无机材料科学基础第二章补充作业-2012.9.24
无机材料科学基础习题答案.doc

无机材料科学基础习题答案第一章晶体几何基础1-1解释概念:等价点:晶体结构中的一个点,其几何环境和物理环境在同一方向上是相同的。
空间点阵:一种几何图形,通常代表晶体结构中等价点的排列。
节点:空间晶格中的点称为节点。
水晶:内部粒子在三维空间中周期性重复排列的固体。
对称性:物体的相同部分有规律地重复。
对称型:晶体结构中所有点(对称平面、对称中心、对称轴和旋转反延伸轴)的对称元素集是对称的,也称为点群。
晶体:相同对称类型的晶体被归为一类,称为晶体。
晶体取向:将坐标系引入晶体中,以便用数字表示晶体中点、线和平面的相对位置的过程。
空间组:它是指晶体结构中所有对称元素的集合。
Brafi网格:根据晶体结构的顶点群和平移群以及空间晶格的平行六面体的对称性原理,法国学者A .布拉菲将所有晶体结构的空间晶格分为14种类型的空间晶格。
单元电池:能够反映晶体结构特征的最小单位。
单元电池参数:代表晶胞形状和大小的六个参数(A、B、C、α、β、γ)。
1-等效点: 晶体结构中的一个点,其几何环境和物理环境在同一方向上是相同的。
空间点阵:一种几何图形,通常代表晶体结构中等价点的排列。
节点:空间晶格中的点称为节点。
水晶:内部粒子在三维空间中周期性重复排列的固体。
对称性:物体的相同部分有规律地重复。
对称型:晶体结构中所有点(对称平面、对称中心、对称轴和旋转反延伸轴)的对称元素集是对称的,也称为点群。
晶体:相同对称类型的晶体被归为一类,称为晶体。
晶体取向:将坐标系引入晶体中,以便用数字表示晶体中点、线和平面的相对位置的过程。
空间组:它是指晶体结构中所有对称元素的集合。
Brafi网格:根据晶体结构的顶点群和平移群以及空间晶格的平行六面体的对称性原理,法国学者A .布拉菲将所有晶体结构的空间晶格分为14种类型的空间晶格。
单元电池:能够反映晶体结构特征的最小单位。
单元电池参数:代表晶胞形状和大小的六个参数(A、B、C、α、β、γ)。
1: ⑴晶体结构的基本特征:①晶体是一种固体,其内部粒子在三维空间中周期性重复排列。
材料科学基础第1-2章例题、作业题及其解答

第2章 例 题(A )1. 在面心立方晶胞中画出[012]和[123]晶向。
2. 在面心立方晶胞中画出(012)和(123)晶面。
3. 右图中所画晶面的晶面指数是多少?4. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。
反之,求(3121)及(2112)的正交坐标的表示。
5. (练习),上题中均改为相应晶向指数,求相互转换后结果。
答案:2. (2110) 4. (1562), (0334) 5. [1322] [1214] (123) (212)[033] [302]第2章 例题答案(A)4. (152) )2615(6)51()(⇒-=+-=+-=v u t(034) )4303(3)30()(⇒-=+-=+-=v u t(1213) ⇒ (123)(2112) ⇒ (212)5. [152] ]2231[22)51(31)(313)152(31)2(311)512(31)2(31⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==-=+-=+-==-⨯=-=-=-⨯=-=W w V U t U V v V U u [034] ]4121[41)30(31)(312)032(31)2(311)302(31)2(31⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫==-=+-=+-==-⨯=-=-=-⨯=-=W w V U t U V v V U u]3121[]033[33)1(20)1(1⇒⎪⎭⎪⎬⎫===--=-==---=-=w W t v V t u U [2112]]302[20)1(13)1(2⇒⎪⎭⎪⎬⎫===---=-==--=-=w W t v V t u U第2章 例 题(B )1. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。
2. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。
3. bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积是0.0486nm 3。
“材料科学与工程基础”第二章习题 答案题目整合版

