LOW-PASS FILTER USING A HYBRID EBG STRUCTURE

合集下载

相位生成载波(PGC)调制与解调讲解

相位生成载波(PGC)调制与解调讲解

相位⽣成载波(PGC)调制与解调讲解相位⽣成载波(PGC )调制与解调⼀、 PGC 调制⼲涉型光纤传感器的解调⽅法⽬前主要有:相位⽣成载波解调法、光路匹配差分⼲涉法、差分时延外差法。

由于相位⽣成载波解调信号有动态范围⼤、灵敏度⾼、线性度好、测相精度⾼等优点,是⽬前光纤传感⼲涉领域⼯程上较为实⽤的解调⽅法。

[1]相位⽣成载波的调制分为外调制和内调制。

外调制⼀般采⽤压电陶瓷(PZT )作为相位调制器,假设调制信号频率为ω0 ,幅度为C ,调制信号可以表⽰为(1)式:0(t)cos(t)C φω= (1)则光纤⼲涉仪的输出的信号可表⽰为(2)式:00cos[(t)(t)]cos[cos(t)(t)]s s I A B A B C φφωφ=++=++ (2)式中,A 为直流量, B 为⼲涉信号幅度。

s (t)Dcos(t)(t)s φωψ=+,其中,?s (t) 不仅包含了待测信号D cos ωs t ,还包括了环境噪声引起的相位变化ψ(t)。

将(2)式按 Bessel 函数展开,得到(3)式[2]:k k 02k 02k 1010J (C)2(1)J (C)cos 2k t cos (t)2(1)J (C)cos(2k 1)t sin (t)s s k k I A B ωφωφ∞∞+===++---+??∑∑ (3)⼆、 PGC 解调微分交叉相乘(differential and cross —multiply ,DCM )算法和反正切算法是两种传统的 PGC 解调算法,此外,⽂献[1]中还介绍了三倍频DCM 算法,基频混频PGC 算法,基于反正切算法和基频混频算法的改进算法,反正切-微分⾃相乘算法(Arctan-DSM )算法。

下⾯分别介绍DCM 算法和反正切算法。

2.1 微分交叉相乘(DCM )算法 DCM 算法的原理图如图1所⽰:图1 DCM 算法原理图输⼊的⼲涉信号I 分别与基频信号10cos S G t ω=和⼆倍频信号20cos 2S H t ω=进⾏混频,再通过低通滤波器滤除⾼频成分,可以得到信号的正弦项(5)式和余弦项(6)式:1s (t)(C)sin (t)I BGJ φ=- (5) 2s Q(t)(C)cos (t)BHJ φ=- (6)I(t) 、Q(t) 含有外界⼲扰,还不能直接提取待测信号,再通过微分交叉相乘(DCM )⽅法得到两个正交信号的平⽅项,利⽤sin 2?s + cos 2?s = 1消除正交量,得到微分量(7)式:212s '(C)J (C)'(t)V B GHJ φ= (7)经过积分运算再通过⾼通滤波器滤除缓慢变化的环境噪声,最终得到的解调信号为得到(8)式:[]2212s 12s (C)J (C)(t)(C)J (C)Dcos(t)(t)V B GHJ B GHJ φωψ==+ (8)相位噪声项ψ(t) 通常情况下为缓变信号,将V 通过⾼通滤波器滤除相位噪声,就可以得到待测信号,实现传感信号的解调(9)式。

FilterPro低通滤波器设计工具使用中文手册

FilterPro低通滤波器设计工具使用中文手册

应用报告ZHCA0 – 00 年 月FilterPro TM MFB 及Sallen-Key低通滤波器设计程序运算放大器应用, 高性能线性产品John Bishop, Bruce Trump, R. Mark StittFilterPro 低通滤波器设计程序2 巴特沃兹(最大幅度平坦度)3 切比雪夫(等纹波幅度)3 贝塞尔(最大时间延迟平坦度) 3 概述5 巴特沃兹响应 5 切比雪夫响应 5 贝塞尔响应 5电路实现6 MFB 拓扑6 Sallen-Key 拓扑 7使用FilterPro 程序7 计算机要求 7 安装 7 入门 7 程序特点 9 打印结果 9 敏感度9 MFB 及Sallen-Key 拓扑的fn 敏感度 9 Q 值敏感度9 使用敏感度显示特性10 使用籽电阻(Seed Resistor)设定 10 电容值11 针对运算放大器输入电容进行补偿——仅用于Sallen-Key 拓扑 11 电容选择11 使用fn 及Q 值显示 12运算放大器选择12 运算放大器带宽12运算放大器转换频率12UAF42通用有源滤波器13摘要尽管低通滤波器在现代电子学领域的地位越来越重要,但其设计及定型工作仍是冗长乏味且耗时巨大的。

