2019版泰安中考数学一轮复习《第1讲:实数及其运算》精练有答案-精编.docx
【精品】山东省泰安市2019年中考数学一轮复习第一部分系统复习成绩基石第一章数与式第1讲实数课件

8.[2015· 泰安,T4,3分]地球的表面积约为510000000km2 将510000000用科学记数法表示为( C ) A.0.51×109 B.5.1×109 C.5.1×108 D.0.51×107
,
9.[2014· 泰安,T4,3分]PM2.5是指大气中直径≤0.0000025米的颗 粒物,将0.0000025用科学记数法表示为( B ) A.2.5×10-7 B.2.5×10-6 C.25×10-7 D.0.25×10-5 10.[2013· 泰安,T3,3分]2012年我国国民生产总值约52万亿元人 民币,用科学记数法表示2012年我国国民生产总值为( D ) A.5.2×1012元 B.52×1012元 C.0.52×1014元 D.5.2×1013元 11.[2018· 泰安,T13,3分]一个铁原子的质量是 0.000000000000000000000000093kg,将这个数据用科学记数法表 示为 kg. 9.3×10-26
第一部分 系统复习 成绩基石
第一章
第 1讲
考点 实数的分类
数与式
实数
正整数 ① 整数 ________ 零 有 负整数 理 实 数 数 分 正分数 有限小数或无限② 循环 小数 数 负分数 正无理数 无限④ 不循环 小数 无理 负无理数 ③__ _ __
数
提示►常见的无理数有四种表现形式: ①含 π型; ②根式型:含开方开不尽的式子; ③构造型:有规律但不是循环的无限小数,如0.010010001…(每相邻两个1之 间0的个数依次增加1); ④某些三角函数式,如sin60°,tan30°.
考点
实数的有关概念 正方向
0 1
中考数学一轮复习各章节复习有答案完美版

中考数学一轮复习第1讲:实数概念与运算一、夯实基础1、绝对值是6的数是________2、|21|-的倒数是________________。
3、2的平方根是_________.4、下列四个实数中,比-1小的数是( )A .-2 B.0 C .1 D .25、在下列实数中,无理数是( )二、能力提升 6、小明家冰箱冷冻室的温度为-5℃,调高4℃后的温度为( ) A .4℃ B .9℃ C .-1℃ D .-9℃ 7、定义一种运算☆,其规则为a ☆b =+,根据这个规则、计算2☆3的值是( ) A .65 B .C .5D .68、下列计算不正确的是( )(A ) (B ) (C ) (D 三、课外拓展9、实数a 、b 在数轴上位置如图所示,则|a|、|b|的大小关系是________。
四、中考链接10、数轴上的点A 到原点的距离是6,则点A 表示的数为( )131a 1b 1531222-+=-21139⎛⎫-= ⎪⎝⎭33-==A. 6或6- B. 6 C. 6- D. 3或3-11、如果a与1互为相反数,则a等于().A.2 B.2- C.1 D.1-12、下列哪一选项的值介于0.2与0.3之间?()A、 4.84B、0.484C、0.0484D、0.0048413、― 2×63=14、在﹣2,2,2这三个实数中,最小的是15、写出一个大于3且小于4的无理数。
参考答案一、夯实基础1、6和-62、23、4、A5、C二、能力提升6、C7、A8、A三、课外拓展>9、a b四、中考链接10、A11、C12、C13、-214、﹣215、解:∵π≈3.14…,∴3<π<4,故答案为:π(答案不唯一).第2讲:整式与因式分解一、夯实基础1.计算(直接写出结果)①a ·a 3=③(b 3)4=④(2ab )3=⑤3x 2y ·)223y x -(=2.计算:2332)()(a a -+-= .3.计算:)(3)2(43222y x y x xy -⋅⋅-= .4.1821684=⋅⋅n n n ,求n = .5.若._____34,992213=-=⋅⋅++-m m y x y x y x n n m m 则二、能力提升6.若)5)((-+x k x 的积中不含有x 的一次项,则k 的值是()A .0B .5C .-5D .-5或57.若))(3(152n x x mx x ++=-+,则m 的值为()A .-5B .5C .-2D .28.若142-=y x ,1327+=x y ,则y x -等于()A .-5B .-3C .-1D .19.如果552=a ,443=b ,334=c ,那么()A .a >b >cB .b >c >aC .c >a >bD .c >b >a三、课外拓展10.①已知,2,21==mn a 求n m a a )(2⋅的值.②若的求n n n x x x 22232)(4)3(,2---=值11.若0352=-+y x ,求y x 324⋅的值.四、中考链接12.(龙口)先化简,再求值:(每小题5分,共10分)(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2.(2)342)()(m m m -⋅-⋅-,其中m =2-13、(延庆)已知,求下列各式的值:(1); (2).14、(鞍山)已知:,.求:(1);(2).15、计算:;参考答案一、夯实基础1.a 4,b 4,8a 3b 3,-6x 5y 3;2.0;3.-12x 7y 9;4.2;5.4二、能力提升6.B ;7.C ;8.B ;9.B ;三、课外拓展10.①161;②56; 11.8;四、中考链接12.(1)-3x 2+18x-5,19;(2)m 9,-512;13.(1)45;(2)5714.(1)9;(2)115.第3讲:分式检测一、夯实基础1.下列式子是分式的是( )A .x 2B .x x +1C .x 2+yD .x 32.如果把分式2xy x +y 中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .缩小3倍C .扩大9倍D .不变3.当分式x -1x +2的值为0时,x 的值是( ) A .0 B .1 C .-1 D .-24.化简:(1)x 2-9x -3=__________. (2)aa -1+11-a=__________. 二、能力提升5.若分式2a +1有意义,则a 的取值范围是( ) A .a =0 B .a =1 C .a ≠-1 D .a ≠06.化简2x 2-1÷1x -1的结果是( ) A ..2x -1 B .2x 3-1 C .2x +1D .2(x +1) 7.化简m 2-163m -12得__________;当m =-1时,原式的值为__________. 三、课外拓展8.化简⎝ ⎛⎭⎪⎫m 2m -2+42-m ÷(m +2)的结果是( ) A .0 B .1 C .-1 D .(m +2)29.下列等式中,不成立的是( )A .x 2-y 2x -y =x -y B .x 2-2xy +y 2x -y =x -yC .xy x 2-xy =y x -yD .y x -x y =y 2-x 2xy10.已知1a -1b =12,则aba -b 的值是( )A .12B .-12C .2D .-211.当x =__________时,分式x -2x +2的值为零.12.计算(—)·的结果是( ) A . 4 B . -4 C .2a D .-2a13.分式方程的解是( )A .x=-2B .x=2C . x=±2 D.无解14.把分式中的,都扩大3倍,那么分式的值()A .扩大为原来的3倍B .缩小为原来的C .扩大为原来的9倍D .不变四、中考链接15.(临沂)先化简,再求值:(1)⎝ ⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a ,其中a =-1.(2)3-x 2x -4÷⎝ ⎛⎭⎪⎫5x -2-x -2,其中x =3-3. 2-a a2+a aa a 24-2114339x x x +=-+-(0)xyx y x y +≠+x y 13参考答案一、夯实基础1.B B 项分母中含有字母.2.A 因为x 和y 都扩大3倍,则2xy 扩大9倍,x +y 扩大3倍,所以2xy x +y 扩大3倍.3.B 由题意得x -1=0且x +2≠0,解得x =1.4.(1)x +3 (2)1 (1)原式=(x +3)(x -3)x -3=x +3;(2)原式=a a -1-1a -1=a -1a -1=1.二、能力提升5.C 因为分式有意义,则a +1≠0,所以a ≠-1.6.C 原式=2(x +1)(x -1)·(x -1)=2x +1. 7.m +43 1 原式=(m +4)(m -4)3(m -4)=m +43.当m =-1时,原式=-1+43=1. 三、课外拓展8.B 原式=m 2-4m -2·1m +2=(m +2)(m -2)m -2·1m +2=1. 9.A x 2-y 2x -y =(x +y )(x -y )x -y=x +y . 10.D 因为1a -1b =12,所以b -a ab =12,所以ab =-2(a -b ),所以ab a -b =-2(a -b )a -b=-2.11.2 由题意得x -2=0且x +2≠0,解得x =2.12. B13. B14. A四、中考链接15.解:(1)⎝⎛⎭⎪⎫1-1a -1÷a 2-4a +4a 2-a =a -2a -1·a (a -1)(a -2)2=a a -2.当a =-1时,原式=a a -2=-1-1-2=13.(2)3-x2x-4÷⎝⎛⎭⎪⎫5x-2-x-2=3-x2(x-2)÷⎝⎛⎭⎪⎫5x-2-x2-4x-2=3-x2(x-2)÷9-x2x-2=3-x2(x-2)·x-2(3-x)(3+x)=12x+6.∵x=3-3,∴原式=12x+6=36.第4讲:二次根式一、夯实基础1.使3x -1有意义的x 的取值范围是( )A .x >13B .x >-13C .x ≥13D .x ≥-132.已知y =2x -5+5-2x -3,则2xy 的值为( ) A .-15 B .15 C .-152 D .1523.下列二次根式中,与3是同类二次根式的是( ) A .18 B .27 C .23 D .324.下列运算正确的是( )A .25=±5B .43-27=1C .18÷2=9D .24·32=6 5.估计11的值( )A .在2到3之间B .在3到4之间C .在4到5之间D .在5到6之间 二、能力提升6.若x ,y 为实数,且满足|x -3|+y +3=0,则⎝ ⎛⎭⎪⎫x y 2 012的值是__________.7.有下列计算:①(m 2)3=m 6,②4a 2-4a +1=2a -1,③m 6÷m 2=m 3,④27×50÷6=15,⑤212-23+348=143,其中正确的运算有__________.(填序号)三、课外拓展8.若x +1+(y -2 012)2=0,则x y =__________.9.当-1<x<3时,化简:x-2+x2+2x+1=__________.10.如果代数式4x-3有意义,则x的取值范围是________.11、比较大小:⑴3 5 2 6 ⑵11 -10 -1312、若最简根式m2-3 与5m+3 是同类二次根式,则m= .13、若 5 的整数部分是a,小数部分是b,则a-1b= 。