“材料科学与工程基础"第二章习题1. 铁的单位晶胞为立方体,晶格常数a=0。
287nm ,请由铁的密度算出每个单位晶胞所含的原子数。
ρ铁=7。
8g/cm3 1mol 铁=6。
022×1023 个=55。
85g所以, 7.8g/1(cm )3=(55。
85/6.022×1023)X /(0。
287×10-7)3cm3X =1。
99≈2(个)2。
在立方晶系单胞中,请画出:(a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。
(c )一平面与晶体两轴的截距a=0.5,b=0。
75,并且与z 轴平行,求此晶面的密勒指数.(a )[2 1 1]和[1 0 0]之夹角θ=arctg2=35。
26。
或cos θ==, 35.26θ=(b )cos θ==35.26θ= (c ) a=0.5 b=0。
75 z= ∞倒数 2 4/3 0 取互质整数(3 2 0)3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。
室温下的原子半径R =1。
444A 。
(见教材177页) 点阵常数a=4.086A最大间隙半径R’=(a-2R )/2=0。
598A4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r —Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。
在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01所以 (2。
11×12。
01)/(97.89×55.85)=0.1002 即 碳占据八面体的10%。
5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的.请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数.见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积.20.9064==。
无机材料科学基础作业习题

无机材料科学基础作业习题第一章晶体结构基础1-1 定义下述术语,并注意它们之间的联系和区别:晶系;点群;空间群;平移群;空间点阵1-2 简述晶体的均一性、各向异性、对称性三者的相互关系。
1-3 列表说明七个晶系的对称特点及晶体定向规则。
1-4 四方晶系晶体a=b,c=1/2a。
一晶面在X、Y.Z轴上的截距分别为2a, 3b 和6c。
给出该晶面的密勒指数。
1-5 在立方晶系中画出下列晶面:a)(001)b)(110)c)(111)1-6 在上题所画的晶面上分别标明下列晶向:a(210) b(111) c(101)1-7 立方晶系组成{111}单形的各晶面构成一个八面体,请给出所有这些晶面的密勒指数。
1-8 试在完整的六方晶系晶胞上画出(1012)晶面的交线及〔1120〕〔2113〕晶向,并列出{1012}晶面族中所有晶面的密勒指数。
1-9 a≠b≠c α=β=γ=90℃的晶体属什么晶系?a≠b≠c α≠β≠γ≠90℃的晶体属什么晶系?你能否据此确定这二种晶体的布拉维点阵?1-10 下图示正交面心格子中去掉上下底心后的结点排列情况。
以图中的形状在三维空间无限重复,能否形成一空间点阵?为什么?1 –11 图示单斜格子的(010)面上的结点排布。
试从中选出单位平行六面体中的a和c。
1 –12 为什么等轴晶系有原始、面心、体心而无底心格子?1 –13 为什么在单斜晶系的布拉维格子中有底心C格子而无底心B格子?1-14 试从立方面心格子中划分出一三方菱面体格子,并给出其晶格常数。
说明为什么造选取单位平行六面体时不选后者而选前者?1 –15 写出立方面心格子的单位平行六面体上所有结点的座标,注明其中哪些属于基本点。
1 –16 给出(111)面和(111)面交棱的晶棱符号。
1 –17 试证(123)(112)和(110)诸晶面属于同一晶带,并给出其晶带符号。
1-18 证明立方晶系〔111〕晶向垂直于(111)晶面。
“材料科学与工程基础”第二章习题 答案题目整合版要点

