于n 的表达式为 ;n x 关于n 的表达式为 .7.为了比较甲、乙两位划艇运动员的成绩,在相同的条件下对他们进行了6次测验,测得他们的平均速度(/m s )分别如下:甲:2.7 3.8 3.0 3.7 3.5 3.1 乙:2.9 3.9 3.8 3.4 3.6 2.8 试根据以上数据,判断他们谁更优秀.8.有一个容量为100的样本,数据的分组及各组的频数如下:(1)列出样本的频率分布表;(2)画出频率分布直方图;(3)估计数据小于30的概率.9.100名学生分四个兴趣小组参加物理、化学、数学、计算机竞赛辅导,人数别是30、27、23、20.(1)列出学生参加兴趣小组的频率分布表;(2)画出表示频率分布的条形图.。
第十一章 概率与统计

第十一章 概率与统计两个计数原理1.分类计数原理: 。
分步计数原理: 。
2.王云同学有参考书若干本,其中有5本不同的外语书,4本不同的数学书,3本不同的物理书,他欲带参考书到图书馆阅读,若他从这些参考书中带一本去图书馆,有 种不同的方法;若带外语,数学,物理各一本,有 种不同的带法;若从这些参书中选2本不同学科的参考书带到图书馆,有种不同的带法。
3.设*,x y N ∈,且4x y +≤,则点(,)x y 共有 个.、4.设{1,2,3},{4,5}A B ==,从集合A 到集合B 共可建立不同的函数个数为 . 5.一种号码锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成 个四位数字号码。
6.11n mi ji j a b==⋅∑∑展开后共有 项.例1.(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法?(2)有4名学生争夺数学、物理、化学竞赛的冠军(无并列),有多少种不同的结果? (3)某人要将4封不同的信投入3个不同信箱中,不同的投寄方法有多少种?(4)将3个不贩小球放入4个不同编号的盒子中(一个盒子只放一个小球),不同的放法有多少种?例2.在一次综艺节目的演出中,热心观众坐成四个方阵(如下图),现有4种不同颜色的T 恤衫,要求相邻方阵着不同颜色的T 恤,有多少种不同的着衣方法?例3.(1)用数字0,1,2,3,4可组成多少个不同的三位数?(2)甲、乙、丙3人互相传1只篮球,开始球在甲手中,经过5次传球后,球在甲手中,问共有多少种不同的传球方式?例4.(备选题)设整数4,(,)n P a b ≥是平面直角坐标系xOy 中的点,其中,{1,2,3,,}a b n ∈L ,a b >.(1)记n A 为满足3a b -=的点P 的个数,求n A ; (2)记n B 为满足1()3a b -是整数的点P 的个数,求n B .排列、组合的概念和运算1.排列的定义: ,叫做从n 个不同元素中取出m 个元素的一个排列.2.排列数的定义: ,叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.3.排列数公式:mn A = = ;m n A = = ;0!=4.组合的定义: ,叫做从n 个不同元素中取出n 个元素的一个组合.5.组合数的定义: ,叫做从n 个不同元素中取出m 个元素的给合数,用符号 表示.6.组合数公式:mn C = = = ;0n C = 7.组合数的两个性质:(1) (2)例1.(1)若17161554mn A =⨯⨯⨯⨯⨯L ,则n = ,m = .(2)若*n N ∈,则(55)(56)(57)(68)n n n n ----L 用排列数符号表示为(3)若33210n n A A =,则n =(4)若75589n nnA A A -=,则n = 例2.(1)若*x N ∈,求123231x x x x C A ---++的所有可能值.(2)求11224n nn n A A -++的值.例3.(1)化学:1!22!33!!n n +⋅+⋅++⋅L (2)化简:12312!3!4!!n n -++++L (3)化简:122nn n n C C nC +++L例4.(备选题)已知(2)p p ≥是给定的某个正整数,数列{}n a 满足:111,(1)()k k a k a p k p a +=+=-,其中1,2,3,,1k p =-L .(1)设4,p =求234,,a a a ; (2)求123p a a a a ++++L .二项式定理及通项公式的应用1.二项式定理:对于*n N ∈,()na b += ,二项式展开式的通项公式为 ,二项式展开式中第r 项的二项式系数为 ,要分清展开式中第一项的系数与该项的二项式系数.2.6(23)a b +的展开式的第3项是 ;6(32)b a +的展开式的第3项是 . 3.15(12)x -的展开式的第1r +项为 .4.37(2)x x +展开式的第4项的二项式系数是 ,第4项的系数是 .5.*n N ∈,式子01122(1)2(1)n n k k n k n n n n n C C C C ---++-++-L L = .例1.求10的展开式中,求:(1)第3项的二项式系数及系数;(2)含2x 的项及系数;(3)常数项、有理项.例2.(1)已知9a x ⎛- ⎝的展开式中3x 的系数为94,求常数a 的值 (2)求2521(2)x x++的展开式中2x 项 (3)求64(1)(1)x x -+展开式中3x 的系数例3.(1)求100.998的近似值(精确到0.01) (2)当n 为正奇数时,求112215555n n n n n n n C C C ---++++L 被7除所得的余数.(3)当*3,n n N ≥∈,求证:221nn >+例4.(备选题)是否存在等比数列{}n a ,使12121(1)2nn nnn na C a C a C --+++=L 对一切*n N ∈都成立?如存在,求出n a ;如不存在,请说明理由.二项式系数的性质及应用1.二项式系数的性质(1)对称性:在()na b +展开式中, 的两项的二项式系数相等.(2)增减性与最大值;当12n k +<时,二项式系数是逐渐 的,由对称性知它的后半部分是逐渐的,且在中间取得最大值,当n 是偶数时,中间的一项 取得最大值;当n 是奇数时,中间两项 相等,且同时取得最大值.(3)二项式系数的和:012nn n n n C C C C ++++L = ;022135n n n n n n C C C C C C +++=+++L L = .2.在()nx y +的展开式中,若第7项的系数最大,则n 等于 .3.若29323636012,(2),n n n n n C C x a a x a x a x ++=-=++++L 则011n a a a -+++L = ;12323n a a a na ++++L = .4.