山东省泰安市2019年中考数学试题(含答案)

泰安市2019年初中学业水平考试数学试题本试卷共150分,考试时间120分.第I 卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分) 1.在实数π,3,3|,14.3|---中,最小的数是A.3-B. - 3C.|14.3|-D.π 2.下列运算正确的是A.336a a a =÷B.824a a a =⋅C.6326)2(a a = D.422a a a =+3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里,远地点约42万公里的地月转移轨道。
将数据42万公里用科学记数法表示为 A.4.2×109米 B.4.2×108米 C.42×107米 D.4.2×107米 4.下列图形:其中是轴对称图形且有两条对称轴的是 A.B.C.D.5.如图,直线,∥︒=∠301,21l l 则∠2+∠3=A.150°B.180°C.210°D.240°6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确...的是A.众数是8B.中位数是8C.平均数是8.2D.方差是1.27.不等式组⎪⎩⎪⎨⎧>--+-≥+1223352)1(245xxxx的解集是A.2≤x B.2-≥x C.22≤<-x D.22<≤-x8.如图,一艘船由A港沿北偏东65°方向航行302km至B港,然后再沿北偏西40°方向航行至C港,C 港在A港北偏东20°方向,则A,C两港之间的距离为km.A.30+303B.30+103C.10+303D.3039.如图,△ABC是⊙O的内接三角形,∠A=119°,过点C的圆的切线交BO于点P,则∠P的度数为A.32°B.31°C.29°D.61°10.一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为A.51B.52C.53D.5411.如图,将⊙O沿弦AB折叠,恰好经过圆心O,若⊙O的半径为3,则的长为A.π21B.πC.2πD.3π12.如图,矩形ABCD 中,AB=4,AD=2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是A. 2B. 4C.2D.22第II 卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,满分24分)13.已知关于x 的一元二次方程03)12(22=++--k x k x 有两个不相等的实数根,则实数k 的取值范围是 .14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x 两,每枚白银重y 两,根据题意可列方程组为 。
山东省泰安市2019年中考数学一轮复习第一部分系统复习成绩基石第二章方程组与不等式组第5讲一次方程组课件

C.-2
D.1
6.已知
是二元一次方程组
的解,
则a-b的值为( D ) A.3 B.2 C.1
D.-1
7.[2018·宿迁]解方程组:
解:
①×2-②,得-x=-6. 解得x=6. 把x=6代入方程①,得6+2y=0. 解得y=-3. 故方程组的解为
8.[2018·扬州]对于任意实数a,b,定义关于“”的一种运 算如下:ab=2a+b.例如34=2×3+4=10. (1)求2(-5)的值; (2)若x(-y)=2,且2yx=-1,求x+y的值. 解:(1)∵ab=2a+b, ∴2(-5)=2×2+(-5)=4-5=-1; (2)∵x(-y)=2,且2yx=-1, ∴
B.3x+2y=-8 D.3x-4y=-8
命题点
一次方程(组)的应用
考情分析►从近几年中考的题目来看,二元一次方程组的应用是重点考查内容, 有时单独考查列方程组,通常以选择题形式出现;有时与一次不等式或一次函 数的性质相结合考查,通常以解答题的形式出现.
2.[2018·泰安,T6,3分]夏季来临,某超市试销A、B两种型 号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台 200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了 多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据 题意列出方程组为( C )
类型
一元一次方程及应用
例1►[2018·张家界]列方程解应用题 《九章算术》中有“盈不足术”的问题,原文如下:“今有共買 羊,人出五,不足四十五;人出七,不足三.问人数、羊價各幾 何?”题意是:若干人共同出资买羊,每人出5元,则差45元; 每人出7元,则差3元.求人数和羊价各是多少? 自主解答:设买羊人数为x人,则羊价为(5x+45)或(7x+3) 元. 根据题意,得5x+45=7x+3.解得x=21. 5×21+45=150(元). 答:买羊人数为21人,羊价位150元.
1.1实数及其运算知识点演练(讲练)-2023届中考数学一轮大单元复习(解析版)

专题1.1实数及其运算知识点演练考点1:实数的分类例1.(2022·浙江·温州市南浦实验中学七年级期中)把下列各数的序号填入相应的集合里.,④7,⑤36,⑥3.1313313331⋯(两个“1”之间依次多一个“3”).①0,②―4,③23整数∶______;分数∶______;无理数∶________;1.(2022·陕西宝鸡·八年级期中)下列说法中正确的是( )A.有理数都是有限小数B.无限小数都是无理数C.无理数都是无限小数D.π是分数2【答案】C【分析】根据有理数的定义及无理数的定义即可得到答案.【详解】解:A选项无限循环小数也是有理数,故A不正确;B选项无限循环小数也是有理数,故B不正确;2.(2022·江苏·沭阳县怀文中学七年级期中)下列各数中,是无理数的是()A.13B.1.732C.―πD.2273.(2022·四川·成都嘉祥外国语学校八年级期中)以下四个数:―2,3.14,227,0.101,无理数的个数是( )A.1B.2C.3D.44.(2022·广东河·八年级期中)在5,―0.333⋯,0,0.10010001⋯,38,(―2)0,3.1415,2.10101⋯(相邻两个1之间有1个0)中,无理数有()A.1个B.2个C.3个D.4个5.(2022·吉林·农安县新农乡初级中学八年级期中)下列各数3.1415926,9,1.212212221……(相邻两,2―π,―2020,4中,有理数有___________个.个l之间2的个数逐次加1),176.(2022··七年级期中)把下列各数填入相应的横线内:,0,5.-6,π,―23整数:__________________;负数:__________________;实数:__________________.7.(2022·浙江·余姚市子陵中学教育集团七年级期中)把下列各数的序号分别填入相应的大括号内:①0,②-π,③1.5,④―25,⑤―6,⑥1.1010010001…(每两个“1”之间依次多1个“0”)7负数:{___________…};整数:{___________…};无理数:{___________…}.8.(2022·浙江宁波·七年级期中)把下列各数对应的序号填在相应的括号里.①0;②3;③-2.5;④π2;⑤-57;⑥|―3|;⑦1.202002…… (每两个“2”之间依次多一个“0”).正整数:()负分数:()无理数:()【答案】⑥;③⑤;②④⑦【分析】根据正整数,负分数和无理数的概念,即可求解.【详解】解:|―3|=3,正整数:(⑥)负分数:(③⑤)无理数:(②④⑦)【点睛】本题主要考查实数的分类,掌握无理数是无限不循环小数是解题的关键.9.(2022·福建省大田县教师进修学校八年级期中)把下列各数填入相应的括号内:2 3,3―5,0.·7,―3.14,36,(―2)2,1.010010001⋯(1)无理数:{…};(2)负实数:{…};(3)整数:{…};(4)分数:{…};10.(2022·浙江金华·七年级期中)把下列各数对应的编号填在相应的大括号里:(1)―49,(2)18,(3)57,(4)π2,(5)—3.141,(6)0,(7)7,(8)80%,(9)―|―5|,(10)0.101001...(自左而右每两个1之间依次多一个0).整 数:____________________________________分 数:____________________________________无理数:___________________________________例2.(1)(2022·山东·宁津县育新中学九年级阶段练习)下列选项中,对2的说法错误的是().A.2的相反数是―2B.2的倒数是22C.2的绝对值是2D.2是有理数(2)(2022·河北唐山·八年级期中)3―5的绝对值是___________.个单位长度的圆,将圆上的点A放在原点,并把(3)(2022·河北邢台·八年级期中)如图,有一个半径为12圆沿数轴逆时针方向滚动一周,点A到达点A′的位置,则点A′表示的数______;若点B表示的数是―10,则点B在点A′的______(填“左边”、“右边”).1.