苏州市区九年级上数学期末考试试卷苏科版【精选】

合集下载

苏科版数学九年级上册《期末考试试卷》含答案

苏科版数学九年级上册《期末考试试卷》含答案

苏科版数学九年级上学期期末测试卷学校________ 班级________ 姓名________ 成绩________一、单选题(共10小题)1.下列关于x的一元二次方程中,有两个相等的实数根的方程是()A.x2+2x﹣3=0 B.x2+1=0 C.4x2+4x+1=0 D.x2+x+3=02.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A.65πB.60πC.75πD.70π3.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=6004.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144°B.132°C.126°D.108°5.一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2、3、4、5、6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程x2﹣5x﹣6=0的解的概率是()A.B.C.D.6.在Rt△ABC中,∠C=90°,AC=5,BC=12.若以C为圆心,r为半径的圆与斜边AB只有一个公共点,则半径r的值或取值范围是()A.B.5≤r≤12或r=C.5<r≤12 D.5<r≤12或r=7.为了美化环境,某市加大绿化投资,2015年用于绿化投资300万元,2017年用于绿化投资1040万元,求这两年绿化投资的年均增长率.设这两年绿化投资年平均增长率为x,所列方程为()A.300x2=1040B.300(1+x)=1040C.300(1+x)2=1040D.300(1+x)+300(1+x)2=10408.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠AEC的度数为()A.106°B.116°C.126°D.136°9.已知一组数据x1,x2,x3,平均数为2,方差为3,那么另一组数2x1﹣1,2x2﹣1,2x3﹣1的平均数和方差分别是()A.2,B.3,3 C.3,12 D.3,410.下列结论:①平行四边形的对角线相等;②用配方法解一元二次方程x2﹣6x=8时,此方程可变形为(x﹣3)2=1;③在直角坐标系中,点P(2,a﹣1)与点Q(b+2,3)关于原点对称,则a+b=﹣6,其中正确结论有()A.0个B.1个C.2个D.3个二、填空题(共8小题)11.若x1与x2一元二次方程x2﹣6x﹣15=0的两根,则x1+x2=,x1x2=﹣.12.将关于x的一元二次方程x2+px+q=0变形为x2=﹣px﹣q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知x2﹣x﹣1=0,可用“降次法”求得x4﹣3x+2014的值是.13.在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是kg.14.已知⊙O的半径是一元二次方程x2+6x﹣16=0的解,且点O到直线AB的距离是,则直线AB与⊙O的位置关系是.15.从﹣,0,,2,3这五个数中,随机抽取一个数,作为函数y=mx2+x+1﹣m中m的值,恰好使所得函数的图象与坐标轴只有2个公共点,则抽到满足条件的m值的概率为.16.如图,点A,B,C在⊙O上,∠BOC=2∠AOB,如果∠BAC=40°,那么∠ACB的度数是.17.如图,等腰Rt△ABC,AC为⊙O直径,以点B为圆心,BA为半径作扇形BAC,AC=2,则阴影部分的面积为.18.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为元.三、解答题(共10小题)19.已知关于x的方程x2﹣(m+3)x+m+1=0.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.20.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?21.已知:如图,D是△ABC外接圆⊙O上一点,且满足DB=DC,连接AD,求证:AD是△ABC的外角∠EAC的平分线.22.