函数1010()(1cos )(1cos )(0)f x x x x π=++-≤≤的最大值为 .5.若1)nx的展开式中各项系数和为P ,所有二项式系数和为2,272,r n S P S C +=最大,则r .例1.(1)求7(2)x y +展开式中系数最大的项;(2)求7(2)x y -展开工中系数最大的项.例2.求12(13)x -的展开式中 (1)各项二项式系数之和; (2)奇数项二项式系数和; (3)各项系数和; (4)各项系数绝对值的和.例3.已知数列{}n a 的首项为1,011222111231()(1)(1)(1)(1)n n n n n n n n n n n n n n p x a C x a xC x a x C x a C x x a C x ----+=-+-+-++-+L .(1)若数列{}n a 是公比为2的等比数列,求(1)p -的值;(2)若数列{}n a 是公差为2的等差数列,求证:()p x 是关于x 的一次多项式.例4.(备选题)(1)当*k N ∈时,求证:(1(1k k ++-是正整数;(2)试证明大于2(1n +的最小整数能被12n +整除*()n N ∈ .排列、组合的应用题(1)1.特殊元素、特殊位置的“优先安排法” 2.正难则反:排除法(去杂法)3.相邻问题:捆绑法4.不相邻问题:插空法5.顺序一定问题:除法6.至多、至少问题:正面与反面的选择7.染色问题:“树型图法”、恰当的分类与准确的分步8.相同元素问题:隔板法例1.4男3女坐成一排,下列各小题分别有多少种排法?(1)某人必须在中间(2)某两人只能在两端(3)某人不在中间和两端(4)甲、乙两人必须相邻(5)甲、乙两人不相邻(5)甲、乙两人必须相隔1人(7)4男必须相邻(8)4男必须相邻,3女也必须相邻(9)3女不相邻(10)4男不相邻(11)4男不在两端(12)甲在乙左边(13)3男不等高,按高矮自左向右顺序排列例2.用0、1、2、3、4、5六个数字分别可以组成多少个符合下列条件的没有重复数字的自然数?(1)四位偶数(2)四位奇数(3)是25的倍数的六位数(4)比240135大的六位数(5)个位数字比十位数字小的五位数例3.某旅行社有导游9人,其中3人只会英语,2人只会日语,其余4人既会英语又会日语,现要从中选6人,其中3人做英语导游,另外3人做日语导游,则不同的选择方法有多少种?例4.(备选题)将4个编号1、2、3、4的小球放入4个编号为1、2、3、4的盒子中,(1)每盒子至多一球,有多少种放法?(2)恰好有一个空盒,有多少种放法?(3)每个盒子放一球,并且恰好有一球的编号与盒子的编号相同,有多少种放法?(4)把4个不同的小球换成4个相同的小球,恰有一个空盒子,有多少种放法?(5)把4个不同的小球换成20个相同的小球,要求每个盒子内的球数不少于它的编号数,有多少种放法?排列、组合的应用题(2)1.某天某班的课程表要排语文、数学、外语、物理、化学、体育六门课程,如果第一节不排体育,最后一节不排数学,一共有种不同的排法。
数学(文)一轮教学案:第十一章第1讲 概率 Word版含解析

第十一章 概率与统计第1讲 概率考纲展示 命题探究1 事件的相关概念(1)必然事件:在条件S 下,一定会发生的事件.(2)不可能事件:在条件S 下,一定不会发生的事件.(3)随机事件:在条件S 下可能发生也可能不发生的事件. 2 频率与概率(1)事件的频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率.(2)概率的统计定义:在相同的条件下,大量重复进行同一试验时,随机事件A 发生的频率f n (A )=n A n 会在某个常数附近摆动,则把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率.3 事件间的关系及运算与事件B互斥对立事件若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件—4概率的性质(1)任何事件的概率都在0~1之间,即0≤P(A)≤1.必然事件的概率为1,不可能事件的概率为0.(2)当事件A与事件B互斥时,P(A∪B)=P(A)+P(B).上述公式称为互斥事件的概率加法公式.(3)对立事件的概率之和为1,即若事件A与事件B对立,则P(A)+P(B)=1.注意点频率与概率的关系及并事件、互斥事件的理解(1)频率在一定程度上可以反映事件发生的可能性的大小.因为频率不是一个完全确定的数,随着试验次数的不同产生的频率也可能不同,所以频率无法从根本上来刻画事件发生的可能性的大小.但从大量的重复试验中发现,随着试验次数的增加,频率就稳定在某一固定的值上,频率具有某种稳定性.概率是一个常数,它是频率的科学抽象,当试验次数增加时,所得的频率可近似地当作事件的概率.(2)并(和)事件包含三种情况:①事件A发生,事件B不发生;②事件A不发生,事件B发生;③事件A,B都发生.即事件A,B至少有一个发生.(3)互斥事件具体包括三种不同的情形:①事件A发生且事件B 不发生;②事件A不发生且事件B发生;③事件A与事件B都不发生.1.思维辨析(1)事件发生的频率与概率是相同的.()(2)随机事件和随机试验是一回事.()(3)在大量重复试验中,概率是频率的稳定值.()(4)两个事件的和事件是指两个事件至少有一个发生.( ) 答案 (1)× (2)× (3)√ (4)√2.从装有红球和绿球的口袋内任取2球(已知口袋中的红球、绿球数都大于2),那么互斥而不对立的两个事件是( )A .至少有一个是红球,至少有一个是绿球B .恰有一个红球,恰有两个绿球C .至少有一个红球,都是红球D .至少有一个红球,都是绿球答案 B解析 选项A 、C 中两事件可以同时发生,故不是互斥事件;选项B 中两事件不可能同时发生,因此是互斥的,但两事件不对立;选项D 中的两事件是对立事件.故选B.3.抛掷一粒骰子,观察掷出的点数,设事件A 为出现奇数点,事件B 为出现2点,已知P (A )=12,P (B )=16,则出现奇数点或2点的概率之和为________.答案 23解析 出现奇数点或2点的事件为A ∪B ,且A ,B 为互斥事件,∴P (A ∪B )=P (A )+P (B ).∴P (A ∪B )=12+16=23.[考法综述] 随机事件的概率、互斥事件、对立事件的概率为高考常考内容,多与古典概型及独立事件进行综合考查.命题法 随机事件、互斥、对立事件的概率典例(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率;(2)求该地1位车主甲、乙两种保险都不购买的概率.[解] 记A 表示事件:该车主购买甲种保险;B 表示事件:该车主购买乙种保险但不购买甲种保险;C 表示事件:该车主至少购买甲、乙两种保险中的1种;D 表示事件:该车主甲、乙两种保险都不购买.