FilterPro 程序设计用于辅助低通滤波器设计,以实现多反馈(MFB)及Sallen-Key 拓扑。

本报告可作为FilterPro 操作指南,同时还包括了其他方面的问题,记述了设计人员涉足该程序的必备信息以及程序所交付的功能。

目录FilterPro 是德州仪器的注册商标。

ZHCA053FilterPro TM MFB及Sallen-Key低通滤波器设计程序电流反馈放大器13全差分放大器13 MFB滤波器响应示例14结论15图片目录图1. 偶数阶(4极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于0 dB)4图2. 奇数阶(5极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于-3 dB)4图3. 图3. 实极点部件(单位增益、一阶巴特沃兹;f-3dB=1/2π×R1×C1)4图4. 二阶低通滤波器4图5. 三阶低通滤波器4图6. 采用层叠复极点对部件的偶数阶低通滤波器5图7. 采用层叠复极点对部件+单实极点部件的奇数阶低通滤波器5图8. MFB复极点对部件(增益= - R2/R1)6图9. Sallen-Key复极点对部件,单位增益(增益=1)6图10. Sallen-Key复极点对部件(增益= 1+ R4/R3)6图11. FilterPro的屏幕显示,展示了40 dB了益的9极点MFB滤波器8图12. 三阶低通滤波器驱动ADC 13图13. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为总体滤波器响应14图14. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为过渡带(T ransition-band)的详细情况14图15. 5阶20 kHz巴特沃兹低通MFB滤波器的阶跃响应14图16. 5阶20 kHz 切比雪夫低通MFB滤波器的阶跃响应14图17. 5阶20 kHz贝赛尔低通MFB滤波器的阶跃响应15图18. 三种20 kHz MFB低通滤波器的实测失真15表格目录表1. 滤波器电路vs.滤波器介数6FilterPro低通滤波器设计程序源自德州仪器的FilterPro程序使有源低通滤波器的设计工作变得更为轻松。

FilterPro低通滤波器设计工具使用中文手册

FilterPro低通滤波器设计工具使用中文手册

应用报告ZHCA0 – 00 年 月FilterPro TM MFB 及Sallen-Key低通滤波器设计程序运算放大器应用, 高性能线性产品John Bishop, Bruce Trump, R. Mark StittFilterPro 低通滤波器设计程序2 巴特沃兹(最大幅度平坦度)3 切比雪夫(等纹波幅度)3 贝塞尔(最大时间延迟平坦度) 3 概述5 巴特沃兹响应 5 切比雪夫响应 5 贝塞尔响应 5电路实现6 MFB 拓扑6 Sallen-Key 拓扑 7使用FilterPro 程序7 计算机要求 7 安装 7 入门 7 程序特点 9 打印结果 9 敏感度9 MFB 及Sallen-Key 拓扑的fn 敏感度 9 Q 值敏感度9 使用敏感度显示特性10 使用籽电阻(Seed Resistor)设定 10 电容值11 针对运算放大器输入电容进行补偿——仅用于Sallen-Key 拓扑 11 电容选择11 使用fn 及Q 值显示 12运算放大器选择12 运算放大器带宽12运算放大器转换频率12UAF42通用有源滤波器13摘要尽管低通滤波器在现代电子学领域的地位越来越重要,但其设计及定型工作仍是冗长乏味且耗时巨大的。

FilterPro 程序设计用于辅助低通滤波器设计,以实现多反馈(MFB)及Sallen-Key 拓扑。

本报告可作为FilterPro 操作指南,同时还包括了其他方面的问题,记述了设计人员涉足该程序的必备信息以及程序所交付的功能。

目录FilterPro 是德州仪器的注册商标。

ZHCA053FilterPro TM MFB及Sallen-Key低通滤波器设计程序电流反馈放大器13全差分放大器13 MFB滤波器响应示例14结论15图片目录图1. 偶数阶(4极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于0 dB)4图2. 奇数阶(5极点)、3 dB纹波切比雪夫滤波器的频率响应(截止于-3 dB)4图3. 图3. 实极点部件(单位增益、一阶巴特沃兹;f-3dB=1/2π×R1×C1)4图4. 二阶低通滤波器4图5. 三阶低通滤波器4图6. 采用层叠复极点对部件的偶数阶低通滤波器5图7. 采用层叠复极点对部件+单实极点部件的奇数阶低通滤波器5图8. MFB复极点对部件(增益= - R2/R1)6图9. Sallen-Key复极点对部件,单位增益(增益=1)6图10. Sallen-Key复极点对部件(增益= 1+ R4/R3)6图11. FilterPro的屏幕显示,展示了40 dB了益的9极点MFB滤波器8图12. 三阶低通滤波器驱动ADC 13图13. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为总体滤波器响应14图14. 5阶20 kHz巴特沃兹、切比雪夫及贝赛尔单位增益MFB低通滤波器的增益随频率的变化,所示为过渡带(T ransition-band)的详细情况14图15. 5阶20 kHz巴特沃兹低通MFB滤波器的阶跃响应14图16. 5阶20 kHz 切比雪夫低通MFB滤波器的阶跃响应14图17. 5阶20 kHz贝赛尔低通MFB滤波器的阶跃响应15图18. 三种20 kHz MFB低通滤波器的实测失真15表格目录表1. 滤波器电路vs.滤波器介数6FilterPro低通滤波器设计程序源自德州仪器的FilterPro程序使有源低通滤波器的设计工作变得更为轻松。