“材料科学与工程基础”第二章习题1. 铁的单位晶胞为立方体,晶格常数a=0.287nm ,请由铁的密度算出每个单位晶胞所含的原子数。
ρ铁=7.8g/cm3 1mol 铁=6.022×1023 个=55.85g所以, 7.8g/1(cm)3=(55.85/6.022×1023)X /(0.287×10-7)3cm3X =1.99≈2(个)2.在立方晶系单胞中,请画出:(a )[100]方向和[211]方向,并求出他们的交角; (b )(011)晶面和(111)晶面,并求出他们得夹角。
(c )一平面与晶体两轴的截距a=0.5,b=0.75,并且与z 轴平行,求此晶面的密勒指数。
(a )[2 1 1]和[1 0 0]之夹角θ=arctg2=35.26。
或cos θ==, 35.26θ=(b )cos θ==35.26θ= (c ) a=0.5 b=0.75 z = ∞倒数 2 4/3 0 取互质整数(3 2 0)3、请算出能进入fcc 银的填隙位置而不拥挤的最大原子半径。
室温下的原子半径R =1.444A 。
(见教材177页) 点阵常数a=4.086A最大间隙半径R’=(a-2R )/2=0.598A4、碳在r-Fe (fcc )中的最大固溶度为2.11﹪(重量百分数),已知碳占据r-Fe 中的八面体间隙,试计算出八面体间隙被C 原子占据的百分数。
在fcc 晶格的铁中,铁原子和八面体间隙比为1:1,铁的原子量为55.85,碳的原子量为12.01所以 (2.11×12.01)/(97.89×55.85)=0.1002 即 碳占据八面体的10%。
5、由纤维和树脂组成的纤维增强复合材料,设纤维直径的尺寸是相同的。
请由计算最密堆棒的堆垛因子来确定能放入复合材料的纤维的最大体积分数。
见下图,纤维的最密堆积的圆棒,取一最小的单元,得,单元内包含一个圆(纤维)的面积。
无机材料科学基础课后习题答案宋晓岚黄学辉版

无机材料科学基础课后习题答案宋晓岚黄学辉版(总91页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--无机材料科学基础课后习题答案宋晓岚黄学辉版无机材料科学基础课程组第二章答案2-1略。
2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321);(2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。
2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[]答:2-4定性描述晶体结构的参量有哪些定量描述晶体结构的参量又有哪些答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类其特点是什么答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最紧密堆积的空隙有哪两种一个球的周围有多少个四面体空隙、多少个八面体空隙答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙不等径球是如何进行堆积的答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。
材料科学基础课后作业第二章

2-3 为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否会出现过热?为什么?答:(1)由热力学可知,结晶能否发生,取决于固相的自由能是否低于液相的自由能,即△G =G S-G L<0;只有当温度低于理论结晶温度 T m时,固态金属的自由能才低于液态金属的自由能,液态金属才能自发地转变为固态金属,因此金属结晶时一定要有过冷度。
(2)影响过冷度的因素有:金属的本性,金属不同,过冷度大小不同;金属的纯度,金属的纯度越高,过冷度越大;冷却速度,冷却速度越大,过冷度越大。
(3)金属熔化时会出现过热,其原因是:由热力学可知,只有当温度高于理论结晶温度 T m时,液态金属的自由能才低于固态金属的自由能,固态金属才能自发转变为液态金属,因此金属熔化时一定要有过热度。
2-4试比较均匀形核与非均匀形核的异同点。
答:相同点:(1)液态金属的结晶必须在过冷的液体中进行,液态金属的过冷度必须大于临界过冷度,晶胚尺寸必须大于临界晶核半径r k。
前者提供形核的驱动力,后者是形核的热力学条件所要求的。
(2)r k值大小与晶核的表面能成正比,与过冷度成反比。
过冷度越大,则r k越小,形核率越大,但是形核率有一极大值。
如果表面能越大,形核所需的过冷度也应越大。
凡是能降低表面能的办法都能促进形核。
(3)均匀形核既需要结构起伏,也需要能量起伏,二者皆是液体本身存在的自然现象。
(4)晶核的形成过程是原子扩散迁移的过程,因此结晶必须在一定的温度下进行。
不同点:(1)非均匀形核与固体杂质接触,减小了表面自由能的增加,也减小了形成晶核的体积,所以非均匀形核的形核功小,形核容易,可以在较小的过冷度下进行。
(2)均匀形核需要在很大的过冷度下进行,而且要求液态金属绝对纯净,无任何杂质,也不和型壁接触,只依靠液态金属的能量变化,由晶胚直接生核的过程,是一种理想状态;而在实际工业生产中,液态金属并不能达到这种理想状态,所以,凝固过程总是以非均匀形核的方式进行。
材料科学基础课后习题及答案

第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。