(1)由题意得P (AP (BC =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B(2)因为D 与C 是对立事件,所以P (D )=1-P (C【解题法】 互斥与对立的关系及解决此类问题的方法(1)互斥与对立的关系①两个事件互斥未必对立,但对立一定互斥.②只有事件A ,B 互斥时,才有公式P (A ∪B )=P (A )+P (B ),否则公式不成立.(2)解决互斥与对立事件问题时的方法策略①解决此类问题,首先应根据互斥事件和对立事件的定义分析出是不是互斥事件或对立事件,再选择概率公式进行计算.②求复杂的互斥事件的概率一般有两种方法:a .直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.b .间接法:先求此事件的对立事件的概率,再用公式P (A )=1-P (A )求解,即运用正难则反的数学思想.特别是“至多”“至少”型问题,用间接法就显得较简便.1.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( )A.18B.38C.58D.78答案 D解析 由题意知4位同学各自在周六、周日两天中任选一天参加公益活动有24种情况,而4位同学都选周六有1种情况,4位同学都选周日有1种情况,故周六、周日都有同学参加公益活动的概率为P =24-1-124=1416=78,故选D.2.袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球. 从中一次随机摸出2只球,则这2只球颜色不同的概率为________.答案 56解析 4只球分别记为白、红、黄1、黄2,则从中一次摸出2只球所有可能的情况有:白红、白黄1、白黄2、红黄1、红黄2、黄1黄2,共6种情况,其中2只球颜色不同的有5种,故P =56.3.现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为________.答案 2063解析 由题意知m 的可能取值为1,2,3,…,7;n 的可能取值为1,2,3…,9.由于是任取m ,n :若m =1时,n 可取1,2,3,…,9,共9种情况;同理m 取2,3,…,7时,n 也各有9种情况,故m ,n 的取值情况共有7×9=63种.若m ,n 都取奇数,则m 的取值为1,3,5,7;n 的取值为1,3,5,7,9,因此满足条件的情形有4×5=20种.故所求概率为2063.4.A ,B 两组各有7位病人,他们服用某种药物后的康复时间(单位:天)记录如下:A 组:10,11,12,13,14,15,16;B 组:12,13,15,16,17,14,a .假设所有病人的康复时间相互独立.从A ,B 两组随机各选1人,A 组选出的人记为甲,B 组选出的人记为乙.(1)求甲的康复时间不少于14天的概率;(2)如果a =25, 求甲的康复时间比乙的康复时间长的概率;(3)当a 为何值时,A ,B 两组病人康复时间的方差相等?(结论不要求证明)解 设事件A i 为“甲是A 组的第i 个人”,事件B i为“乙是B组的第i个人”,i=1,2, (7)由题意可知P(A i)=P(B i)=17,i=1,2, (7)(1)由题意知,事件“甲的康复时间不少于14天”等价于“甲是A组的第5人,或者第6人,或者第7人”,所以甲的康复时间不少于14天的概率是P(A5∪A6∪A7)=P(A5)+P(A6)+P(A7)=3 7.(2)设事件C为“甲的康复时间比乙的康复时间长”.由题意知,C=A4B1∪A5B1∪A6B1∪A7B1∪A5B2∪A6B2∪A7B2∪A7B3∪A6B6∪A7B6.因此P(C)=P(A4B1)+P(A5B1)+P(A6B1)+P(A7B1)+P(A5B2)+P(A6B2)+P(A7B2)+P(A7B3)+P(A6B6)+P(A7B6)=10P(A4B1)=10P(A4)P(B1)=10 49.(3)a=11或a=18.1基本事件一次试验中可能出现的每一个结果称为一个基本事件.基本事件有如下特点:(1)任何两个基本事件都是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和.2古典概型的概念及特点我们将具有下面两个特点的概率模型称为古典概率模型,简称古典概型:(1)有限性,即在一次试验中,基本事件的个数是有限的;(2)等可能性,即每个基本事件出现的可能性是相等的.3古典概型的概率公式P(A)=A包含的基本事件的个数基本事件的总数.注意点如何判断一个试验为古典概型(1)一个试验是否为古典概型,在于这个试验是否具有古典概型的两个特征——有限性和等可能性.(2)古典概型的概率计算结果与模型的选择无关.1.思维辨析(1)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.( )(2)从-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同.( )(3)分别从3名男同学、4名女同学中各选一名作代表,那么每个同学当选的可能性相同.( )(4)利用古典概型的概率公式求“在边长为2的正方形内任取一点,这点到正方形中心距离小于或等于1”的概率.( )(5)从长为1的线段AB 上任取一点C ,求满足AC ≤13的概率是多少”是古典概型.( )答案 (1)× (2)√ (3)× (4)× (5)×2.下面关于古典概型的说法正确的是( )①我们所说的试验都是古典概型;②“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”;③掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个结果是等可能事件;④在古典概型中,如果事件A 中基本事件构成集合A ,且A 中的元素个数为n ,所有的基本事件构成集合I ,且I 中元素个数为m ,则事件A 的概率为n m .A .①②B .③④C .②D .④答案 D解析 ①错误.在一次试验中,可能出现的结果是有限个,并且每个试验结果的可能性是均等的,这样的试验才是古典概型.②错误.它不符合古典概型的定义中每个基本事件发生的可能性相等.③错误.掷一枚硬币两次,出现“正、正”“正、反”“反、正”“反、反”,这四个事件是等可能事件.④正确.由古典概型的概率公式可知,该说法正确.3.如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数.