如图,AD是⊙O的直径,BA=BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)若BC=2,BE=4,求⊙O半径r.23.如图,OA,OB,OC都是⊙O的半径,若四边形OABC是平行四边形.(Ⅰ)求证:四边形OABC是菱形;(Ⅱ)连接AC与OB交于H,若OA=1,求AC的长.24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠B=30°,OA=2,求阴影部分的面积.(结果保留π)25.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表等方法求解)26.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.27.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接P A、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)若AC=6,OC=4,求P A的长.28.阅读材料:选取二次三项式ax2+bx+c(a≠0)中两项,配成完全平方式的过程叫配方,配方的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2②选取二次项和常数项配方:x2﹣4x+2=+(2﹣4)x,或③选取一次项和常数项配方:请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式x2﹣4x+9配成完全平方式(直接写出两种形式);(2)将x4+x2y2+y4分解因式;(3)已知a、b、c是△ABC的三边长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.参考答案一、单选题(共10小题)1.下列关于x的一元二次方程中,有两个相等的实数根的方程是()A.x2+2x﹣3=0 B.x2+1=0 C.4x2+4x+1=0 D.x2+x+3=0[解答]解:A.此方程的△=22﹣4×1×(﹣3)=16>0,方程有两个不相等的实数根,不符合题意;B.此方程的△=02﹣4×1×1=﹣4<0,方程没有实数根,不符合题意;C.此方程的△=42﹣4×4×1=0,方程有两个相等的实数根,符合题意;D.此方程的△=12﹣4×1×3=﹣11<0,方程没有实数根,不符合题意;故选:C.[知识点]根的判别式2.已知圆锥的高为12,底面圆的半径为5,则该圆锥的侧面展开图的面积为()A.65πB.60πC.75πD.70π[解答]解:∵圆锥的高为12,底面圆的半径为5,∴圆锥的母线长为:=13,∴圆锥的侧面展开图的面积为:π×13×5=65π,故选:A.[知识点]圆锥的计算3.受益于电子商务发展和法治环境改普等多重因素,“快递业”成为我国经济发展的一匹“黑马”,2018年我国快递业务量为600亿件,预计2020年快递量将达到950亿件,若设快递平均每年增长率为x,则下列方程中,正确的是()A.600(1+x)=950 B.600(1+2x)=950C.600(1+x)2=950 D.950(1﹣x)2=600[解答]解:设快递量平均每年增长率为x,依题意,得:600(1+x)2=950.故选:C.[知识点]由实际问题抽象出一元二次方程4.若半径为5cm的一段弧长等于半径为2cm的圆的周长,则这段弧所对的圆心角为()A.144°B.132°C.126°D.108°[解答]解:依题意得2π×2=,解得n=144.故选:A.[知识点]弧长的计算5.一袋中装有形状、大小都相同的五个小球,每个小球上各标有一个数字,分别是2、3、4、5、6.现从袋中任意摸出一个小球,则摸出的小球上的数恰好是方程x2﹣5x﹣6=0的解的概率是()A.B.C.D.[解答]解:方程x2﹣5x﹣6=0的解为x1=6,x2=﹣1,则数字2、3、4、5、6中只有6是该方程的解,故摸出的小球上的数恰好是方程x2﹣5x﹣6=0的解的概率是,故选:A.[知识点]解一元二次方程-因式分解法、概率公式6.在Rt△ABC中,∠C=90°,AC=5,BC=12.若以C为圆心,r为半径的圆与斜边AB只有一个公共点,则半径r的值或取值范围是()A.B.5≤r≤12或r=C.5<r≤12 D.5<r≤12或r=[解答]解:∵BC>AC,∴以C为圆心,r为半径所作的圆与斜边AB只有一个公共点.