美军雷达命名规则和雷达英文词汇

美军雷达命名规则和雷达英文词汇

美军雷达命名规范按老美军用标准MIL-STD-196D规定,其军用电子设备(包括雷达)根据联合电子类型命名系统(JETDS)。

名称由字母AN(陆军-海军联合命名系统),一条斜线和另外三个字母组成。

三个字母表示设备安装位置,设备类型和设备用途。

比如AN/SPS-49表示舰载警戒雷达。

数字49标识特定装备,并且表示该设备时JETDS规定的SPS类的第49种。

经过一次修改就在原型后附加一个字母如ABC,名称后加破折号,T和数字表示丫是用来训练的。

名称后的括号内V表示丫是可变系统,就是通过增加或减少设备来完成不同功能的系统。

处于试验和研制中的系统有时在紧随正式名称后的括弧内用特殊标志来表示,他们用来指明研究单位。

比如XB表示海军研究实验室,XW表示罗姆航空发展中心。

下面就把AN/***后面的三个字母的意思祥加说明。

JETDS设备符号安装位置(第一个字母)A 机载B 水下移动式,潜艇D 无人驾驶运载工具F 地面固定G 地面通用K 水陆两用M 地面移动式P 便携式S 水面舰艇T 地面可运输式U 通用V 地面车载W 水面或水下Z 有人和无人驾驶空中运输工具设备类型(第二个字母)A 不可见光,热辐射设备C 载波设备D 放射性检测,指示,计算设备E 激光设备G 电报,电传设备I 内部通信和有线广播J 机电设备K 遥测设备L 电子对抗设备M 气象设备N 空中声测设备P 雷达Q 声纳和水声设备R 无线电设备S 专用设备,磁设备或组合设备T 电话(有线)设备V 目视和可见光设备W 武器特有设备X 传真和电视设备Y 数据处理设备设备用途(第三个字母)A 辅助装置B 轰炸C 通信(发射和接受)D 测向侦查或警戒E 弹射或投掷G 火控或探照灯瞄准H 记录K 计算M 维修或测试工具N 导航(测高,信标,罗盘,测深,进场)Q 专用或兼用R 接收,无源探测S 探测或测距,测向,搜索T 发射W 自动飞行或遥控X 识别Y 监视和火控有源滤波器Active filter有源校正网络Active corrective network有源干扰Active jamming机载引导雷达Airborne director radar机载动目标显示Airborne MTI机载雷达Airborne radar机载截击雷达Airborne-intercept radar机载警戒雷达Airborne warning radar模拟信号Analog signal天线抗干扰技术Antenna anti-jamming technique天线增益Antenna gain反辐射导弹Anti-radiation missile 背射天线Backfire antenna回差Backlash 轰炸雷达Bombing radar 平衡电感Balancing inductor选频放大器Bandpass amplifier战场侦察雷达Battle-field search radar 盲区Blind zone闪烁干扰Blinking jamming击穿功率Breakdown power体效应二极管本地振荡器Bulk effect diode local oscillator宽带中频放大器Broad band intermediate frequency amplifier机柜、分机结构Cabinet, subassembly标定误差Calibrated error电子束管(阴极射线管) Cathode-ray tube(CRT)空腔型振荡器Cavity Oscillator谐振腔Cavity Resonator空腔稳频本地振荡器Cavity-Stabilized Local Oscillator干扰偶极子Chaff Dipole信道化接收机Channelized receiver圆极化平面波Circularly polarized plane wave闭环控制系统(反馈控制系统)Close-loop control system (feed-back control system)杂波抑制Clutter suppression同轴电缆Coaxial cable 同轴谐振腔Coaxial cavity同轴定向耦合器Coaxial directional coupler 同轴滤波器Coaxial filter相干振荡器Coherent oscillator 相干动目标显示Coherent MTI复调制干扰Complex modulated jamming圆锥扫描雷达Conical scan radar圆锥扫描天线Conical Scanned Antenna连续波雷达接收机Continuous-wave radar receiver对比度Contrast 卷积器Convolutor变频损耗Conversion loss 相关时间Correlation time抗反辐射导弹措施Counter anti-radiation missile measures正交场器件(M型器件)Crossed-field devices(M-type devices)截止式衰减器Cut-Off Attenutor截止波长Cut-off wavelength连续波雷达发射机CW Radar Transmitter直流阻抗. impedance直流谐振充电. resonant charging 直流谐振二极管充电. resonant diode charge数据处理Data processing偏转线圈Deflection coil延时充电电路Delayed charging circuit介质移相器Dielectric phase shifter介质干扰杆Dielectric chaff rod数字滤波器Digital filter 数字匹配滤波器Digital matched filter数字测距Digital ranging引导雷达Director radar多普勒雷达Doppler Radar双门限检测器Double threshold detector 双T接头Double T-junction等效负载Dummy load 天线收发开关DuplexerE面(H面)折叠双T E plane (H plane) magic-T天线的有效面积Effective area of an antenna 有效辐射功率Effective radiation power电液伺服阀Electro-hydraulic Servo value电磁兼容性Electromagnetic compatibility 电子抗干扰Electronic anti-jamming电扫描天线Electronic Scanned antenna电扫描雷达Electronically Scanned Radar椭圆极化场矢量Elliptically Polarized Field Vector末制导雷达End-guidance radar激励器(预调器、触发器)Exciter(premodulator, trigger)极窄脉冲雷达Extra-short pulse radar快速付里叶变换Fast Fourier Transform馈电网络Feed network 相控阵馈电网络Feed networks For Phased Array铁氧体移相器Ferrite phase shifter火控雷达Fire control radar 频率捷变雷达Frequency agile radar调频雷达发射机Frequency modulation radar transmitter引信干扰Fuse jamming齿轮传动误差Gear transmission error图形失真校正Graphic distortion correction 格雷戈伦天线Gregarain antenna制导雷达Guidance radar炮瞄雷达Gun directing radar 回旋管Gyrotron测高雷达Height-finding radar水平极化场矢量Horizontally polarized field vector喇叭天线Horn antenna 环行电桥Hybrid ring液压泵Hydraulic pump阻抗匹配Impedance match 天线阻抗匹配Impedance match of antenna输入阻抗Input impedance 天线罩插入相移Insertion phase of a radome阵列单元的孤立阻抗Isolated impedance of an array element天线间的隔离Isolation between antennas干扰压制系数Jamming blanket factor干扰调制样式Jamming modulation type干扰信号带宽Jamming signal band width速调管Klystron激光雷达Laser radar 线阵天线Linear array antenna 负载阻抗Load impedance低空搜索雷达Low altitude surveillance radar主振放大式发射机transmitter磁脉冲调制器Magnetic pulse modulator 磁控管Magnetron磁控管灯丝电压控制电路Magnetron filament voltage controlling Circuit主瓣零点宽度Main (major) lobe zero beamwidth航海雷达Marine radar 矩阵阵列Matrix array 气象雷达Meteorological radar微波带通滤波器Microwave band-pass filter 微波场效应晶体管放大器Microwave field effect transistor amplifier微波全息雷达Microwave hologram radar微波低通滤波器Microwave low-pass filter 副瓣电平Minor (side) lobe level机动雷达Movable radar 阵列天线的互耦Mutual coupling of an array antenna多模馈电器Multimode feed 多基地雷达Multistatic radar多端网络Multiport network导航雷达Navigation radar 噪声调幅干扰Noise AM jamming噪声调幅调相干扰Noise AM-PM jamming 归一化差斜率Normalized difference slope 单通道单脉冲雷达One-channel Monopulse Radar开环系统频率特性Open-loop system frequency characteristic运算放大器Operational Amplifier 超视距雷达Over-the-horizon radar过压保护电路Overvoltage protection circuit 抛物柱面天线Parabolic cylindrical antenna 参量检测器Parameter detector无源雷达Passive radar相位检波器Phase detector 移相器Phase detector相控阵天线Phased array antenna 锁相接收机Phase-locked receiver相位扫描雷达Phase-scanned radar脉冲压缩雷达Pulse compression radar 脉冲雷达接收机Pulse radar receiver相控阵的量化误差Quantization error of a phased array雷达精度Radar accuracy 雷达反侦察Radar anti-reconnaissance天线罩Radome采样频率Sampling frequency 舰载雷达Shipbased radar船用雷达Shipboard radar 侧视雷达Side-looking radar旁瓣对消Sidelobe Cancellation固体微波振荡器Solid state microwave oscillator合成孔径雷达Synthetic radar目标识别雷达Target-identification radar三通道单脉冲雷达接收机Three-channel monopulse radar receiverT型(Y型)环行器(结环行器)T-type (Y-type) circulator (junction circulator)静电控制超高频电子管(栅控管)UHF electronstatic control tubeV形波束雷达V-beam radar压控晶体振荡器V oltage controlled oscillator波导谐振腔Waveguide cavity天气雷达Weather radar X-Y型天线座X-Y type antenna pedestal八木天线Yagi antenna雷达覆盖范围Zone of radar coverage零轴漂移Zero-axsis drift雷达工作模式:目标捕获系统:The tention action system(该系统配备有嵌入式惯性导航系统和全球定位系统,可在雷达快速展开时提供雷达位置坐标。