从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( ) A.310B.15C.110D.120 答案 C解析 从1,2,3,4,5中任取3个不同的数,有{1,2,3}、{1,2,4}、{1,2,5}、{1,3,4}、{1,3,5}、{1,4,5}、{2,3,4}、{2,3,5}、{2,4,5}、{3,4,5}共10个基本事件,其中这3个数能构成一组勾股数的只有{3,4,5},∴所求概率为110,故选C.[考法综述] 古典概型是概率知识的基础,常与互斥事件、对立事件等知识相结合,以实际或数学其他领域的材料为背景考查,难度容易或中等.命题法 求古典概型的概率典例 某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表: 一年级二年级 三年级 男同学A B C 女同学 X Y Z的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.[解] (1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.【解题法】 求古典概型概率的步骤(1)反复阅读题目,收集题目中的各种信息,理解题意.(2)判断试验是否为古典概型,并用字母表示所求事件.(3)利用列举法求出总的基本事件的个数n 及事件A 中包含的基本事件的个数m .(4)计算事件A 的概率P (A )=m n .1.已知5件产品中有2件次品,其余为合格品.现在从这5件产品中任取2件,恰有一件次品的概率为( )BD .1答案 B解析 设5件产品中合格品分别为A 1,A 2,A 3,2件次品分别为B 1,B 2,则从5件产品中任取2件的所有基本事件为:A 1A 2,A 1A 3,A 1B 1,A 1B 2,A 2A 3,A 2B 1,A 2B 2,A 3B 1,A 3B 2,B 1B 2,共10个,其中恰有一件次品的所有基本事件为:A 1B 1,A 1B 2,A 2B 1,A 2B 2,A 3B 1,A 3B 2,共6个.故所求的概率为P =6102.从正方形四个顶点及其中心这5个点中,任取2个点,则这2个点的距离小于该正方形边长的概率为( )A.15B.25C.35D.45答案 B 解析 设正方形的四个顶点分别是A ,B ,C ,D ,中心为O ,从这5个点中,任取两个点的事件分别为AB ,AC ,AD ,AO ,BC ,BD ,BO ,CD ,CO ,DO ,共有10种,其中只有顶点到中心O 的距离小于正方形的边长,分别是AO ,BO ,CO ,DO ,共有4种.故满足条件的概率P =410=25.故选B.3.有一个奇数列,1,3,5,7,9,…,现在进行如下分组,第一组有1个数为1,第二组有2个数为3、5,第三组有3个数为7、9、11,…,依此类推,则从第十组中随机抽取一个数恰为3的倍数的概率为( )A.110B.310C.15D.35 答案 B解析 将数列1,3,5,7,9…记为{a n },则前九组共有1+2+3+…+9=45个奇数,故第十组中第一个数字为a 46=2×46-1=91,第十组共有10个奇数,分别是91,93,95,97,99,101,103,105,107,109这10个数字,其中为3的倍数的数有93,99,105三个,故所求概率为P =310.4.甲乙两人一起去游泰山,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是( )A. 136B. 19C. 536D. 16 答案 D解析 最后一个景点甲有6种选法,乙有6种选法,共有36种,他们选择相同的景点有6种,所以P =636=16,所以选D.5.从分别写有1,2,3,4,5的五张卡片中任取两张,假设每张卡片被取到的概率相等,且每张卡片上只有一个数字,则取到的两张卡片上的数字之和为偶数的概率为( )A.45B.1625 C.1325 D.25答案 D解析 从分别写有1,2,3,4,5的五张卡片中任取两张,总的情况为:(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,2),(3,4),(3,5),(4,1),(4,2),(4,3),(4,5),(5,1),(5,2),(5,3),(5,4)共20种情况.两张卡片上的数字之和为偶数的有:(1,3),(1,5),(2,4),(3,1),(3,5),(4,2),(5,1),(5,3)共8种情况.∴从分别写有1,2,3,4,5的五张卡片中任取两张,这两张卡片上的数字之和为偶数的概率P =820=25.故选D.6.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为________.答案 25解析 基本事件总数有10个,即(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e ),其中含a 的基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),共4个,故由古典概型知所求事件的概率P =410=25.7.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.答案 13解析 从1,2,3,6这4个数中随机地取2个数,不同的取法为{1,2},{1,3},{1,6},{2,3},{2,6},{3,6}共6个基本事件,其中乘积为6的有{1,6},{2,3}两个基本事件,因此所求事件的概率为P =26=13.8.甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为________.答案 13解析 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种的所有可能情况为(红,白),(白,红),(红,蓝),(蓝,红),(白,蓝),(蓝,白),(红,红),(白,白),(蓝,蓝),共9种,他们选择相同颜色运动服的所有可能情况为(红,红),(白,白),(蓝,蓝),共3种.故所求概率为P =39=13.1 几何概型的概念如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.2 几何概型的特点(1)无限性,即试验中所有可能出现的基本事件有无限多个; (2)等可能性,即每个基本事件发生的可能性相等. 3 几何概型的概率计算公式在几何概型中,事件A 的概率的计算公式如下: P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).注意点 与长度、角度有关的几何概型怎样区分(1)设线段l 是线段L 的一部分,向线段L 上任投一点,点落在线段l 上的概率为P =l 的长度L 的长度.