根据勾股定理求得AB=13.分两种情况:(1)圆与AB相切时,即r=CD=5×12÷13=;(2)点A在圆内部,点B在圆上或圆外时,此时AC<r≤BC,即5<r≤12.故选:D.[知识点]直线与圆的位置关系7.为了美化环境,某市加大绿化投资,2015年用于绿化投资300万元,2017年用于绿化投资1040万元,求这两年绿化投资的年均增长率.设这两年绿化投资年平均增长率为x,所列方程为()A.300x2=1040B.300(1+x)=1040C.300(1+x)2=1040D.300(1+x)+300(1+x)2=1040[解答]解:设这两年绿化投资的年平均增长率为x,依题意得300(1+x)2=1040.故选:C.[知识点]由实际问题抽象出一元二次方程8.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠AEC的度数为()A.106°B.116°C.126°D.136°[解答]解:∵圆内接四边形ABCD,∴∠D=180°﹣∠ABC=116°,∵点D关于AC的对称点E在边BC上,∴∠D=∠AEC=116°,故选:B.[知识点]圆内接四边形的性质、轴对称的性质、圆周角定理9.已知一组数据x1,x2,x3,平均数为2,方差为3,那么另一组数2x1﹣1,2x2﹣1,2x3﹣1的平均数和方差分别是()A.2,B.3,3 C.3,12 D.3,4[解答]解:∵数据x1,x2,x3,平均数是2,∴数据2x1﹣1,2x2﹣1,2x3﹣1的平均数是2×2﹣1=3;∵数据x1,x2,x3的方差是3,∴数据2x1﹣1,2x2﹣1,2x3﹣1的方差是3×22=12,故选:C.[知识点]算术平均数、方差10.下列结论:①平行四边形的对角线相等;②用配方法解一元二次方程x2﹣6x=8时,此方程可变形为(x﹣3)2=1;③在直角坐标系中,点P(2,a﹣1)与点Q(b+2,3)关于原点对称,则a+b=﹣6,其中正确结论有()A.0个B.1个C.2个D.3个[解答]解:平行四边形的对角线互相平分,不一定相等,故①错误;用配方法解一元二次方程x2﹣6x=8时,此方程可变形为(x﹣3)2=17,故②错误;在直角坐标系中,点P(2,a﹣1)与点Q(b+2,3)关于原点对称,则b+2=﹣2,a﹣1=﹣3,解得:a=﹣4,b=﹣2,则a+b=﹣6,故③正确;即正确的个数有1个,故选:B.[知识点]解一元二次方程-配方法、关于原点对称的点的坐标、平行四边形的性质二、填空题(共8小题)11.若x1与x2一元二次方程x2﹣6x﹣15=0的两根,则x1+x2=,x1x2=﹣.[解答]解:根据题意得:x1+x2=6,x1x2=﹣15,故答案为:6,﹣15.[知识点]根与系数的关系12.将关于x的一元二次方程x2+px+q=0变形为x2=﹣px﹣q,就可将x2表示为关于x的一次多项式,从而达到“降次”的目的,我们称这样的方法为“降次法”,已知x2﹣x﹣1=0,可用“降次法”求得x4﹣3x+2014的值是.[解答]解:∵x2﹣x﹣1=0,∴x2=x+1,∴x4﹣3x+2014=(x+1)2﹣3x+2014=x2+2x+1﹣3x+2014=x2﹣x+2015=x+1﹣x+2015=2016.故答案为:2016.[知识点]一元二次方程的解、因式分解的应用13.在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是kg.[解答]解:设小林的体重是xkg,依题意有x+2(x+6)=42×3,解得x=38.故小林的体重是38kg.故答案为:38.[知识点]算术平均数14.已知⊙O的半径是一元二次方程x2+6x﹣16=0的解,且点O到直线AB的距离是,则直线AB与⊙O的位置关系是.[解答]解:∵⊙O的半径是一元二次方程x2+6x﹣16=0的解,解方程x2+6x﹣16=0,(x+8)(x﹣2)=0,解得:x1=﹣8(舍去),x2=2,∴r=2,∵点O到直线AB距离d是,∴d<r,∴直线AB与圆相交.故答案为相交.[知识点]直线与圆的位置关系、解一元二次方程-因式分解法15.从﹣,0,,2,3这五个数中,随机抽取一个数,作为函数y=mx2+x+1﹣m中m的值,恰好使所得函数的图象与坐标轴只有2个公共点,则抽到满足条件的m值的概率为.