音响术语中中英对照

音响术语中中英对照
千赫兹
Kill
清除,消去,抑制,衰减,断开
Killer
抑制器,断路器
Kit
设定
Knee
压限器拐点
Knob
按扭,旋钮,调节器
KP key pulse
键控脉冲
KTV karaoke TV
伴唱电视(节目)
KX key
键控
Labial
唇音
L left
左(立体声系统的左声道)
L line
线路
L link
链路
L long
干扰抑制开关
ITS insertion test signal
插入测试信号
IV interval
间隔搜索
IV inverter
倒相器
IWC interrupted wave
断续波
IX index
标盘,指针,索引
J jack
插孔,插座,传动装置
Jack socket
插孔
Jaff
复干扰
Jagg club
空转,待机
Launching
激励,发射
Layer
层叠控制,多音色同步控制
LCD liquid crystal display
液晶显示
LCR left center right
左中右
LD laser vision disc
激光视盘,影碟机
LD load
负载
LDP input
影碟输入
LDTV low definition television
LOP line of position
定位线,位置线
Lop
截去
Loss
衰落,损耗
Loudn

c++ 低通滤波器系数

c++ 低通滤波器系数

c++ 低通滤波器系数低通滤波器(Low Pass Filter,简称LPF)是一种过滤特定频率范围的信号的电路或算法。

在C++中,通常使用数组和函数来实现低通滤波器。

以下是一个简单的低通滤波器的实现,它使用一个滑动窗口来计算平均值,从而实现低通滤波。

cpp#include <vector>#include <iostream>class LowPassFilter {public:LowPassFilter(int window_size) : window_size_(window_size) {}double applyFilter(const std::vector<double>& signal, double sampleRate) { if (signal.size() < window_size_) {throw std::invalid_argument("Signal size must be greater than window size.");}double filteredValue = 0.0;for (int i = 0; i < window_size_; ++i) { filteredValue += signal[i];}filteredValue /= window_size_;window_.push_back(signal.back());if (window_.size() > window_size_) {window_.erase(window_.begin());}return filteredValue;}private:int window_size_;std::vector<double> window_;};int main() {std::vector<double> signal = {1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0};LowPassFilter lpFilter(3);for (double sample : signal) {std::cout << "Sample: " << sample << ", Filtered: " << lpFilter.applyFilter({sample}, 1.0) << std::endl;}return 0;}在上述代码中,创建了一个名为LowPassFilter的类,它接受一个窗口大小作为参数。