(2)当涉及射线的转动,如扇形中有关落点区域问题时,应以角的大小作为区域度量来计算概率,且不可用线段代替,这是两种不同的度量手段.1.思维辨析(1)随机模拟方法是以事件发生的频率估计概率.( ) (2)相同环境下两次随机模拟得到的概率的估计值是相等的.( )(3)几何概型中,每—个基本事件就是从某个特定的几何区域内随机地取一点,该区域中的每—点被取到的机会相等.( )(4)在几何概型定义中的区域可以是线段、平面图形、立体图形.( )答案 (1)√ (2)× (3)√ (4)√2.在区间[-3,5]上随机取一个数x ,则x ∈[1,3]的概率为( ) A.38 B.13 C.14 D.25答案 C解析 记“x ∈[1,3]”为事件A ,则由几何概型的计算公式可得P (A )=3-15+3=14.3.如图,在边长为a 的正方形内有不规则图形Ω,向正方形内随机撒豆子,若撒在图形Ω内和正方形内的豆子数分别为m ,n ,则图形Ω面积的估计值为( )A.ma nB.na mC.ma 2n D.na 2m 答案 C解析 因为由题意知在正方形中随机投掷n 个点,则n 个点中有m 个点落入Ω中,所以不规则图形Ω的面积:正方形的面积=m ∶n , 所以不规则图形Ω的面积=m n ×正方形的面积=m n ×a 2=ma 2n . [考法综述] 几何概型是高考的热点,考查与长度或面积有关的几何概型的求法.特别是与平面几何、函数等知识结合的几何概型是高考考查的重点内容,难度不大.命题法 求几何概型的概率典例 (1)已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于1的地方的概率为( )A.45B.35C.π60D.π3(2)A ,B ,C 是平面内不共线的三点,点P 在该平面内且有P A →+2PB →+3PC →=0,现将一粒黄豆随机撒在△ABC 内,则这粒黄豆落在△PBC 内的概率为________.[解析] (1)由题意可知,三角形的三条边长的和为5+12+13=30,而蚂蚁要在离三个顶点的距离都大于1的地方爬行,则它爬行的区域长度为3+10+11=24,根据几何概型的概率计算公式可得所求概率为2430=45.(2)由P A →+2PB →+3PC →=0⇒-AP →+2(AB →-AP →)+3(AC →-AP →)=0,得AP →=13AB →+12AC →,设C 到AB 的距离为d ,如图所示,设AE →=12AC →,AD →=13AB →,连接PE ,PD ,则S △PCE =12×13×AB ×12×d =16S △ABC ,S ABPE =12⎝ ⎛⎭⎪⎫13AB +AB ·12·d =13AB ·d =23S △ABC , 所以S △PBC =⎝ ⎛⎭⎪⎫1-16-23S △ABC =16S △ABC ,所以所求概率为16.[答案] (1)A (2)16【解题法】 应用几何概型求概率的方法建立相应的几何概型,将试验构成的总区域和所求事件构成的区域转化为几何图形,并加以度量.(1)一般地,一个连续变量可建立与长度有关的几何概型,只需把这个变量放在坐标轴上即可.(2)若一个随机事件需要用两个变量来描述,则可用这两个变量的有序实数对来表示它的基本事件,然后利用平面直角坐标系就能顺利地建立与面积有关的几何概型.(3)若一个随机事件需要用三个连续变量来描述,则可用这三个变量组成的有序数组来表示基本事件,利用空间直角坐标系即可建立与体积有关的几何概型.1.在区间[0,1]上随机取两个数x ,y ,记p 1为事件“x +y ≥12”的概率,p 2为事件“|x -y |≤12”的概率,p 3为事件“xy ≤12”的概率,则( )A .p 1<p 2<p 3B .p 2<p 3<p 1C .p 3<p 1<p 2D .p 3<p 2<p 1答案 B解析 x ,y ∈[0,1],事件“x +y ≥12”表示的区域如图(1)中阴影部分S 1,事件“|x -y |≤12”表示的区域如图(2)中阴影部分S 2,事件“xy ≤12”表示的区域如图(3)中阴影部分S 3.由图知,阴影部分的面积S 2<S 3<S 1,正方形的面积为1×1=1.根据几何概型的概率计算公式,可得p 2<p 3<p 1.2.设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π答案 B解析 ∵|z |≤1,∴(x -1)2+y 2≤1,表示以M (1,0)为圆心,1为半径的圆及其内部,该圆的面积为π.易知直线y =x 与圆(x -1)2+y 2=1相交于O (0,0),A (1,1)两点,作图如下:∵∠OMA =90°,∴S 阴影=π4-12×1×1=π4-12. 故所求的概率P =S 阴影S ⊙M =π4-12π=14-12π.3.由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为( )A.18B.14C.34D.78答案 D解析 如图,由题意知平面区域Ω1的面积SΩ1=S △AOM =12×2×2=2.Ω1与Ω2的公共区域为阴影部分,面积S 阴=SΩ1-S △ABC =2-12×1×12=74.由几何概型得该点恰好落在Ω2内的概率P =S 阴SΩ1=742=78.故选D.4. 如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0),且点C 与点D 在函数f (x )=⎩⎨⎧x +1,x ≥0,-12x +1,x <0的图象上.若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于( )A.16B.14C.38D.12答案 B解析 依题意得,点C 的坐标为(1,2),所以点D 的坐标为(-2,2),所以矩形ABCD 的面积S 矩形ABCD =3×2=6,阴影部分的面积S 阴影=12×3×1=32,根据几何概型的概率求解公式,得所求的概率P =S 阴影S 矩形ABCD =326=14,故选B.5.某校早上8:00开始上课,假设该校学生小张与小王在早上7:30~7:50之间到校,且每人在该时间段的任何时刻到校是等可能的,则小张比小王至少早5分钟到校的概率为________.(用数字作答)答案 932解析 设小张与小王的到校时间分别为7:00后第x 分钟,第y 分钟,根据题意可画出图形,如图所示,则总事件所占的面积为(50-30)2=400.小张比小王至少早5分钟到校表示的事件A ={(x ,y )|y -x ≥5,30≤x ≤50,30≤y ≤50},如图中阴影部分所示,阴影部分所占的面积为12×15×15=2252,所以小张比小王至少早5分钟到校的概率为P (A )=2252400=932.6.