[解答]解:当m=﹣时,y=﹣x2+x+,△=1+3>0,函数的图象与坐标轴有3个公共点,当m=0时,y=x+1,△=1+3>0,函数的图象与坐标轴只有有2个公共点,当m=时,y=x2+x+,△=1﹣1=0,函数的图象与坐标轴只有2个公共点,当m=2时,y=2x2+x﹣1,△=1+8>0,函数的图象与坐标轴有3个公共点,当m=3时,y=3x2+x﹣2,△=1+24>0,函数的图象与坐标轴有3个公共点,∴抽到满足条件的m值的概率为.故答案为.[知识点]抛物线与x轴的交点、概率公式16.如图,点A,B,C在⊙O上,∠BOC=2∠AOB,如果∠BAC=40°,那么∠ACB的度数是.[解答]解:∵∠BAC=∠BOC,∠ACB=∠AOB,∵∠BOC=2∠AOB,∴∠ACB=∠BAC=20°.故答案为:20°.[知识点]圆周角定理、圆心角、弧、弦的关系17.如图,等腰Rt△ABC,AC为⊙O直径,以点B为圆心,BA为半径作扇形BAC,AC=2,则阴影部分的面积为.[解答]解:∵⊙O的直径AC=2,∴∠B=90°,AB=BC=,∴阴影部分的面积=﹣(S扇形BAC﹣S△ABC),=﹣(﹣×),=﹣+1,=1,故答案为:1.[知识点]扇形面积的计算、等腰直角三角形18.近年来,网红北京迎来了无数中外游客.除了游故宫、登长城、吃烤鸭以外,稻香村的传统糕点成为了炙手可热的伴手礼.根据消费者的喜好,现推出A、B两种伴手礼礼盒,A礼盒装有2个福字饼,2个禄字饼:B礼盒装有1个福字饼,2个禄字饼,3个寿字饼,A、B两种礼盒每盒成本价分别为盒中福禄寿三种糕点的成本价之和.已知A种礼盒每盒的售价为96元,利润率为20%,每个禄字饼的成本价是寿字饼的成本价的3倍.国庆期间,由于客流量大,一天就卖出A、B两种礼盒共计78盒,工作人员在核算当日卖出礼盒总成本的时候把福字饼和禄字饼的成本看反了,后面发现如果不看反,那么当日卖出礼盒的实际总成本比核算时的总成本少500元,则当日卖出礼盒的实际总成本为元.[解答]解:设A礼盒成本价格a元,根据题意,得96﹣a=20%a,解得a=80,∵A礼盒装有2个福字饼,2个禄字饼,∴2个福字饼和2个禄字饼的成本价格为80元,∴1个福字饼和1个禄字饼的成本价格为40元,设个福字饼成本价x元,1个禄字饼成本价(40﹣x)元,则1个寿字饼成本价为(40﹣x)元,A种礼盒m袋,B种礼盒n袋,根据题意,得m+n=7880m+n[x+2(40﹣x)+3×(40﹣x)]+500=80m+n[(40﹣x+2x+3×(40﹣x)]∴xn=20n+250设A、B两种礼盒实际成本为w元,则有w=80m+xn+2n(40﹣x)+n×(40﹣x)=80(m+n)﹣420=80×78﹣420=5820.故答案为5820.[知识点]一元二次方程的应用三、解答题(共10小题)19.已知关于x的方程x2﹣(m+3)x+m+1=0.(1)求证:不论m为何值,方程都有两个不相等的实数根;(2)若方程一根为4,以此时方程两根为等腰三角形两边长,求此三角形的周长.[解答]解:(1)由题意可知:△=(m+3)2﹣4(m+1)=m2+2m+5=m2+2m+1+4=(m+1)2+4,∵(m+1)2≥0,∴△>0,∴不论m为何值,方程都有两个不相等的实数根.(2)当x=4代入x2﹣(m+3)x+m+1=0,∴m=,∴原方程化为:3x2﹣14x+8=0,x=4或x=∴该三角形的周长为4+4+=[知识点]三角形三边关系、一元二次方程的解、根的判别式20.已知关于x的方程x2﹣(2k+1)x+4(k﹣)=0.(1)求证:无论k取何值,此方程总有实数根;(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少? [解答](1)证明:∵△=(2k+1)2﹣4×4(k﹣)=4k2﹣12k+9=(2k﹣3)2≥0,∴该方程总有实数根;(2)x=∴x1=2k﹣1,x2=2,∵a、b、c为等腰三角形的三边,∴2k﹣1=2或2k﹣1=3,∴k=或2.[知识点]一元二次方程的解、根的判别式、三角形三边关系、等腰三角形的性质21.已知:如图,D是△ABC外接圆⊙O上一点,且满足DB=DC,连接AD,求证:AD是△ABC的外角∠EAC的平分线.[解答]证明:∵DB=DC,∴∠DBC=∠DCB,∵∠DAE是圆内接四边形ABCD的外角,∴∠DAE=∠DCB,∴∠DAE=∠DBC,∵∠DBC=∠DAC,∴∠DAE=∠DAC,∴AD是△ABC的外角∠EAC的平分线[知识点]三角形的外接圆与外心22.