(2022·山西实验中学八年级期中)实数―3的相反数是( )A.3B.3C.―3D.―332.(2022·陕西·西安市铁一中学七年级期中)―5的绝对值是( )A.5B.―5C.5D.―53.(2022·安徽省马鞍山市第七中学七年级期中)已知a为实数,则―a+|a|的值为()A.0B.不可能是负数C.可以是负数D.可以是正数也可以是负数【答案】B【分析】通过分类讨论去绝对值,即可判断结果.【详解】当a>0时,―a+|a|=―a+a=0;当a=0时,―a+|a|=―a+a=0;当a<0时,―a+|a|=―a―a=―2a>0.综上所述,―a+|a|的值不可能是负数.故选:B.【点睛】本题主要考查了实数的绝对值,a是实数时,正数、0、负数三种情况都要考虑到,用到了分类讨论的方法.4.(2022·江苏无锡·八年级期中)5―2的相反数是()A.―0.236B.5+2C.2―5D.―2+5【点睛】本题考查了相反数的定义,解决本题的关键是掌握其定义:只有符号不同的两个数互为相反数.5.(2022·河北石家庄·八年级期中)在以下说法中:①无理数和有理数统称为实数;②实数和数轴上的点是一一对应的;③0的算术平方根是0;④无限小数都是无理数.正确的有()A.1个B.2个C.3个D.4个【答案】C【分析】根据实数的相关概念、实数与数轴的对应关系、算术平方根的概念对各小题分析判断即可得解【详解】①无理数和有理数统称为实数,说法正确②实数和数轴上的点是一一对应的,说法正确③0的算术平方根是0,说法正确④无限小数都是无理数,说法错误,因为无限循环小数是有理数故选C【点睛】本题主要考查实数的相关概念、实数与数轴的对应关系、算术平方根的概念,算数平方根的概念是解题的关键6.(2022·湖北黄石·中考真题)1―2的绝对值是()A.1―2B.2―1C.1+2D.±(2―1)7.(2022·浙江·七年级专题练习)数轴上表示1,2的对应点分别为A,B,点B关于点A的对称点为C,则点C所表示的数是()A.2―1B.1―2C.2―2D.2―2【答案】C8.(2022·四川省成都市七中育才学校八年级期中)5―1的相反数是____,绝对值是__________.9.(2022·四川·成都外国语学校八年级期中)已知a、b、c在数轴上的位置如图所示.化简a2―|a+b|+ (c―a)2+|b+c|―3b3=___________.10.(2022·江苏·苏州工业园区金鸡湖学校一模)计算:|―3|+(π+3)0―12.11.(2022·福建省永春第三中学七年级期中)已知实数a,b满足|a|=b, |ab|+ab=0,化简|a|+|―2b| +3a.【答案】2a+2b【分析】根据实数的性质,绝对值的性质,相反数的意义,判断出a,b的符号,进而化简绝对值,再根据整式的加减进行化简即可求解.【详解】解:∵|a|=b, |ab|+ab=0∴b≥0,ab≤0∴a≤0∴|a|+|―2b|+3a=―a+2b+3a=2a+2b.【点睛】本题考查了实数的性质,整式的加减,化简绝对值,判断出a,b的符号是解题的关键.12.(2022·安徽·合肥市第四十五中学橡树湾校区七年级期中)如图,一只蚂蚁从点A沿数轴向右爬了2个单位长度到达点B,点A表示―2,设点B所表示的数为m.(1)实数m的值是______;(2)求|m―1|―|1―m|的值;(3)在数轴上还有C、D两点分别表示实数c和d,且有|2c+4|与d―4互为相反数,求2c+3d的平方根.13.(2022·福建三明·八年级期中)实数与数轴上的点一一对应,无理数也可以在数轴上表示出来,体现了数形结合思想.(1)由数到形:在数轴上用尺规作图作出―5对应的点P(不要写作法,保留作图痕迹).(2)由形到数:如图,在数轴上,点A,B表示的数分别为0,2,作BC⊥AB于点B,截取BC=1;连接AC,以点C为圆心,CB长为半径画弧交AC于点D;以点A为圆心,AD长为半径画弧交AB于点E,则点E表示的实数是________________.作法:作线段AB的垂直平分线MN;以点为半径作弧交数轴负半轴于点P.(2)解:由作法知CD=CB=1,AD考点3:平方根、算术平方根、与立方根例3.(2022·山东·德州市第九中学九年级期中)本学期第六章《实数》中学习了平方根和立方根,下表是平方根和立方根的部分内容:平方根立方根定义一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(也叫做二次方根).一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a的立方根(也叫做三次方根).性质一个正数有两个平方根,它们互为相反数:0的平方根是0;负数没有平方根.正数的立方根是正数;0的立方根是0;负数的立方根是负数.【类比探索】(1)探索定义:填写下表x411681x类比平方根和立方根,给四次方根下定义:______.(2)探究性质:①1的四次方根是______;②16的四次方根是______;③0的四次方根是______;④-625 ______(填“有”或“没有”)四次方根.类比平方根和立方根的性质,归纳四次方根的性质:______;1.(2022·四川·绵阳中学英才学校二模)若―3x m y和5x3y n的和是单项式,则(m+n)3的平方根是()A.8B.―8C.±4D.±8【答案】D【分析】根据题意可得―3x m y和5x3y n是同类项,从而得到m=3,n=1,再代入,即可求解.【详解】解:∵―3x m y和5x3y n的和是单项式,∴―3x m y和5x3y n是同类项,∴m=3,n=1,∴(m+n)3=(3+1)3=64,∴(m+n)3的平方根是±8.故选:D.【点睛】本题主要考查了合并同类项,求一个数的平方根,熟练掌握根据题意得到―3x m y和5x3y n是同类项是解题的关键.2.(2022·广东北江实验学校三模)下列说法不正确的是()A.125的平方根是±15B.(-0.1)2的平方根是±0.1C.-9是81的算术平方根D.3-27=-33.(2022·江苏·连云港市新海初级中学三模)9的值为_______.4.(2022·上海嘉定·九年级期中)长为3、4的线段的比例中项长是___________.5.(2022·山西临汾·九年级期中)已知y=x―2+2―x―3,则(x+y)2022(x―y)2023的值为_____.【答案】2+3##3+26.(2022·山东·测试·编辑教研五二模)如图,这是由8个同样大小的立方体组成的魔方,体积为8,若阴影部分为正方形ABCD,则此正方形的边长是______.7.(2022·四川攀枝花·中考真题)3―8―(―1)0=__________.【答案】―3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.【详解】解:原式=―2―1=―3.故答案为:―3.【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.8.(2022·广东·东莞市万江第三中学三模)计算下列各题:(1)4的平方根是______;(2)25的算术平方根是______;(3)―8的立方根是______;9.(2022·全国·九年级专题练习)已知c<b<0<a,且|b|<|a|,求(a―b)2+c2―|b+c|―|―b|―3(b―a)3的值.【答案】2a【分析】根据绝对值的意义可得a―b>0,b+c<0,―b>0,b―a<0,然后通过计算可得.【详解】解:∵c<b<0<a,|b|<|a|,10.(2022·全国·九年级专题练习)已知正数a的两个不同平方根分别是2x―2和6―3x,a―4b的算术平方根是4.(1)求这个正数a以及b的值;(2)求b3+3a―17的立方根.【答案】(1)a=36,b=5(2)6【分析】(1)首先利用正数的平方根有两个,它们互为相反数,再利用互为相反数的两个数相加为0,即可得出两个平方根,进而得出正数a的值,然后再利用题意“a―4b的算术平方根是4”,把a的值代入a―4b,即可得出b的值.(2)根据(1)得出a=36,b=5,然后把a=36,b=5代入b3+3a―17,求出值,然后再开立方,即可得出结果.【详解】(1)解:∵正数a的两个不同平方根分别是2x―2和6―3x,∴2x―2+6―3x=0,解得:x=4,∴2x―2=2×4―2=6,6―3x=6―3×4=―6,∵(±6)2=36,∴a=36,又∵a―4b的算术平方根是4,又∵42=16,∴a―4b=16,∴把a=36代入a―4b=16,可得:36―4b=16,解得:b=5.例4.(1)(2022·山东济南·模拟预测)最新统计,中国注册志愿者总数已超30000000人,30000000用科学记数法表示为()A.3×107B.3×106C.30×106D.3×105:30000000=3×107.故选:A.(2)(2022·四川德阳·二模)已知某种细胞的直径约为2.13×10―4cm,请问2.13×10―4这个数原来的数是()A.21300B.2130000C.0.0213D.0.000213解:2.13×10-4=0.000213,故选:D.知识点训练1.(2022·山东·济南市历城区教育教学研究中心一模)2021年5月15日,我国首个火星探测器“天问一号”经过470000000公里旅程成功着陆火星,为我国的宇宙探测之路迈出重要一步.将470000000用科学记数法表示为( )A.47×107B.4.7×107C.4.7×108D.0.47×109【答案】C【分析】根据科学记数法的表示方法确定a,n的值即可.【详解】解:470000000=4.7×108,故选:C.【点睛】题目主要考查科学记数法的表示方法,熟练掌握科学记数法的表示方法是解题关键.2.(2022·河南洛阳·二模)今年的“两会”上,李克强总理在谈到今年需要就业的新增劳动力时,指出今年高校毕业生1076万,是历年最高.数据“1076万”用科学记数法表示为( )A.1.076×107B.1.076×108C.10.76×106D.0.1076×108【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值⩾10时,n是正整数;当原数的绝对值<1时,n是负整数,由此即可得到答案.【详解】解:1076万=10760000=1.076×107.