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为________.答案 1-π12解析 如图,与点O 距离等于1的点的轨迹是一个半球面,其体积为V 1=12×43π×13=2π3.事件“点P 与点O 距离大于1的概率”对应的区域体积为23-2π3,根据几何概型概率公式得,点P 与点O 距离大于1的概率P =23-2π323=1-π12.7.若在区间[-2,4]上随机地取一个数x ,则满足|x |≤3的概率为________.答案 56解析 由|x |≤3,所以-3≤x ≤3.所以在区间[-2,4]上随机地取一个数x ,满足|x |≤3的区间为[-2,3],故所求概率为3-(-2)4-(-2)=56.若将一枚质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率为________.[错解][错因分析] 对等可能事件的概率求法中“基本事件”和“等可能性”的概率理解不清楚,数错了基本事件的个数.[正解] 先后掷两次出现的点数记作(x ,y ),共有6×6=36个基本事件,而向上点数和为4的基本事件有:(1,3),(2,2),(3,1)共3个.所以所求概率为P =336=112.[答案] 112 [心得体会]………………………………………………………………………………………………时间:50分钟基础组1.[2016·枣强中学预测]4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为偶数的概率为( )A.12B.13C.23D.34答案 B解析 因为从4张卡片中任取出2张共有6种情况,其中2张卡片上数字之和为偶数的共有2种情况,所以2张数字之和为偶数的概率为13.2.[2016·冀州中学一轮检测]将一颗骰子抛掷两次,所得向上点数分别为m ,n ,则函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是( )A.12B.56C.34D.23答案 B解析 ∵y =23mx 3-nx +1,∴y ′=2mx 2-n . 令y ′=0得x =± n 2m ,∴x 1=n2m ,x 2=-n2m 是函数的两个极值点,∴函数在⎣⎢⎡⎭⎪⎫n2m ,+∞上是增函数,则n2m ≤1,即n ≤2m .通过建立关于m ,n 的坐标系可得出满足n ≤2m 的有30个, 由古典概型公式可得函数y =23mx 3-nx +1在[1,+∞)上为增函数的概率是P =3036=56.故选B.3. [2016·武邑中学一轮检测]设A 为圆周上一点,在圆周上等可能地任取一点与A 连接,则弦长超过半径2倍的概率是( )A.34B.12C.13D.35答案 B解析 作等腰直角三角形AOC 和AMC ,B 为圆上任一点,则当点B 在上运动时,弦长|AB |>2R ,∴P =圆的周长=12.故选B.4.[2016·武邑中学月考]ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π8答案 B解析 如图,根据几何概型概率公式得所求概率为P =阴影部分面积S 长方形ABCD=2-12π·122=1-π4.故选B. 5.[2016·衡水中学热身]如图所示方格,在每一个方格中填入一个数字,数字可以是1,2,3,4中的任何一个,允许重复.则填入A 方格的数字大于B 方格的数字的概率为( ) A.12 B.14C.34D.38 答案 D解析 只考虑A ,B 两个方格的排法.不考虑大小,A ,B 两个方格有4×4=16(种)排法.要使填入A 方格的数字大于B 方格的数字,则从1,2,3,4中选2个数字,大的放入A 格,小的放入B 格,有(4,3),(4,2),(4,1),(3,2),(3,1),(2,1),共6种,故填入A 方格的数字大于B 方格的数字的概率为616=38,选D.6.[2016·冀州中学期末]设p 在[0,5]上随机地取值,则方程x 2+px +p 4+12=0有实数根的概率为________.答案 35解析 一元二次方程有实数根即Δ=p 2-4⎝ ⎛⎭⎪⎫p 4+12=(p +1)(p -2)≥0,解得p ≤-1或p ≥2,故所求概率为5-25=35.7.[2016·衡水中学预测]从分别写有0,1,2,3,4的五张卡片中取出一张卡片,记下数字后放回,再从中取出一张卡片.则两次取出的卡片上的数字之和恰好等于4的概率是________.答案 15解析 从0,1,2,3,4五张卡片中取出两张卡片的结果有25种,数字之和恰好等于4的结果有(0,4),(1,3),(2,2),(3,1),(4,0),所以数字和恰好等于4的概率是P =15.8.[2016·枣强中学热身]现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为________.答案 23解析 从甲、乙、丙3人中随机选派2人,共有甲乙、甲丙、乙丙三种选法,其中甲被选中有甲乙、甲丙两种选法,所以甲被选中的概率为23.9.[2016·衡水中学猜题]某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A ,B ,C .求:(1)P (A ),P (B ),P (C );(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P (A )=11000,P (B )=101000=1100,P (C )=501000=120.(2)因为事件A ,B ,C 两两互斥,所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=11000+1100+120=611000.故1张奖券的中奖概率为611000.(3)P (A ∪B )=1-P (A +B )=1-⎝ ⎛⎭⎪⎫11000+1100=9891000. 故1张奖券不中特等奖且不中一等奖的概率为9891000.10.[2016·衡水中学一轮检测]某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)解 (1)由已知得25+y +10=55,x +30=45,所以x =15,y =20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为(2)记A 表示事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“”“该顾客一次购物的结算时间为2分钟”.将频率视为概率得P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14.