如图,AD是⊙O的直径,BA=BC,BD交AC于点E,点F在DB的延长线上,且∠BAF=∠C.(1)求证:AF是⊙O的切线;(2)若BC=2,BE=4,求⊙O半径r.[解答](1)证明:∵AD是⊙O的直径,∴∠ABD=90°,∴∠BAD+∠D=90°,∵∠BAF=∠C,∠C=∠D,∴∠BAF=∠D,∴∠BAD+∠BAF=90°,即∠F AD=90°,∴AF⊥AD,∴AF是⊙O的切线;(2)解:∵AB=BC,∴,∴∠BAC=∠C,∵∠C=∠D,∴∠BAC=∠D,即∠BAE=∠D,又∵∠ABE=∠DBA,∴△ABE∽△DBA;∴,∴AB2=BD•BE,∵AB=BC=2,BE=4,∴BD==6,∴AD===2,∴⊙O半径r=.[知识点]相似三角形的判定与性质、切线的判定与性质、圆周角定理23.如图,OA,OB,OC都是⊙O的半径,若四边形OABC是平行四边形.(Ⅰ)求证:四边形OABC是菱形;(Ⅱ)连接AC与OB交于H,若OA=1,求AC的长.[解答](Ⅰ)证明:∵四边形OABC是平行四边形,OA=OC,∴四边形OABC是菱形;(Ⅱ)解:∵四边形OABC是菱形,∴AC⊥OB,OH=OB,OA=AB,AC=2AH,∴OA=OB=AB,∴∠AOB=60°,∴AH=OA=,[知识点]相似三角形的判定与性质、圆周角定理、菱形的判定与性质、平行四边形的性质24.如图,点O为Rt△ABC斜边AB上的一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1)求证:AD平分∠BAC;(2)若∠B=30°,OA=2,求阴影部分的面积.(结果保留π)[解答](1)证明:∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠BAC;(2)解:设EO与AD交于点M,连接ED.∵∠B=30°,∠ACB=90°,∴∠BAC=60°,∵OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60°,又由(1)知,AC∥OD即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60°,∴S△AEM=S△DMO,∴S阴影=S扇形EOD==.[知识点]切线的性质、含30度角的直角三角形、圆周角定理、扇形面积的计算25.在一个不透明的袋子里装有6个白色乒乓球和若干个红色乒乓球,这些球除颜色外其余均相同,搅拌均匀后,从这个袋子里随机摸出一个乒乓球,是红球的概率为.(1)求该袋内红球的个数;(2)小明取出3个白色乒乓球分别标上1,2,3三个数字,装入另一个不透明的袋子里搅拌均匀,第一次从袋里摸出一个球并记录下该球上的数字,重新放回袋中搅拌均匀,第二次袋里摸出一个球并记录下该球上的数字,求这两个数字之积是3的倍数的概率.(用画树状图或列表等方法求解)[解答]解:(1)设袋内红球有x个,根据题意,得:=,解得:x=3,经检验:x=3是原分式方程的解,所以袋内红球有3个;(2)画树状图得:∵共有9种等可能的结果,两次摸出的乒乓球标号乘积是3的倍数的有5种结果,∴这两个数字之积是3的倍数的概率为.[知识点]列表法与树状图法、概率公式26.我市某校为了让学生的课余生活丰富多彩,开展了以下课外活动:代号活动类型A经典诵读与写作B数学兴趣与培优C英语阅读与写作D艺体类E其他为了解学生的选择情况,现从该校随机抽取了部分学生进行问卷调查(参与问卷调查的每名学生只能选择其中一项),并根据调查得到的数据绘制了如图所示的两幅不完整的统计图.请根据统计图提供的信息回答下列问题(要求写出简要的解答过程).(1)此次共调查了名学生.(2)将条形统计图补充完整.(3)“数学兴趣与培优”所在扇形的圆心角的度数为.(4)若该校共有2000名学生,请估计该校喜欢A、B、C三类活动的学生共有多少人?(5)学校将从喜欢“A”类活动的学生中选取4位同学(其中女生2名,男生2名)参加校园“金话筒”朗诵初赛,并最终确定两名同学参加决赛,请用列表或画树状图的方法,求出刚好一男一女参加决赛的概率.[解答]解:(1)此次调查的总人数为40÷20%=200(人),故答案为:200;(2)D类型人数为200×25%=50(人),B类型人数为200﹣(40+30+50+20)=60(人),补全图形如下:(3)“数学兴趣与培优”所在扇形的圆心角的度数为360°×=108°,故答案为:108°;(4)估计该校喜欢A、B、C三类活动的学生共有2000×=1300(人);(5)画树状图如下:,由树状图知,共有12种等可能结果,其中一男一女的有8种结果,∴刚好一男一女参加决赛的概率=.