故选:A.【点睛】本题主要考查了科学记数法,解题的关键是熟练掌握科学记数法的定义.3.(2022·福建·九年级专题练习)某种细胞的直径是5×10―4毫米,这个数用小数表示是()A.0.00005B.0.0005C.―50000D.50000【答案】B【分析】根据科学记数法a×10n得到n=―4,所以小数点向前移动4位来求解.【详解】解:∵5×10―4∴n=―4,∴5×10―4=0.0005.故选:B.【点睛】本题主要考查了把科学记数法还原原数,还原原数时,关键是看n,n<0时,|n|是几,小数点就向前移几位.4.(2022·全国·七年级专题练习)据科学家估计,地球的年龄大约是4.6×109年,4.6×109是一个()A.7位数B.8位数C.9位数D.10位数【答案】D【分析】把科学记数转化为原数即可求得答案.【详解】解:4.6×109=4600000000,故选D.【点睛】本题考查了把科学记数法转化为原数,解题的关键是熟练掌握科学记数法的表示形式.5.(2022·全国·七年级专题练习)一个整数x用科学记数法表示为1.381×1028,则x的位数为()A.27B.28C.29D.30【答案】C【分析】将科学记数法表示的数的指数加上1得到原来的数的整数位,由此解答即可.【详解】x的整数数位少1位为28,则x的位数为29.【点睛】本题考查了把科学记数法表示的数整数位与指数的关系.6.(2022·河南·九年级专题练习)数据0.0000037用科学记数法表示成3.7×10―n,则3.7×10n表示的原数为().A.3700000B.370000C.37000000D.―3700000【答案】A【分析】根据用科学记数法表示绝对值小于1的数的方法,可确定n的值.即得出3.7×10n表示的数为3.7×106,再将其转化为数字即可.【详解】∵数据0.0000037用科学记数法表示成3.7×10―n,∴n=6,∴3.7×10n即为3.7×106,∴3.7×10n表示的原数为3700000.故选A.【点睛】本题主要考查数科学记数法之间的转换.掌握科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同是解题关键.7.(2022·四川广安·九年级专题练习)近似数3.48×103精确到()A.百分位B.个位C.十位D.百位【答案】C【分析】先把科学记数法表示的数还原,再看首数的最后一位数字所在的位数,即为精确到的位数.【详解】近似数3.48×103=3480,8在十位上,故精确到十位故选C【点睛】本题考查了求近似数,将科学记数法还原是解题的关键.8.(2022·山东师范大学第二附属中学模拟预测)数据0.0000314用科学记数法表示为( )A.3.14×10―5B.31.44×10―4C.3.14×10―6D.0.314×10―6【答案】A【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a×10―n,其中n为正整数,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000314=3.14×10―5故选:A.【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a×10―n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.(2022·河北邯郸·七年级期末)0.000985用科学记数法表示为9.85×10―n,则9.85×10n还原为原数为()A.9850000B.985000C.98500D.9850【答案】C【分析】用科学记数法表示的数还原成原数时,n> 0时,n是几,小数点就向右移几位.【详解】∵0.000985= 9.85×10-4∴n=4,∴9.85×104= 98500.故选: C.【点睛】本题考查写出用科学记数法表示的原数,将科学记数法a× 10n”表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数科学记数法a×10n表示的数,还原成通常表示的数,就是把a的小数点向右移动n位所得到的数;把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.10.(2022·吉林长春·一模)“天文单位”是天文学中用来计量距离的一种单位.1天文单位用科学记数法表示为1.496×108千米,这个数也可以写成______亿千米.【答案】1.496【分析】根据1亿=108,对这个数进行换算即可作答.【详解】解:∵1亿=108,∴1.496×108千米=1.496亿千米,故答案为:1.496.【点睛】本题考查了科学记数法−−−原数,解题的关键是掌握科学记数法表示的数与原数的关系.考点5:实数的大小比较例5.(1)(2022·四川乐山·九年级专题练习)在实数|―3.14|,-3,―3,―π中,最小的数是()A.|―3.14|B.-3C.―3D.―π【答案】D【分析】根据实数的比较大小的规则比较即可.(2)(2022·山东济南·中考真题)实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.ab>0B.a+b>0C.|a|<|b|D.a+1<b+1【答案】D【分析】利用数轴与实数的关系,及正负数在数轴上的表示求解.【详解】解:根据图形可以得到:―3<a<―2<0,0<b<1,∴ab<0,故A项错误,a+b<0,故B项错误,|a|>|b|,故C项错误,a+1<b+1,故D项错误.故选:D.知识点训练1.(2022·山东·测试·编辑教研五二模)下列实数中,最大的数是()A.―4B.―5C.0D.3【答案】D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负数绝对值大的反而小,据此判断即可.【详解】解:∵―5<―4<0<3,∴最大的数是3,故选:D.【点睛】此题考查实数的大小比较的方法,熟练掌握:负实数<0<正实数,两个负数绝对值大的反而小,是解答此题的关键.2.(2022·湖南·长沙市南雅中学一模)下列实数中,最大的数是()A.0B.2C.πD.―33.(2022·湖南·长沙市开福区青竹湖湘一外国语学校九年级期中)在四个数―2,―0.6,1,3中,绝对值2最小的数是( )D.3A.―2B.―0.6C.124.(2022·江西·寻乌县教育局教学研究室二模)1,―2,0,3中最小的数是()A.1B.―2C.0D.35.(2022·四川·峨眉山市教育局二模)在2,-1,0,π这四个实数中,最小的一个实数是()2A.2B.-1C.0D.π26.(2022·河南·郑州市树人外国语中学九年级期末)下列四个实数中,绝对值最小的数是()A.﹣4B.―3C.2D.37.(2022·四川乐山·九年级专题练习)比较23和32的大小,下面结论正确的是( )A.23<32B.23=32C.23>32D.无法比较8.(2022·河北承德·九年级期中)对于实数p,q,我们用符号min{p,q}表示p,q两数中较小的数,如min{1,2} =1,因此,min{―2,―3}=__________;min(x2+2x+3),0=__________;若min(x―1)2,x2=1,则x=_____________.【答案】―3 0 2或―1##―1或29.(2022·河北·大名县束馆镇束馆中学三模)定义新运算:对于两个不相等的实数a,b,我们规定符号max{a,b}表示a,b中的较大值,如:max{﹣2,﹣4}=﹣2.(1)max{26,5}=_____;(2)若max{﹣12,(一1)2}=2x,则x=_____.2―x考点6与实数的相关的计算例6.(2022·山东烟台·九年级期中)计算(1)sin230°+2sin60°+tan45°―tan60°+cos230°(2)8―2sin45°+2cos60°+|1―2|+1.1.(2022·重庆市开州区德阳初级中学模拟预测)计算:|―3|+2―1=______.2.(2022·山东济南·模拟预测)计算:12―(2022―π)0―2×cos30°+(―12)―1.3.(2022·山东济南·模拟预测)计算:1―|3―1|+3tan30°+(2022―π)0.4.(2022·吉林长春·一模)计算:12―3tan30°+(2022―π)0―1.5.(2022·四川·峨眉山市教育局二模)计算:38+|3―23|―tan60°+(3)2+(π―2022)06.(2022·江苏·盐城市初级中学三模)计算:364+|sin45°―tan45°|+1.7.(2022·广西·南宁市第四十七中学九年级期中)计算:―(―1)2022+10÷2×12―1―3tan30°。
2019版中考数学 第一部分 基础知识过关 第一章 数与式 第1讲 实数及其运算

借助数轴进行比较;(2)若一组数中含有带根号的无理数,一般可
采用平方法进行比较;(3)若一组数中含有π,一般采用取近似值法
进行比较.
K12教育课件
27
考点四 科学记数法
中考解题指导 涉及科学记数法的题有两类:一是将一个数用科 学记数法表示;二是将用科学记数法表示的数还原.
例5 (2018泰安)一个铁原子的质量是0.000 000 000 000 000 000 000 000 093 kg,将这个数用科学记数法表示为
解析 -π<-3<- 3 <-1,故选C.
K12教育课件
26
变式4-2 (2017甘肃)估计5 1 与0.5的大小关系是5 1
2
2
填“>”“<”或“=”)
> 0.5.(
解析 采用作差法求解, 5 1 -0.5= 5 2 .
2
因为 5 -2>0,所以 5 1 >0.5.
2
2
方法技巧 (1)比较有理数的大小时,可运用正负性进行比较或
解析
由题意得 2aabb5100,解, 得
a b
2,所以(b-a)2
3,
015=-1.
4.绝对值等于它本身的数是非负数,在数轴上,绝对值越大的数 所对应的点离原点越远.
5.若|a|=a,则a≥0;若|a|= -a,则a≤0.
6.相反数等于它本身的数是0,倒数等于它本身的数是±1,平方等
于它本身的数是1和0.
K12教育课件
9
知识点三 实数的大小比较
1.数轴比较法:将两个实数分别表示在数轴上,右边的点表示的 数总比左边的点表示的数大.
故选B.