因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710.故一位顾客一次购物的结算时间不超过2分钟的概率为710.11.[2016·冀州中学热身]一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取一张,将抽取的卡片上的数字依次记为a ,b ,c .(1)求“抽取的卡片上的数字满足a +b =c ”的概率;(2)求“抽取的卡片上的数字a ,b ,c 不完全相同”的概率. 解 (1)由题意,(a ,b ,c )所有可能的结果为:(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种,所以P (A )=327=19,故“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P (B )=1-P (B )=1-327=89,故“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.12. [2016·衡水二中周测]设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根的充要条件为a ≥b .。
高中数学11.1概率

第十一章概率与统计一概率【考点阐述】随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.【考试要求】(1)了解随机事件的发生存在着规律性和随机事件概率的意义.(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率.(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.(4)会计算事件在n次独立重复试验中恰好发生κ次的概率.【考题分类】(一)选择题(共8题)1.(福建卷理5)某一批花生种子,如果每1粒发牙的概率为45,那么播下4粒种子恰有2粒发芽的概率是()A.16625B.96625C.192625D.256625【标准答案】B【试题解析】由222444196 (2)55625 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项,当然这题因为数字的原因不涉及.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.2.(福建卷文5)某一批花生种子,如果每1粒发芽的概率为45,那么播下3粒种子恰有2粒发芽的概率是()A.12125B.16125C.48125D.96125【标准答案】C【标准答案】由212334148 (2)55125 P C⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭【高考考点】独立重复实验的判断及计算【易错提醒】容易记成二项展开式的通项.【学科网备考提示】请考生注意该公式与二项展开式的通项的区别,所以要强化公式的记忆.3.(江西卷理11文11)电子钟一天显示的时间是从00:00到23:59的每一时刻都由四个数字组成,则一天中任一时刻的四个数字之和为23的概率为()A.1180B.1288C.1360D.1480【标准答案】C.【标准答案】一天显示的时间总共有24601440⨯=种,和为23总共有4种,故所求概率为1360. 4. (辽宁卷理7文7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .34【答案】:C 【解析】:本小题主要考查等可能事件概率求解问题。
概率论讲座讲义

2018级数学辅导讲义(十一):概率论与数理统计2019.5一、随机事件的概率:1.概率的五大公式(1)加法公式:()()()()P A B P A P B P AB =+- ;(2)减法公式:()()()()P A B P A B P A P AB -==-;(3)乘法公式:()(|)()P AB P B A P A =;(4)全概率公式:1122()(|)()(|)()(|)()n n P A P A B P B P A B P B P A B P B =+++ ;(5)贝叶斯公式:1122(|)()(|)(|)()(|)()(|)()i i i n n P A B P B P B A P A B P B P A B P B P A B P B =+++ .2.随机事件的独立性若()()()P AB P A P B =,则称事件,A B 相互独立.【例1】()0.8P B A = ,()0.4P B =,则(|)P A B =.【解】【例2】(1)甲、已两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,则两人中至少一人射中的概率为;(2)甲、已两人任选一人对同一目标射击一次,其命中率分别为0.6和0.5,则目标被甲射中的概率为;(3)甲、已两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被射中,则它是甲射中的概率为;(4)甲、已两人任选一人对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被射中,则它是甲射中的概率为.【解】二、一维随机变量及其分布:1.一维离散型随机变量与连续型随机变量的概率分布、概率和分布:分布离散型随机变量连续型随机变量概率分布概率和分布2.一维连续型随机变量的概率与分布函数、概率密度的关系:3.分布函数的性质:4.分布律的性质:5.概率密度的性质:【例3】(1)设随机变量X 的概率密度为1,02,()0,kx x f x +≤≤⎧=⎨⎩其他,则{11}P X -≤<=.(2)设随机变量X 的分布函数为2,0,(1)(),0,b a x x F x c x ⎧+>⎪+=⎨⎪≤⎩则X 的概率密度()f x =.【解】【例4】已知,04~()80,X xx X f x ⎧<<⎪=⎨⎪⎩其他,求21Y X =+的概率密度.【解】三、二维随机变量及其分布:1.二维随机变量的联合分布、边缘分布与条件分布:分布分布律概率密度分布函数联合分布边缘分布条件分布2.二维随机变量的概率与联合概率密度的关系:3.两个随机变量的独立性:定义充要条件1(连续型随机变量)充要条件2(离散型随机变量)【例5】设二维连续型随机变量(,)X Y 的联合密度函数为,0,01,(,)0x ce y x y f x y -⎧><<=⎨⎩,其他.(1)求常数c 的值;(2)求,X Y 的边缘概率密度()X f x 和()Y f y ;(3)判断X 和Y 是否相互独立,并说明理由;(4)求{max(,)1}P X Y .