弗拉迪姆高流筛选器系列产品说明说明书

弗拉迪姆高流筛选器系列产品说明说明书

Catalog 0730-2Hi-Flow F602 SeriesHi-Flow Filters2 & 2-1/2 Inch PortsFeatures• Excellent water removal efficiency • For heavy duty applications with minimum pressure drop requirement • Unique deflector plate that creates swirling of the air stream ensuring maximum water and dirt separation • Large filter element surface guarantees low pressure drop and increased element life• 40 micron filter element standard • Metal bowl with sight gauge standard • Twist drain as standard, optional auto drain• Large bowl capacity• Optional high capacity bowl(s) available • High flow: 2 & 2-1/2" – 1200 SCFM §Drains and Options Blank Manual Twist Drain Q External Heavy Duty Auto Drain R Internal Auto DrainOrdering InformationF 602 — 16 W J /**BowlE 32 oz. Large Capacity Metal without Sight GaugeW 16 oz. Metal with Sight GaugeElement J 40 MicronPort Size 16 2 Inch 20 2-1/2 InchPort Threads — NPT G BSPPEngineeringLevel * Will be Entered at Factory.Standard part numbers shown bold.For other models refer to ordering information below.§SCFM = Standard cubic feet per minute at 90 PSIG inlet and 5 PSIG pressure drop.Port Size NPTTwist DrainAutomatic Pulse DrainMetal Bowl / Sight Gauge - 16 oz.2"F602-16WJ F602-16WJR 2-1/2"F602-20WJ F602-20WJR Metal Bowl without Sight Gauge - 32 oz.2"F602-16EJ F602-16EJR 2-1/2"F602-20EJF602-20EJRAutomaticDrainManual DrainF602 Filter Dimensions A BCD E F F602-16W, F602-20W4.90(124)11.08 (281)13.00 (330) 6.30 (160) 1.92 (48.7) 2.45(62.2)F602-16E, F602-20E4.90(124)14.31(364)16.23(412)6.30 (160)1.92 (48.7)2.45(62.2)inches (mm)BOLD ITEMS ARE MOST POPULAR.Catalog 0730-2Technical Specifications – F602F602 Series, 2 & 2-1/2 Inch Ports Hi-Flow FiltersTechnical InformationF602 Filter Kits & AccessoriesBowl Kits –Aluminum (E) .....................................................................BK603B Zinc with Sight Gauge (W) ..............................................BK605WB Drain Kits –External Auto (E) .................................................................SA603D External Auto (W) ................................................................SA602D Internal Auto (All) ............................................................SA602MD Manual (All) ...................................................................SA600Y7-1Semi-Automatic “Overnight” Drain ...................................SA602A7 (Drains automatically under zero pressure)Filter Element Kits – 40 Micron (All) .....................................................................EK602B Repair Kits –Deflector, Baffle Assembly, and Retaining Rod (All) ..........RK602C External Auto Drain (All) .....................................................RK602D Internal Auto Drain (All) ...................................................RK602MD Metal Bowl Sight Gauge (W) ........................................RKB605WBSpecificationsBowl Capacity –Aluminum (E) .................................................................32 Ounces Zinc (W) ..........................................................................16 Ounces Port Threads .................................................................2, 2-1/2 Inch( ) = Bowl TypeFloat (Inside Bowl) Manual Push ButtonDrain(Outside Bowl)Drain (1/4" NPTF)Connection Through Bowl (1/8" NPSM)“Q” Option External Heavy Duty Auto Drain SA602D / SA603DFor heavy duty applications where the filter is being used to remove large volumes of liquid and/or particulate matter from the airstream, the external automatic drain (“Q” option) should be used.Pressure & Temperature Ratings –Aluminum Bowl (E) ............................0 to 300 PSIG (0 to 20.4 bar) 40°F to 150°F (4.4°C to 65.6°C) Zinc (W) ..............................................0 to 250 PSIG (0 to 17.2 bar) 40°F to 150°F (4.4°C to 65.6°C) With Internal Auto Drain (R) ..........20 to 175 PSIG (1.4 to 11.9 bar) 40°F to 125°F (4.4°C to 52°C) With External Auto Drain (Q) ............30 to 250 PSIG (0 to 17.2 bar) 40°F to 150°F (4.4°C to 65.6°C)Weight –Aluminum Bowl (E) .................................... 10.3 lb. (4.67 kg) / Unit 11 lb. (4.99 kg) / 1-Unit Master Pack Zinc Bowl (W) .............................................. 9.8 lb. (4.45 kg) / Unit 39 lb. (17.69 kg) / 4-Unit Master PackMaterials of ConstructionBody ....................................................................................Aluminum Bowls –(E) ...................................................Aluminum without Sight Gauge (W) ................................................................Zinc with Sight Gauge Drain –Manual Twist & Overnight .......................................................Brass Housing “R” ............................................................................Acetal Housing “Q” .........................................................................Bronze Filter Elements –40 Micron (Standard) ................................................Polypropylene Seals ........................................................................................Buna N Sight Gauge ...............................................................................Nylon2505007501000125012345Flow - SCFMP r e s s u r e D r o p - P S I GP r e s s u r e D r o p - b a r.1.2.3Primary Pressure - PSIG1.7 3.4 5.2 6.9Primary Pressure - bar 0240360480120Flow - dm n 3/s。