K12教育课件
2019年山东省泰安市中考数学第一次模拟试题及答案解析

最新山东省泰安市中考数学一模试卷一、选择题(共20小题,每小题3分,满分60分)1.的相反数是()A.2 B.C.﹣2 D.2.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.a+a﹣1=0 D.3.下列几何体中,俯视图为四边形的是()A.B. C.D.4.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个5.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°6.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米7.如果是方程ax+(a﹣2)y=0的一组解,则a的值()A.1 B.2 C.﹣1 D.﹣28.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP 度数是()A.45°B.22.5°C.67.5°D.75°9.下列说法正确的是()A.数据3,4,4,7,3的众数是4B.数据0,1,2,5,a的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是010.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°11.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(﹣,﹣1)B.(﹣2,0)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)12.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组13.已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣1514.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.15.二次函数y=x2﹣(m﹣1)x+4的图象与x轴有且只有一个交点,则m的值为()A.1或﹣3 B.5或﹣3 C.﹣5或3 D.以上都不对16.如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为()A.4πB.2πC.π D.17.如图,抛物线y=ax2+bx+c与x轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是()A.a>0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根18.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A.B.C.D.19.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B →D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()A.B. C.D.20.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是()A.第45行B.第46行C.第47行D.第48行二、填空题(共4小题,每小题3分,满分12分)21.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的.右图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款______元.22.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为______.23.如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB 绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是______.24.如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是______.三、解答题(共5小题,满分48分)25.暑假的一天,小刚到离家1.2千米的万州体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有24分钟,于是他立即步行(匀速)回家取票,在家取票用时5分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟.骑自行车的速度是步行速度的3倍.(1)小刚步行的速度(单位:米/分钟)是多少?(2)小刚能否在球赛开始前赶到体育馆?请通过计算说明理由.26.如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.27.如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.28.如图1,在△ABC中,D、E、F分别为三边的中点,G点在边AB上,且DG平分△ABC的周长,设BC=a、AC=b,AB=c.(1)求线段BG的长;(2)求证:DG平分∠EDF;(3)连接CG,如图2,若△GBD∽△GDF,求证:BG⊥CG.29.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.参考答案与试题解析一、选择题(共20小题,每小题3分,满分60分)1.的相反数是()A.2 B.C.﹣2 D.【考点】相反数;绝对值.【分析】根据相反数的意义,在这个数的前面加上负号,化简即得出.【解答】解:根据相反数的意义,的相反数为,﹣=﹣||=﹣.故选D.2.下列运算正确的是()A.﹣(﹣a+b)=a+b B.3a3﹣3a2=a C.a+a﹣1=0 D.【考点】负整数指数幂;合并同类项;去括号与添括号.【分析】根据去括号、合并同类项、负整数指数幂等知识点进行判断.【解答】解:A、﹣(﹣a+b)=a﹣b,故错误;B、这两个式子不是同类项不能相加减,故错误;C、a+a﹣1=a+≠0,故错误;D、1﹣1=1÷=1×=.故正确,故选D.3.下列几何体中,俯视图为四边形的是()A.B. C.D.【考点】简单几何体的三视图.【分析】找到从上面看所得到的图形为四边形的几何体即可.【解答】解:A、从上面看可得到一个五边形,不符合题意;B、从上面看可得到一个三角形,不符合题意;C、从上面看可得到一个圆,不符合题意;D、从上面看可得到一个四边形,符合题意.故选:D.4.下列四个图形中,既是轴对称图形又是中心对称图形的有()A.4个B.3个C.2个D.1个【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:第一个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;第二个图形,∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;第三个图形,此图形旋转180°后能与原图形重合,此图形是中心对称图形,也是轴对称图形,故此选项正确;第四个图形,∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:B.5.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠BED的度数是()A.16°B.33°C.49°D.66°【考点】平行线的性质.【分析】由AB∥CD,∠C=33°可求得∠ABC的度数,又由BC平分∠ABE,即可求得∠ABE的度数,然后由两直线平行,内错角相等,求得∠BED的度数.【解答】解:∵AB∥CD,∠C=33°,∴∠ABC=∠C=33°,∵BC平分∠ABE,∴∠ABE=2∠ABC=66°,∵AB∥CD,∴∠BED=∠ABE=66°.故选D.6.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.7.如果是方程ax+(a﹣2)y=0的一组解,则a的值()A.1 B.2 C.﹣1 D.﹣2【考点】二元一次方程的解.【分析】将方程的解代入得到关于a的方程,从而可求得a的值.【解答】解:将代入方程ax+(a﹣2)y=0得:﹣3a+a﹣2=0.解得:a=﹣1.故选:C.8.如图,已知P是正方形ABCD对角线BD上一点,且BP=BC,则∠ACP 度数是()A.45°B.22.5°C.67.5°D.75°【考点】正方形的性质;等腰三角形的性质.【分析】根据正方形的性质可得到∠DBC=∠BCA=45°又知BP=BC,从而可求得∠BCP的度数,从而就可求得∠ACP的度数.【解答】解:∵ABCD是正方形,∴∠DBC=∠BCA=45°,∵BP=BC,∴∠BCP=∠BPC=67.5°,∴∠ACP=∠BCP﹣∠BCA=67.5°﹣45°=22.5°.故选B.9.下列说法正确的是()A.数据3,4,4,7,3的众数是4B.数据0,1,2,5,a的中位数是2C.一组数据的众数和中位数不可能相等D.数据0,5,﹣7,﹣5,7的中位数和平均数都是0【考点】算术平均数;中位数;众数.【分析】运用平均数,中位数,众数的概念采用排除法即可解.【解答】解:A、数据3,4,4,7,3的众数是4和3.故错误;B、数据0,1,2,5,a的中位数因a的大小不确定,故中位数也无法确定.故错误;C、一组数据的众数和中位数会出现相等的情况.故错误;D、数据0,5,﹣7,﹣5,7的中位数和平数数都是0.对.故选D.10.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°【考点】垂径定理;圆周角定理.【分析】分别根据垂径定理及圆周角定理对各选项进行分析即可.【解答】解:∵DC是⊙O直径,弦AB⊥CD于点F,∴AF=BF,=,∠DBC=90°,∴A、C、D正确;∵点F不一定是OC的中点,∴B错误.故选B.11.如图,A(,1),B(1,).将△AOB绕点O旋转150°得到△A′OB′,则此时点A的对应点A′的坐标为()A.(﹣,﹣1)B.(﹣2,0)C.(﹣1,﹣)或(﹣2,0)D.(﹣,﹣1)或(﹣2,0)【考点】坐标与图形变化-旋转.【分析】根据点A、B的坐标求出OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,从而得到∠AOB=30°,再利用勾股定理求出OA、OB的长度,然后分①顺时针旋转时,点A′与点B关于坐标原点O 成中心对称,然后根据关于原点对称的点的横坐标与纵坐标都互为相反数解答;②逆时针旋转时,点A′在x轴负半轴上,然后写出点A′的坐标即可.