【解】四、随机变量的数字特征:1.离散型随机变量与连续型随机变量的数学期望:随机变量离散型随机变量连续型随机变量一个随机变量一个随机变量的函数两个随机变量的函数2.方差的计算公式:3.协方差的计算公式:4.相关系数的计算公式:【例6】设随机变量,X Y 的概率分布分别为且22{}1P X Y ==.Y-101kp 131313X01kp 1323(1)求二维随机变量(,)X Y 的概率分布;(2)求Z XY =的概率分布;(3)求X 与Y 的相关系数XY ρ.【解】【例7】(1)设随机变量123,,X X X 相互独立,且1X 服从均匀分布[1,3]U ,2X 服从二项分布12,2B ⎛⎫ ⎪⎝⎭,3X 服从参数为2的指数分布,则12332Y X X X =-+的数学期望和方差分别为.(2)设随机变量,X Y 相互独立,且X 服从正态分布(2,1)N ,Y 服从正态分布2(1,2)N ,则{23}P X Y ->=.【解】五、中心极限定理:用于计算的“中心极限定理”:【例8】设供电站供应某地区1000户居民用电,各户用电情况相互独立。
概率与统计

概率与统计是一门重要的数学学科,在各个领域都有广泛的应用。
概率与统计不仅帮助我们理解随机事件的规律,还可以通过收集和分析数据来进行预测和决策。
首先,让我们来探讨一下概率的概念。
概率是描述事件发生可能性的度量,用一个介于0到1之间的数值表示。
0表示事件不可能发生,1表示事件一定会发生。
而在0到1之间的数值则表示事件发生的可能性大小。
概率可以通过实验、统计或推理等方法进行计算。
在生活中,我们经常会用到概率,例如天气预报中的降雨概率,投资市场中的回报概率等等。
然后是统计学,在概率的基础上,统计学通过收集、整理和分析数据来了解现象的规律。
统计学有两个主要的分支,描述统计和推断统计。
描述统计是对现有数据进行总结和分析,例如平均数、方差、标准差等。
推断统计则是通过已有数据对总体进行推断,例如对人口比例、产品质量等进行估计。
概率与统计常常相互结合,互为补充。
概率可以帮助我们预测未来事件的可能性,而统计则可以通过收集数据来加强概率推测的准确性。
例如,我们可以通过收集大量的数据,计算出某种疾病的患病率,进而预测未来某人患病的概率。
又或者,我们可以通过统计数据来评估某种药物的疗效,进而推测该药物适用于什么类型的病人。
除此之外,概率与统计还可以帮助我们做出决策。
在不确定的情况下,我们可以通过计算概率来评估不同决策的可能结果,并选择可能性最高的决策。
例如,在投资市场中,我们可以通过统计数据来评估不同投资项目的风险和收益,进而做出最明智的投资决策。
最后,概率与统计也具有广泛的应用领域。
在自然科学中,概率与统计可以帮助我们解释现象的规律,例如天气模型、物理实验等。
在社会科学中,概率与统计可以帮助我们研究人类行为和社会现象,例如经济统计、人口普查等。
在工程领域中,概率与统计可以帮助我们评估产品质量、优化生产过程等,进而提高生产效率。
综上所述,概率与统计是一门重要的数学学科,它不仅帮助我们理解随机事件的规律,还可以通过收集和分析数据来进行预测和决策。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十一.概率与统计
1.理解随机变量,离散型随机变量的定义,能够写出离散型随机变量的分布列,由概率的性质可 知,任意离散型随机变量的分布列都具有下述两个性质:⑴0,1,2,i P i ≥= ;⑵121P P ++= .
2.二项分布记作~(,)B n p ξ(,n p 为参数),()k k n k n P k C p q ξ-==,记),;(p n k b q p C k n k k n =-.
3.记住以下重要公式和结论:
⑴期望值1122n n E x p x p x p ξ=++++ .
⑵方差2221122()()()n n D x E p x E p x E p ξξξξ=-+-+⋅⋅⋅+-+⋅⋅⋅.
⑶标准差D ξδξ=;2();()E a b aE b D a b a D ξξξξ+=++=.
⑷若~(,)B n p ξ(二项分布),则E np ξ=, (1)D npq q p ξ==-.
⑸若~(,)g k p ξ(几何分布),则1
p E ξ=,2q
p D ξ=.
4.掌握抽样的三种方法:⑴简单随机抽样(包括抽签法和随机数表法);⑵(理)系统抽样,也叫等距
抽样;⑶分层抽样(按比例抽样),常用于某个总体由差异明显的几部分组成的情形.它们的共同点
都是等概率抽样.对于简单随机抽样的概念中,“每次抽取时的各个个体被抽到的概率相等”.如从
含有N 个个体的总体中,采用随机抽样法,抽取n 个个体,则每个个体第一次被抽到的概率为
1N ,第二次被抽到的概率为1N ,…,故每个个体被抽到的概率为n N ,即每个个体入样的概率为n
N . 5.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,
这种估计就越精确,要求能画出频率分布表和频率分布直方图;⑴学会用样本平均数 12111()n n i i x n
n x x x x =∑=++⋅⋅⋅+=去估计总体平均数;⑵会用样本方差222121[()()n
S x x x x =-+-+ 22221
111()]()()n n n i i i i n n x x x x x nx ==∑∑⋅⋅⋅+-=-=-去估计总体方差2σ及总体标准差;⑶学会用修正的 样本方差*2222121
1[()()()]n n S x x x x x x -=
-+-+⋅⋅⋅+-去估计总体方差2σ,会用*S 去
估计σ.
6.正态总体的概率密度函数:2
2()21
2(),x f x e x R μσπσ--=∈,式中,μσ是参数,分别表示总体的平
均
数与标准差;
7.正态曲线的性质:⑴曲线在x μ=时处于最高点,由这一点向左、向右两边延伸时,曲线逐渐降
低;⑵曲线的对称轴位置由确定;曲线的形状由确定,σ越大,曲线越矮胖;反过来曲线越高瘦.
⑶曲线在x 轴上方,并且关于直线x=μ 对称;
8.利用标准正态分布的分布函数数值表计算一般正态分布2(,)N μσ的概率12()P x x ξ<<,可由变
换x t μ
σ-=而得()()x F x μ
σ-=Φ,于是有2112()()()x x P x x μ
μ
σσξ--<<=Φ-Φ.
9.假设检验的基本思想:⑴提出统计假设,确定随机变量服从正态分布2(,)N μσ;⑵确定一 次试验中的取值a 是否落入范围(3,3)μσμσ-+;⑶作出推断:如果(3,3)a μσμσ∈-+,接受统
计假设;如果(3,3)a μσμσ∉-+,由于这是小概率事件,就拒绝假设.。