DGS微带带通滤波器的设计

DGS微带带通滤波器的设计

创新点:该带通滤波器相对与传统的带通滤波器具有以下优点:
1、 结构非常简单
2、 它的阻带很宽而且比通常的低通滤波器衰减更深。
3、 插入损耗很低
4、 使用非常小的结构来实现带通滤波器
参考文献:
[1]李玥,冯全源. 两种新型一维微带开口环PBG结构[J].微计算机信息,2007,5-2:275-276。
[3] J. S. Park, J. Kim, J. Lee, and S. Myung, “A novel equivalent circuit and modeling method for defected ground structure and its application to optimization of a DGS lowpass filter,”[J] IEEE Microwave Theory Tech. Symp. Dig., 2002, pp. 417–420 作者简介: 刘宪鹏(1983.8-),男(汉),江苏南通人,南京工业大学信息学院硕士研究生,从事计算 机应用研究;糜元根,男(汉),江苏无锡人,南京工业大学信息学院副教授,从事计算机应用研 究。
1.4 理论设计
图 1.3.带通滤波器原理图
我们所设计的带通滤波器的工作中心频率为4.3GHZ,它是由一个毫米器件所构成的。它 是由RT-Duroid 6006构成它的εr=6.15,厚度为0.0635cm。它的物理尺寸和规格尺寸与波长
的关系如下所示。支配波长:λg = (λs ε r ) 其中λs是中心频率fs时的波长。εr是相关的介
Biography: Liu Xianpeng(1983.8- ), male (Han Nationality), Jiangsu Province, master student of the Information Science and Engineering College, Nanjing University of Technology, majored in computer application; Mi Yuangen, male (Han Nationality), Jiangsu Province, associate professor, Nanjing University of Technology, majored in computer application. 作者详细通信方式: 江苏省南京市新模范马路 5 号南京工业大学丁家桥校区 213 信箱 刘宪鹏 收 邮编:210009
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LOW-PASS FILTER USING A HYBRID EBG STRUCTUREM.F.Karim,1A.Q.Liu,1A.Alphones,1and X.J.Zhang 21School of Electrical &Electronic Engineering Nanyang Technological University Nanyang Avenue,Singapore 6397982Intel Corporation Yan’an RoadShanghai 200336,P.R.China Received 28September 2004ABSTRACT:This paper presents an innovative design of a hybrid electromagnetic bandgap (EBG)structure based on nonuniform period and dimensions.A high rejection bandwidth is achieved when the non-uniform period and the dimensions follow the Kaiser distribution.The EBG structures are fabricated on the transmission line and the ground plane,where the offset is one-quarter of the EBG period.The measure-ment results show a low-pass filter response up to the C-band with in-sertion loss below 0.25dB and rejection bandwidth above 12GHz.This type of nonuniform EBG structure is more compact than the conven-tional uniform structure.©2005Wiley Periodicals,Inc.Microwave Opt Technol Lett 45:95–98,2005;Published online in Wiley InterScience ().DOI 10.1002/mop.20734Key words:electromagnetic bandgap (EBG);periodic structures;low-pass filter (LPF);nonuniform period 1.INTRODUCTIONElectromagnetic bandgap (EBG)is a periodic structure within which certain bands of electromagnetic propagations are prohib-ited.EBG structures can be implemented on microstrip lines by drilling periodic holes through the substrate or by etching in the ground plane.Microstrip-line structures are more attractive be-cause of their promising applications in microwave integrated circuits (MICs)and monolithic microwave integrated circuits (MMICs).EBG periodic structures have been successfully applied to broadband amplifiers for efficiency enhancement [1],spurious suppression in band-pass filters [2],and optimization of the radi-ation pattern in microstrip antennas [3].Recently,some research-ers have focused on obtaining wide-frequency stop-bands,while others have concentrated on achieving a compact design.A cas-caded connection of various EBG structures for a wide-rejection-frequency bandwidth has been proposed [4],but the design has the shortcomings of large size and restricted applications in microstrip circuits.On the other hand,a more compact EBG structure using chirping and tapering techniques has been investigated [5].Simi-larly,a Chebyshev tapered circular EBG,proposed in [6],has shown vast improvement in pass-band performance.A double-sided EBG structure was investigated in [7],which yielded less rejection bandwidth in the stop-band.However,to date there is scant work on filters with low insertion loss in the pass band and wide-rejection bandwidth for realizing a low-pass filter (LPF)response.In this paper,a new low-pass filter using a hybrid EBG struc-ture is presented.The Kaiser distribution used in [8],which has shown a steep roll-off behavior,is used for obtaining a high-rejection bandwidth in the stop band.A hybrid EBG of square-lattice shape is fabricated on the ground plane and the signal line of the microstrip structure.The measurement results of the hybrid EBG structure are discussed and the comparison with a conven-tional stepped impedance LPF is analyzed.2.DESIGN OF THE HYBRID EBG STRUCTUREThe hybrid EBG structures are etched on taconic substrate with a dielectric constant of 2.43and thickness of 0.76mm.The design parameters that are critical to achieve the desired stop band are the period a and the filling factor d /a .For low-pass filter applications with wide-rejection bandwidth,EBG structures should not be equidistant (that is,the period is not constant).The idea basically evolved from the linear change of the perturbation period applied in linearly chirped fiber Bragg gratings (LCFBGs)in the optical domain [9],as well as in chirped corrugated wave guides in the microwave regime.This technique can achieve a wide bandwidth,as compared to structures with constant period.The Kaiser distri-bution polynomials can be applied to the period and the dimension,and can be expressed asT ͩz lͪϭI 0ͩ␣ͱ1Ϫͩ2z l ͪ2ͪI 0͑␣͒,(1)where I 0is the modified Bessel function of the first kind,z /l is the normalized longitudinal position in the circuit,l is the device length,and ␣ϭ4is the optimum value of the Kaiser window as in [8].The proposed hybrid structure in which the dimension and the period on the transmission line and as well as on ground planeareFigure 1Hybrid EBG structure:(a)top view;(b)bottomviewFigure 2Simulation results for different offset valuesperturbed simultaneously is shown in Figure 1.The perturbation on the transmission line is basically a variation of the impedance according to the distribution.The structure on the signal line and the ground plane follow the same pattern of the period and the dimension.The period and the dimension between the two cen-tered EBGs are a 0and d 0,respectively.According to Eq.