【解答】解:∵A(,1),B(1,),∴tanα==,∴OA与x轴正半轴夹角为30°,OB与y轴正半轴夹角为30°,∴∠AOB=90°﹣30°﹣30°=30°,根据勾股定理,OA==2,OB==2,①如图1,顺时针旋转时,∵150°+30°=180°,∴点A′、B关于原点O成中心对称,∴点A′(﹣1,﹣);②如图2,逆时针旋转时,∵150°+30°=180°,∴点A′在x轴负半轴上,∴点A′的坐标是(﹣2,0).综上所述,点A′的坐标为(﹣1,﹣)或(﹣2,0).故选C.12.为了测量被池塘隔开的A,B两点之间的距离,根据实际情况,作出如图图形,其中AB⊥BE,EF⊥BE,AF交BE于D,C在BD上.有四位同学分别测量出以下四组数据:①BC,∠ACB;②CD,∠ACB,∠ADB;③EF,DE,BD;④DE,DC,BC.能根据所测数据,求出A,B间距离的有()A.1组B.2组C.3组D.4组【考点】相似三角形的应用;解直角三角形的应用.【分析】根据三角形相似可知,要求出AB,只需求出EF即可.所以借助于相似三角形的性质,根据=即可解答.【解答】解:此题比较综合,要多方面考虑,①因为知道∠ACB和BC的长,所以可利用∠ACB的正切来求AB的长;②可利用∠ACB和∠ADB的正切求出AB;③,因为△ABD∽△EFD可利用=,求出AB;④无法求出A,B间距离.故共有3组可以求出A,B间距离.故选C.13.已知a2+a﹣3=0,那么a2(a+4)的值是()A.9 B.﹣12 C.﹣18 D.﹣15【考点】整式的混合运算—化简求值.【分析】由a2+a﹣3=0,变形得到a2=﹣(a﹣3),a2+a=3,先把a2=﹣(a﹣3)代入整式得到a2(a+4)=﹣(a﹣3)(a+4),利用乘法得到原式=﹣(a2+a﹣12),再把a2+a=3代入计算即可.【解答】解:∵a2+a﹣3=0,∴a2=﹣(a﹣3),a2+a=3,a2(a+4)=﹣(a﹣3)(a+4)=﹣(a2+a﹣12)=﹣(3﹣12)=9.故选A.14.如图,OA⊥OB,等腰直角三角形CDE的腰CD在OB上,∠ECD=45°,将三角形CDE绕点C逆时针旋转75°,点E的对应点N恰好落在OA上,则的值为()A.B.C.D.【考点】旋转的性质;含30度角的直角三角形;等腰直角三角形.【分析】根据旋转得出∠NCE=75°,求出∠NCO,设OC=a,则CN=2a,根据△CMN也是等腰直角三角形设CM=MN=x,由勾股定理得出x2+x2=(2a)2,求出x=a,得出CD=a,代入求出即可.【解答】解:∵将三角形CDE绕点C逆时针旋转75°,点E的对应点N 恰好落在OA上,∴∠ECN=75°,∵∠ECD=45°,∴∠NCO=180°﹣75°﹣45°=60°,∵AO⊥OB,∴∠AOB=90°,∴∠ONC=30°,设OC=a,则CN=2a,∵等腰直角三角形DCE旋转到△CMN,∴△CMN也是等腰直角三角形,设CM=MN=x,则由勾股定理得:x2+x2=(2a)2,x=a,即CD=CM=a,∴==,故选C.15.二次函数y=x 2﹣(m ﹣1)x+4的图象与x 轴有且只有一个交点,则m 的值为( )A .1或﹣3B .5或﹣3C .﹣5或3D .以上都不对【考点】抛物线与x 轴的交点.【分析】由二次函数y=x 2﹣(m ﹣1)x+4的图象与x 轴有且只有一个交点,可得△=b 2﹣4ac=[﹣(m ﹣1)]2﹣4×1×4=0,继而求得答案.【解答】解:∵二次函数y=x 2﹣(m ﹣1)x+4的图象与x 轴有且只有一个交点,∴△=b 2﹣4ac=[﹣(m ﹣1)]2﹣4×1×4=0,∴(m ﹣1)2=16,解得:m ﹣1=±4,∴m 1=5,m 2=﹣3.∴m 的值为5或﹣3.故选B .16.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB=30°,CD=2,则阴影部分图形的面积为( )A .4πB .2πC .πD .【考点】扇形面积的计算;勾股定理;垂径定理.【分析】根据垂径定理求得CE=ED=,然后由圆周角定理知∠COE=60°,然后通过解直角三角形求得线段OC 、OE 的长度,最后将相关线段的长度代入S 阴影=S 扇形OCB ﹣S △COE +S △BED .【解答】解:如图,假设线段CD 、AB 交于点E ,∵AB 是⊙O 的直径,弦CD ⊥AB ,∴CE=ED=,又∵∠CDB=30°,∴∠COE=2∠CDB=60°,∠OCE=30°,∴OE=CE •cot60°=×=1,OC=2OE=2,∴S 阴影=S 扇形OCB ﹣S △COE +S △BED =﹣OE ×EC+BE •ED=﹣+=.故选D .17.如图,抛物线y=ax 2+bx+c 与x 轴交于点(﹣1,0),对称轴为x=1,则下列结论中正确的是( )A .a >0B.当x>1时,y随x的增大而增大C.c<0D.x=3是一元二次方程ax2+bx+c=0的一个根【考点】二次函数图象与系数的关系;二次函数的性质;抛物线与x轴的交点.【分析】根据二次函数图象的开口方向向下可得a是负数,与y轴的交点在正半轴可得c是正数,根据二次函数的增减性可得B选项错误,根据抛物线的对称轴结合与x轴的一个交点的坐标可以求出与x轴的另一交点坐标,也就是一元二次方程ax2+bx+c=0的根,从而得解.【解答】解:A、根据图象,二次函数开口方向向下,∴a<0,故本选项错误;B、当x>1时,y随x的增大而减小,故本选项错误;C、根据图象,抛物线与y轴的交点在正半轴,∴c>0,故本选项错误;D、∵抛物线与x轴的一个交点坐标是(﹣1,0),对称轴是x=1,设另一交点为(x,0),﹣1+x=2×1,x=3,∴另一交点坐标是(3,0),∴x=3是一元二次方程ax2+bx+c=0的一个根,故本选项正确.故选D.18.在一个不透明的盒子里有3个分别标有数字5,6,7的小球,它们除数字外其他均相同.充分摇匀后,先摸出1个球不放回,再摸出1个球,那么这两个球上的数字之和为奇数的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个球上的数字之和为奇数的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,这两个球上的数字之和为奇数的有4种情况,∴这两个球上的数字之和为奇数的概率为:=.故选A.19.如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B →D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是()A .B .C .D .【考点】动点问题的函数图象.【分析】根据题意设出点P 运动的路程x 与点P 到点A 的距离y 的函数关系式,然后对x 从0到2a+2a 时分别进行分析,并写出分段函数,结合图象得出答案.【解答】解:设动点P 按沿折线A →B →D →C →A 的路径运动, ∵正方形ABCD 的边长为a ,∴BD=a ,①当P 点在AB 上,即0≤x <a 时,y=x ,②当P 点在BD 上,即a ≤x <(1+)a 时,过P 点作PF ⊥AB ,垂足为F ,∵AB+BP=x ,AB=a ,∴BP=x ﹣a ,∵AE 2+PE 2=AP 2,∴()2+[a ﹣(x ﹣a )]2=y 2,∴y=,③当P点在DC上,即a(1+)≤x<a(2+)时,同理根据勾股定理可得AP2=AD2+DP2,y=,④当P点在CA上,即当a(2+)≤x≤a(2+2)时,y=a(2+2)﹣x,结合函数解析式可以得出第2,3段函数解析式不同,得出A选项一定错误,根据当a≤x<(1+)a时,P在BE上和ED上时的函数图象对称,故B选项错误,再利用第4段函数为一次函数得出,故C选项一定错误,故只有D符合要求,故选:D.20.如下数表是由从1开始的连续自然数组成,则自然数2014所在的行数是()A.第45行B.第46行C.第47行D.第48行【考点】规律型:数字的变化类.【分析】通过观察可得第n行最后一数为n2,由此估算2014所在的行数,进一步推算得出答案即可.【解答】解:∵442=1936,452=2025,∴2014在第45行.故选:A.二、填空题(共4小题,每小题3分,满分12分)21.在一次爱心捐款中,某班有40名学生拿出自己的零花钱,有捐5元、10元、20元、50元的.右图反映了不同捐款的人数比例,那么这个班的学生平均每人捐款16 元.【考点】扇形统计图.【分析】根据扇形统计图中,各种情况所占的比例,利用加权平均数公式即可求解.【解答】解:5×60%+10×10%+20×10%+50×20%=16元.故答案是:16.22.如图,小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”阴影图案的面积为 2π﹣4 .【考点】扇形面积的计算;中心对称图形.【分析】连接AB ,则阴影部分面积=2(S 扇形AOB ﹣S △ABO ),依此计算即可求解.【解答】解:由题意得,阴影部分面积=2(S 扇形AOB ﹣S △AOB )=2(﹣×2×2)=2π﹣4.故答案为:2π﹣4.23.如图,直线y=﹣x+4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO ′B ′,则点B ′的坐标是 (7,3) .【考点】坐标与图形变化-旋转;一次函数的性质.【分析】根据旋转的性质﹣﹣旋转不改变图形的形状和大小解答.【解答】解:直线y=﹣x+4与x轴、y轴分别交于A(3,0)、B(0,4)两点,由图易知点B′的纵坐标为O′A=OA=3,横坐标为OA+O′B′=OA+OB=7.则点B′的坐标是(7,3).故答案为:(7,3).24.如图,以点P(2,0)为圆心,为半径作圆,点M(a,b)是⊙P上的一点,则的最大值是.【考点】切线的性质;坐标与图形性质.【分析】当有最大值时,得出tan∠MOP有最大值,推出当OM与圆相切时,tan∠MOP有最大值,根据解直角三角形得出tan∠MOP=,由勾股定理求出OM,代入求出即可.【解答】解:当有最大值时,即tan∠MOP有最大值,也就是当OM与圆相切时,tan∠MOP有最大值,此时tan∠MOP=,在Rt△OMP中,由勾股定理得:OM===1,则tan∠MOP====,故答案为:.三、解答题(共5小题,满分48分)25.暑假的一天,小刚到离家1.2千米的万州体育馆看球赛,进场时,发现门票还放在家中,此时离比赛还有24分钟,于是他立即步行(匀速)回家取票,在家取票用时5分钟,取到票后,他马上骑自行车(匀速)赶往体育馆.已知小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟.骑自行车的速度是步行速度的3倍.(1)小刚步行的速度(单位:米/分钟)是多少?(2)小刚能否在球赛开始前赶到体育馆?请通过计算说明理由.【考点】分式方程的应用.【分析】(1)设小刚步行的速度为x米/分钟,骑自行车的速度是3x米/分钟,根据小刚骑自行车从家赶往体育馆比从体育馆步行回家所用时间少10分钟列出方程解答即可;(2)根据题意得出来回家取票的总时间进行判断即可.【解答】解:(1)设小刚步行的速度为x米/分钟,骑自行车的速度是3x 米/分钟,可得:,解得:x=80,经检验x=80是方程的解,3x=240,答:小刚步行的速度80米/分钟;(2)来回家取票的总时间为:分钟>24分钟,故小刚不能在球赛开始前赶到体育馆.26.如图所示,在梯形ABCD中,AD∥BC,∠BDC=90°,E为BC上一点,∠BDE=∠DBC.(1)求证:DE=EC;(2)若AD=BC,试判断四边形ABED的形状,并说明理由.【考点】梯形;直角三角形的性质;菱形的判定.【分析】(1)由∠BDC=90°,∠BDE=∠DBC,利用等角的余角相等,即可得∠EDC=∠C,又由等角对等边,即可证得DE=EC;(2)易证得AD=BE,AD∥BC,即可得四边形ABED是平行四边形,又由BE=DE,即可得四边形ABED是菱形.【解答】(1)证明:∵∠BDC=90°,∠BDE=∠DBC,∴∠EDC=∠BDC﹣∠BDE=90°﹣∠BDE,又∵∠C=90°﹣∠DBC,∴∠EDC=∠C,∴DE=EC;(2)若AD=BC,则四边形ABED是菱形.证明:∵∠BDE=∠DBC.∴BE=DE,∵DE=EC,∴DE=BE=EC=BC,∵AD=BC,∴AD=BE,∵AD∥BC,∴四边形ABED是平行四边形,∵BE=DE,∴▱ABED是菱形.27.如图,已知双曲线y=经过点D(6,1),点C是双曲线第三象限上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.(1)求k的值;(2)若△BCD的面积为12,求直线CD的解析式;(3)判断AB与CD的位置关系,并说明理由.【考点】反比例函数综合题.【分析】(1)把点D的坐标代入双曲线解析式,进行计算即可得解;(2)先根据点D的坐标求出BD的长度,再根据三角形的面积公式求出点C到BD的距离,然后求出点C的纵坐标,再代入反比例函数解析式求出点C的坐标,然后利用待定系数法求一次函数解析式解答;(3)根据题意求出点A、B的坐标,然后利用待定系数法求出直线AB的解析式,可知与直线CD的解析式k值相等,所以AB、CD平行.【解答】解:(1)∵双曲线y=经过点D(6,1),∴=1,解得k=6;(2)设点C到BD的距离为h,∵点D的坐标为(6,1),DB⊥y轴,∴BD=6,=×6•h=12,∴S△BCD解得h=4,∵点C是双曲线第三象限上的动点,点D的纵坐标为1,∴点C的纵坐标为1﹣4=﹣3,∴=﹣3,解得x=﹣2,∴点C的坐标为(﹣2,﹣3),设直线CD的解析式为y=kx+b,则,解得,所以,直线CD的解析式为y=x﹣2;(3)AB∥CD.理由如下:∵CA⊥x轴,DB⊥y轴,设点C的坐标为(c,),点D的坐标为(6,1),∴点A、B的坐标分别为A(c,0),B(0,1),设直线AB的解析式为y=mx+n,则,解得,所以,直线AB 的解析式为y=﹣x+1,设直线CD 的解析式为y=ex+f , 则,解得,∴直线CD 的解析式为y=﹣x+,∵AB 、CD 的解析式k 都等于﹣,∴AB 与CD 的位置关系是AB ∥CD .28.如图1,在△ABC 中,D 、E 、F 分别为三边的中点,G 点在边AB 上,且DG 平分△ABC 的周长,设BC=a 、AC=b ,AB=c .(1)求线段BG 的长;(2)求证:DG 平分∠EDF ;(3)连接CG ,如图2,若△GBD ∽△GDF ,求证:BG ⊥CG .【考点】相似形综合题.【分析】(1)由DG平分三角形ABC周长,得到三角形BDG周长与四边形ACDG周长相等,再由D为BC中点,得到BD=CD,利用等式的性质得到BG=AC+AG,表示出BG的长即可;(2)由D、F分别为BC、AB的中点,表示出DF与BF,由BG=BF表示出FG,得到DF=FG,利用等边对等角得到一对角相等,再由DE为三角形中位线,得到DE与AB平行,利用两直线平行内错角相等得到一对角相等,等量代换即可得证;(3)由△GBD∽△GDF,且一对公共角相等,得到∠B=∠FDG,由(2)得:∠FGD=∠FDG,等量代换得到∠FGD=∠B,利用等角对等边得到BD=DG,再由BD=DC,等量代换得到BD=DG=DC,得到B、C、G三点以BC为直径的圆周上,利用圆周角定理判断即可得证.【解答】(1)解:∵△BDG与四边形ACDG的周长相等,∴BD+BG+DG=AC+CD+DG+AG,∵D为BC的中点,∴BD=CD,∴BG=AC+AG,∵BG+(AC+AG)=AB+AC,∴BG=(AB+AC)=(b+c);(2)证明:∵D、F分别为BC、AB的中点,∴DF=AC=b,BF=AB=c,∵FG=BG﹣BF=(b+c)﹣c=b,∴DF=FG,∴∠FDG=∠FGD,∵D、E分别为BC、AC的中点,∴DE∥AB,∴∠EDG=∠FGD,∴∠FDG=∠EDG,即DG平分∠EDF;(3)证明:∵△GBD∽△GDF,且∠DFG>∠B,∠BGD=∠DGF(公共角),∴∠B=∠FDG,由(2)得:∠FGD=∠FDG,∴∠FGD=∠B,∴DG=BD,∵BD=CD,∴DG=BD=CD,∴B、C、G三点以BC为直径的圆周上,∴∠BGC=90°,即BC⊥CG.29.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.【考点】圆的综合题.【分析】(1)根据点A、B的坐标求出OA、OB,利用勾股定理列式求出AB,根据点Q的速度表示出OQ,然后求出AQ,再根据直径所对的圆周角是直角可得∠ADC=90°,再利用∠BAO的余弦表示出AD,然后列出方程求解即可;(2)利用∠BAO的正弦表示出CD的长,然后分点Q、D重合前与重合后两种情况表示出QD,再利用三角形的面积公式列式整理,然后根据二次函数的最值问题解答;(3)有两个时段内⊙P与线段QC只有一个交点:①运动开始至QC与⊙P相切时(0<t≤);②重合分离后至运动结束(<t≤5).【解答】解:(1)∵A(8,0),B(0,6),∴OA=8,OB=6,∴AB===10,∴cos∠BAO==,sin∠BAO==.∵AC为⊙P的直径,∴△ACD为直角三角形.∴AD=AC•cos∠BAO=2t×=t.当点Q与点D重合时,OQ+AD=OA,即:t+t=8,解得:t=.∴t=(秒)时,点Q与点D重合.(2)在Rt△ACD中,CD=AC•sin∠BAO=2t×=t.①当0<t≤时,DQ=OA﹣OQ﹣AD=8﹣t﹣t=8﹣t.∴S=DQ•CD=(8﹣t)•t=﹣t2+t.∵﹣=,0<<,∴当t=时,S有最大值为;②当<t≤5时,DQ=OQ+AD﹣OA=t+t﹣8=t﹣8.∴S=DQ•CD=(t﹣8)•t=t2﹣t.∵﹣=,<,所以S随t的增大而增大,∴当t=5时,S有最大值为15>.综上所述,S的最大值为15.(3)当CQ与⊙P相切时,有CQ⊥AB,∵∠BAO=∠QAC,∠AOB=∠ACQ=90°,∴△ACQ∽△AOB,∴=,即=,解得t=.所以,⊙P与线段QC只有一个交点,t的取值范围为0<t≤或<t≤5.三人行必有我师!2016年9月20日一寸光阴一寸金!。
山东省泰安市2019年中考数学试题 含答案

泰安市2019年初中学业水平考试数学试题一、选择题(本大题共12小题,每小题4分,共48分)1.在实数| 3.14|-,3-,π中,最小的数是( )A. B. 3- C. | 3.14|- D. π 【答案】B【解析】【分析】根据实数的比较大小的规则比较即可. 【详解】解:-3.14=3.14;因此根据题意可得-3是最小的故选B.【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.下列运算正确的是( )A. 633a a a ÷=B. 428a a a ⋅=C. ()32626a a =D. 224a a a += 【答案】A【解析】【分析】根据整式的运算法则逐个计算即可.【详解】A 正确,63633a a a a -÷==B 错误,44262a a a a +==⋅C 错误,()32628a a =D 错误,2222a a a +=故选A.【点睛】本题主要考查整式的计算法则,关键在于幂指数的计算法则,是常考点.3.2018年12月8日,我国在西昌卫星发射中心成功发射“嫦娥四号”探测器,“嫦娥四号”进入近地点约200公里,远地点约42万公里的地月转移轨道.将数据42万公里用科学记数法表示为( )A. 94.210⨯米B. 84.210⨯米C. 74210⨯米D. 74.210⨯米【答案】B【解析】【分析】根据科学记数法的表示方法表示即可.【详解】解:42万公里=84.210⨯米故选B.【点睛】本题主要考查科学记数法的表示方法,关键在于指数的计算.4.下列图形:其中是轴对称图形且有两条对称轴的是( )A. ①②B. ②③C. ②④D. ③④【答案】A【解析】【分析】根据题意首先将各图形的对称轴画出,在数对称轴的条数即可.【详解】1有两条对称轴;2有两条对称轴;3有四条对称轴;4不是对称图形故选A.【点睛】本题主要考查图形的对称轴,关键在于对称轴的概念的掌握.5.如图,直线12l l ,130∠=︒,则23∠+∠=( )A. 150°B. 180°C. 210°D. 240°【答案】C【解析】【分析】根据题意作直线l 平行于直线l 1和l 2,再根据平行线的性质求解即可.【详解】解:作直线l 平行于直线l 1和l 212////l l l1430;35180︒︒∴∠=∠=∠+∠=245∠=∠+∠2+3=4+5+3=30180210︒︒︒∴∠∠∠∠∠+=故选C.【点睛】本题主要考查平行线的性质,关键在于等量替换的应用,两直线平行同旁内角互补,两直线平行内错角相等.6.某射击运动员在训练中射击了10次,成绩如图所示:下列结论不正确的是( )A. 众数是8B. 中位数是8C. 平均数是8.2D. 方差是1.2 【答案】D【解析】【分析】首先根据图形数出各环数出现的次数,在进行计算众数、中位数、平均数、方差.【详解】根据图表可得10环的2次,9环的2次,8环的3次,7环的2次,6环的1次.所以可得众数是8,中位数是8,平均数是102+92+83+72+61=8.210⨯⨯⨯⨯⨯ 方差是222222(108.2)2(98.2)3(88.2)2(78.2)(68.2) 1.5610⨯-+⨯-+⨯-+⨯-+-= 故选D【点睛】本题主要考查统计的基本知识,关键在于众数、中位数、平均数和方差的概念.特别是方差的公式.7.不等式组542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩的解集是( ) A. 2x ≤ B. 2x ≥- C. 22x -<≤ D. 22x -≤<【答案】D【解析】【分析】根据不等式的性质解不等式组即可.【详解】解:542(1)2532132x x x x +≥-⎧⎪+-⎨->⎪⎩化简可得:22x x ≥-⎧⎨<⎩ 因此可得22x -≤<故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.8.如图,一艘船由A 港沿北偏东65°方向航行至B 港,然后再沿北偏西40°方向航行至C 港,C 港在A 港北偏东20°方向,则A ,C 两港之间的距离为( )km.A. 30+B. 30+C. 10+D. 【答案】B【解析】【分析】 根据题意作BD 垂直于AC 于点D ,根据计算可得45DAB ︒∠=,60BCD ︒∠=;根据直角三角形的性质求解即可.【详解】解:根据题意作BD 垂直于AC 于点D.可得AB= ,652045DAB ︒︒︒∠=-=204060DCB ︒︒︒∠=+=所以可得cos 45302AD AB ︒===sin 4530BD AB ︒===tan 60BD CD ︒===因此可得30AC AD CD =+=+故选B.【点睛】本题主要考查解直角三角形的应用,根据特殊角的三角函数值计算即可.9.如图,ABC ∆是O 的内接三角形,119A ∠=︒,过点C 的圆的切线交BO 于点P ,则P ∠的度数为( )A. 32°B. 31°C. 29°D. 61°【答案】A【解析】【分析】 根据题意连接OC ,COP ∆为直角三角形,再根据BC 的优弧所对的圆心角等于圆周角的2倍,可计算的COP ∠的度,再根据直角三角形可得P ∠的度数.【详解】根据题意连接OC.因为119A ∠=︒所以可得BC 所对的大圆心角为2119238BOC ︒︒∠=⨯=因为BD 为直径,所以可得23818058COD ︒︒︒∠=-=由于COP ∆为直角三角形所以可得905832P ︒︒︒∠=-=故选A.【点睛】本题主要考查圆心角的计算,关键在于圆心角等于同弧所对圆周角的2倍.10.一个盒子中装有标号为1,2,3,4,5,的五个小球,这些球除标号外都相同,从中随机摸出两个小球,则摸出的小球标号之和大于5的概率为( ) A. 15 B. 25 C. 35 D. 45【答案】C【解析】分析】根据树状图首先计算出总数,再计算出小球标号之和大于5的数,利用概率的计算公式可得摸出的小球标号之和大于5的概率.【详解】解:根据题意可得树状图为:一共有25种结果,其中15种结果是大于5的因此可得摸出的小球标号之和大于5的概率为153255= 故选C.【点睛】本题主要考查概率的计算的树状图,关键在于画树状图,根据树状图计算即可.11.如图,将O 沿弦AB 折叠,AB 恰好经过圆心O ,若O 的半径为3,则AB 的长为( )A. 12πB. πC. 2πD. 3π【答案】C【解析】【分析】 根据题意作OC AB ⊥,垂足为C ,根据题意可得OC=32,因此可得30OAB ︒∠=,所以可得圆心角120AOB ︒∠=,进而计算的AB 的长.【详解】根据题意作OC AB ⊥,垂足为CO 沿弦AB 折叠,AB 恰好经过圆心O ,若O 的半径为332OC ∴=,30OAB ︒∠= ∴圆心角120AOB ︒∠= ∴AB =120232360ππ⨯⨯= 故选C.【点睛】本题主要考查圆弧的计算,关键在于确定圆心角.12.如图,矩形ABCD 中,4AB =,2AD =,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB ,则PB 的最小值是( )A. 2B. 4C.D.【答案】D【解析】【分析】 根据题意要使PB 最小,就要使DF 最长,所以可得当C 点和F 点重合时,才能使PB 最小,因此可计算的PB 的长.【详解】解:根据题意要使PB 最小,就必须使得DF 最长,因此可得当C 点和F 点重合时,才能使PB 最小.当C 和F 重合时,P 点是CD 的中点2CP ∴=BP ∴===故选D.【点睛】本题主要考查矩形中的动点问题,关键在于问题的转化,要使PB 最小,就必须使得DF 最长.二、填空题(本大题共6小题,每小题4分,满分24分)13.已知关于x 的一元二次方程22(21)30x k x k --++=有两个不相等的实数根,则实数k 的取值范围是_____.【答案】114k <-【解析】【分析】 根据根与系数的关系可得要使22(21)30x k x k --++=有两个不相等的实数根,则必须>0∆,进而可以计算出k 的取值范围.【详解】解:根据根与系数的关系可得要使22(21)30x k x k --++=有两个不相等的实数根,则>0∆. 22(21)4(3)k k ∆=--+114k ∴<- 故答案为114k <-. 【点睛】本题主要考查二元一次方程的根与系数的关系,根据方程根的个数,列不等式求解.14.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各种多少两?设黄金重x 两,每枚白银重y 两,根据题意可列方程组为____.【答案】911(10)(8)13x y y x x y =⎧⎨+-+=⎩【解析】分析】 根据题意甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相同.故可得911x y = ,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两,可得(10)(8)13y x x y +-+=,因此可得二元一次方程组.【详解】根据题意可得甲袋中的黄金9枚和乙袋中的白银11枚质量相等,可得911x y =,再根据两袋互相交换1枚后,甲袋比乙袋轻了13两.故可得(10)(8)13y x x y +-+=.因此911(10)(8)13x y y x x y =⎧⎨+-+=⎩ 所以答案为911(10)(8)13x y y x x y =⎧⎨+-+=⎩ 【点睛】本题主要考查二元一次方程组的应用,关键在于理解题意,这是中考的必考题,必须熟练掌握.15.如图,90AOB ∠=︒,30B ∠=︒,以点O 为圆心,OA 为半径作弧交AB 于点A ,点C ,交OB 于点D ,若3OA =,则阴影部分的面积为_____.【答案】34π【解析】【分析】根据题意连接OC ,可得阴影部分的面积等于两个阴影部分面积之和,再根据弧AC 所对的阴影部分面积等于弧AC 所对圆心角的面积减去OAC ∆的面积,而不规则图形BCD 的面积等于OBC ∆的面积减去弧DC 所对圆心角的面积.进而可得阴影部分的面积.【详解】解:根据题意连接OC,90903060OA OC OAB B ︒︒︒︒=∠=-∠=-=ACO ∴∆为等边三角形60AOC ︒∴∠=∴阴影部分面积1=26013333cos3036022ππ︒⨯⨯-⨯⨯=∴阴影部分面积2=21330332236044ππ⨯-⨯⨯=- ∴阴影部分面积=阴影部分面积1+阴影部分面积2=34π 故答案为34π。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章数与式
第1讲实数及其运算
A组基础题组
一、选择题
1.(2017泰安模拟)-4的相反数是( )
A.1
4B.-1
4
C.4
D.-4
2.(2017泰山模拟)2 016的相反数是( )
A.1
2016
B.-2 016
C.-1
2016
D.2 016
3.(2018菏泽)下列各数:-2,0,1
3
,0.020 020 002…,π,√9,其中无理数的个数是( )
A.4
B.3
C.2
D.1
4.下列四个实数中最小的是( )
A.√2
B.2
C.√3
D.1.4
5.关于√12的叙述,错误的是( )
A.√12是有理数
B.面积为12的正方形边长是√12
C.√12=2√3
D.在数轴上可以找到表示√12的点
6.(2017肥城模拟)下列算式:①√9=±3;②(-1
3
)-2=9;③26÷23=4;④
(-√2016)2=2 016;⑤a+a=a2.
运算结果正确的个数是( )
A.1
B.2
C.3
D.4
7.(2018德州)一年之中地球与太阳之间的距离随时间的变化而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿km.用科学记数法表示1.496亿是( )
A.1.496×107
B.14.96×107
C.0.149 6×108
D.1.496×108
二、填空题
8.计算:√4+(-2)0= .
3= .
9.计算:(-2)0-√8
三、解答题
)-2+(π-3.14)0.
10.计算:-|-1|+√12·cos 30°-(-1
2
B组提升题组
一、选择题
)-2的结果是( )
1.计算-(√2)2+(√2+π)0+(-1
2
A.1
B.2
C.11
D.3
4
二、填空题
2.(2018青岛)计算:2-1×√12+2cos 30°=.
三、解答题
)-1-|-5|+(√3-2)0.
3.(2017泰安)计算:(-2)3+(1
3
)-1+(π-3.14)0-2sin 60°-√12+|1-3√3|.
4.计算:(1
2016
)-2-|√3-2|-2sin 60°.
5.(2018菏泽)计算:-12 018+(1
2
第一章数与式
第1讲实数及其运算
A组基础题组
一、选择题
1.C
2.B
,0.020 020 002…,π,√9中,无理数有0.020 020 002…,π,故选3.C 在-2,0,1
3
C.
4.D 1.4<√2<√3<2,
所以四个实数中最小的是1.4.故选D.
5.A √12是无理数,故选A.
6.B ①√9=3;②(-13)-2=1(-13)=9;③26÷23=23=8;④(-√)2=2 016;⑤a+a=2a,故运算结果正确的个数是2,故选B.
7.D
二、填空题
8.答案 3
解析 √4+(-2)0=2+1=3,故答案为3.
9.答案 -1
解析 原式=1-2=-1,故答案为-1.
三、解答题
10.解析 原式=-1+2√3×√32-4+1=-1+3-4+1=-1.
B 组 提升题组
一、选择题
1.D -(√2)2+(√2+π)0+(-12)-2
=-2+1+4=3.故选D. 二、填空题
2.答案 2√3
解析 原式=12×2√3+2×√32
=√+√√. 三、解答题
3.解析 原式=-8+3-5+1=-9.
4.解析 原式=2 016+1-2×√32
-2√3+(3√3-1)=2 016+1-√3-2√3+3√3-1=2 016. 5.解析 原式=-1+4-(2-√3)-2×√32 =-1+4-2+√3-√3
=1.。