(1),the period and the dimension are varied correspondingly and are denoted as a 1,a 2,a 3and d 1,d 2,d 3(see Fig.1).Full-wave electromagnetic simulation is performed using com-mercial software,Zeland IE-3D.When the EBG structures on the ground plane and the signal line are aligned,the simulation results reveal no stop-band phenomena,as shown in Figure 2.The current distribution for this structure,shown in Figure 3,clearly exhibits that at 10GHz the transmission power can pass through the circuit with less attenuation.The results of the extensive simulation process indicate that there should be an offset between the two structures.The offset distance is varied,and with an offset of 1/8a 0and a 0,the ripples in the pass-band and stop-band regions are significant,and even the rejection bandwidth becomes less than 15dB.The optimum result is obtained at 2.63mm,that is,one-quarter of the EBG period.The current distribution at the same 10GHz shows that the transmission can pass through the first few EBG structures,and after that it is totally suppressed,as shown in Figure 4.The hybrid structure generates an LPF response up to theTABLE 1Parameters of the Hybrid EBG Structure Polynomial Values Periods [mm]Dimensions [mm]x 01a 010.52d 0 5.26x 10.93a 19.78d 1 4.9x 20.75a 27.90d 2 3.95x 30.50a 35.26d 32.63Figure 3Current distributions of the hybrid EBG at 10GHz with no offset:(a)whole circuit;(b)enlargedviewFigure 4Current distributions of the hybrid EBG at 10GHz with an offset of one-quarter period:(a)whole circuit;(b)enlarged viewC-band with minimum insertion loss and wide-rejection band-width.The design parameters for the hybrid EBG structure are listed in Table 1.A stepped-impedance LPF is designed for the performance comparison with the hybrid EBG structure and its parameters are presented in Table 2.3.MEASUREMENT RESULTS AND DISCUSSIONSThe fabricated structure of hybrid EBG is shown in Figure 5.This fabricated structure is an optimum design,as the transmission-line EBG is offset from the ground-plane EBG by one-quarter of the period.The pass-band region has an insertion loss of 0.25dB up to the C-band range,as shown in Figure 6.The maximum attenuation is around 40.1dB at 10.9GHz and the 20-dB rejection bandwidth is from 8to 20GHz.It is observed that up to 40GHz,the rejection behavior is maintained below 20dB.A low-pass stepped-impedance filter is designed for the performance comparison with hybrid EBG,as shown in Figure 7.The order of the LPF is nine with 0.2-dB equal-ripples response characteristics.The hybrid EBG structure and the stepped-impedance filter have the same low-pass response with 0.2-dB insertion loss,as shown in Figure 8.The spurious-transmission peaks occur around 14GHz for the stepped-impedance filter and its rejection bandwidth becomes less than 5GHz.This clearly shows that the hybrid EBG LPF has an enhanced performance,as compared to that of the conventional stepped-impedance filter design in terms of higher rejection bandwidth.The measurement and simulation results of two different filters are summarized in Table 3.4.CONCLUSIONA low-pass filter using a hybrid EBG structure based on the nonuniform period and dimension has been investigated.Thislow-pass filter has been designed,simulated,and fabricated with an insertion loss of 0.25dB in the pass-band up to the C-band.The 20-dB rejection bandwidth is more than 12GHz and the ripple in the reflection characteristic is around 2dB.This hybrid EBG structure,which has been validated and qualitatively compared with the conventional stepped-impedance LPF,may find potential application in wideband rejectionfilters.Figure 7Stepped impedance low-passfilterFigure 8Comparison of the hybrid EBG and stepped-impedance filterTABLE 2Parameters of the Stepped-Impedance FilterParametersl 1l 2l 3w 1w 2w 3Dimension [mm]3.55.635.60.622.2Figure 5Fabricated hybrid EBG structure:(a)top view;(b)bottomview Figure 6Measurement and simulation results of the hybrid structureREFERENCES1.V.Radistic,Y.Qian,and I.Itoh,Broadband power amplifiers using dielectric photonic bandgap structures,IEEE Microwave Wireless Compon Lett 8(1998),13–15.2.W.J.Chappell,M.P.Little,and L.P.B.Katehi,High isolation,planar filters using EBG substrate,IEEE Microwave Wireless Compon Lett 11(2001),246–248.3.R.Coccioli,F.R.Yang,K.P.Ma,and I.Itoh,Aperture coupled patch antenna on UC-PBG substrate,IEEE Trans MTT 47(1999),2123–2130.4.I.Rumsey,P.M.Melinda,and P.K.Kelly,Photonic band gap structures used as a filters in microstrip circuits,IEEE Microwave Guided Wave Lett 8(1998),336–338.so,T.Lopetegi,M.J.Erro,D.Benitto,M.J.Garde,and M.Sorolla,Novel wide bandgap photonic band gap structures,Microwave Opt Technol Lett 24(2000),357–360.6.N.C.Karmakar,Improved performance of photonic band-gap micro-stripline structures with the use of chebyshev distributions,Microwave Opt Technol Lett 33(2002),1–5.7.T.Akalin,so,E.Delos,T.Lopetegi,O.Vanbesien,M.Sorolla,and D.Lippens,High-performance double sided microstrip PBG filter,Microwave Opt Technol Lett 35(2002),90–93.so,Electromagnetic crystals in optical fiber and microstrip technology,Ph.D thesis,Public University of Navarre,Spain,2001.9.K.O.Hill and G.Meltz,Fiber Bragg Grating technology fundamentals and overview,J Lightwave Technol 15(1997),1263–1276.©2005Wiley Periodicals,Inc.ON POTENTIAL APPLICATIONS OFMETAMATERIALS FOR THE DESIGN OF BROADBAND PHASE SHIFTERSIgor S.Nefedov 1,2and Sergei A.Tretyakov 11Radiolaboratory/SMARAD Center of Excellence Helsinki University of Technology P.O.Box 3000FI-02015TKK,Finland 2Institute of Radio Engineering and Electronics Russian Academy of Sciences Zelyonaya 38410019,Saratov,RussiaReceived 13October 2004ABSTRACT:The possible design of phase shifters with reduced fre-quency dispersion using combined sections of forward-wave (FW)and backward-wave (BW)transmission lines is discussed.It is shown that inclusion of backward-wave sections into a transmission line always increases the total dispersion.On the other hand,we show that disper-sion can be reduced by means of lines with positive anomalous disper-sion and provide an example of such line.©2005Wiley Periodicals,Inc.Microwave Opt Technol Lett 45:98–102,2005;Published online in Wiley InterScience ().DOI 10.1002/mop.20735Key words:metamaterials;backward waves;phase shifters;anomalous dispersion1.INTRODUCTIONRecent years have witnessed a growing interest in metamaterials and complex transmission lines supporting propagation of back-ward waves at microwave frequencies.Different terms are used for these metamaterials:left-handed media,Veselago media,back-ward-wave (BW)media,media with negative refractive index or with negative permittivity and permeability,lines with negative dispersion.Several new application ideas have been proposed.Most of them utilize the effect of anomalous refraction at an interface between a forward wave (FW)and a BW medium,surface polaritons on such interfaces,and phase compensation which takes place when a wave propagates across slabs of FW and BW materials.The first idea belongs to V.Veselago,who pub-lished pioneer work on the electrodynamics of media with negative parameters and discussed a design of a planar lens [1].This idea was developed by many authors,who considered wave focusing,including subwavelength imaging [2],wave leakage (a new type of leaky-wave antennas)[3],and so forth.The design of 3D BW media with the use of resonant particles such as split-ring resona-tors [4]is difficult due to high losses in these resonant structures.Two-dimensional structures for the microwave range can be real-ized without any resonant elements by periodically loading 2D transmission lines with lumped-element series capacitors and shunt inductors [5,6].The phase compensation idea was proposed by N.Engheta [7],who suggested a subwavelength cavity resonator formed by two adjacent material slabs that support forward and backward waves.However,as shown in [8],this structure in fact exhibits resonant response only due to the resonant behavior of the filling material.This problem was further explored in detail in [9].The idea of phase compensation was further extended to the design of phase shifters in [10],with a discussion of a broadband phase shifter formed by connected transmission-line sections with forward and backward waves.This design allows us to realize negative phase-shift values in comparatively short sections of transmission lines.A natural question arises:Is it possible to reduce the frequency dispersion of phase shifters using this ap-proach,in addition to achieving negative phase shifts?And if possible,what kind of transmission line or filling metamaterial is required?These are the questions that we address in this paper.2.POSITIVE AND NEGATIVE,NORMAL AND ANOMALOUS KINDS OF DISPERSIONIn this introductory section,we define various dispersion types to be used in the following discussion and explain how these various dispersion laws can be realized in artificial transmission lines.Characterizing dispersion of media or transmission lines with negligible losses that support waves with the propagation constant ␤at frequency ␻,two terms are commonly used:positive disper-sion,when ␤d ␤/d ␻Ͼ0and negative dispersion,when ␤d ␤/d ␻Ͻ0.Positive dispersion means that the line supports anI.S.Nefedov is currently with the Radiolaboratory of TKK.TABLE 3Comparison Results of the Hybrid EBG and Stepped-Impedance FiltersFilterPassband Insertion Loss,S 21[dB]Stop Band RejectionBandwidth 20-dB Isolation BW [GHz]Return Loss,S 11[dB]S 21max [dB]f 0[GHz]1st Null 1st Peak Stepped impedance (simulation)0.24310.654511Hybrid EBG (simulation)0.2441112.752212Hybrid EBG (measurement)0.254010.912.417.613.7。

相关文档
最新文档