[知识点]用样本估计总体、加权平均数、列表法与树状图法、条形统计图、扇形统计图27.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接P A、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.(1)求证:P A是⊙O的切线;(2)若AC=6,OC=4,求P A的长.[解答](1)证明:连接OB,则OA=OB,∵OP⊥AB,∴AC=BC,∴OP是AB的垂直平分线,∴P A=PB,在△P AO和△PBO中,∵,∴△P AO≌△PBO(SSS)∴∠PBO=∠P AO,PB=P A,∵PB为⊙O的切线,B为切点,∴∠PBO=90°,∴∠P AO=90°,即P A⊥OA,∴P A是⊙O的切线;(2)解:连接BE,∵OC=4,AC=6,∴AB=12,在Rt△ACO中,由勾股定理得:AO==2,∴AE=2OA=4,OB=OA=2,在Rt△APO中,∵AC⊥OP,∴AC2=OC•PC,解得:PC=9,∴OP=PC+OC=13,在Rt△APO中,由勾股定理得:AP==3,[知识点]切线的判定与性质28.阅读材料:选取二次三项式ax2+bx+c(a≠0)中两项,配成完全平方式的过程叫配方,配方的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.例如:①选取二次项和一次项配方:x2﹣4x+2=(x﹣2)2﹣2②选取二次项和常数项配方:x2﹣4x+2=+(2﹣4)x,或③选取一次项和常数项配方:请根据阅读材料解决下列问题:(1)比照上面的例子,将二次三项式x2﹣4x+9配成完全平方式(直接写出两种形式);(2)将x4+x2y2+y4分解因式;(3)已知a、b、c是△ABC的三边长,且满足a2+2b2+c2﹣2b(a+c)=0,试判断此三角形的形状.[解答]解:(1)选取二次项和一次项配方:x2﹣4x+9=(x﹣2)2+5选取二次项和常数项配方:x2﹣4x+9=(x﹣3)2+2x;(2)x4+x2y2+y4=x4+2x2y2+y4﹣x2y2=(x2+y2)2﹣x2y2=(x2+y2+xy)(x2+y2﹣xy)(3)∵a2+2b2+c2﹣2b(a+c)=0∴a2+2b2+c2﹣2ba﹣2bc=0∴(a﹣b)2+(b﹣c)2=0∴a﹣b=0,b﹣c=0∴a=b,b=c∴a=b=c∴此三角形为等边三角形.[知识点]配方法的应用。

苏州市区九年级上数学期末考试试卷(有答案)苏科版-精华版

苏州市区九年级上数学期末考试试卷(有答案)苏科版-精华版

苏州市区学校 2017-2018学年度第 二 学 期 期终考试 试卷九 年级 数学本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效. 一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲) A .-3+5B. -3-5C. |-3+5|D. |-3-5|2. 下列计算正确的是 (▲) A .330--= B .02339+= C .331÷-=- D .()1331-⨯-=-3.下列运算正确的是 (▲)A .x 4+x 2=x6B .x 2•x 3=x6C .(x 2)3=x6D .x 2﹣y 2=(x ﹣y )24. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲) A .23,24B .24,22C .24,24D .22,245.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)A .M <NB .M =NC .M >ND .不能确定6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲) A .222y x =+B .222y x =-C .22(2)y x =-D .22(2)y x =+7. 由二次函数22(3)1y x =-+,可知 (▲)A.其图像的开口向下B.其图像的对称轴为直线3x =-C.其最小值为1D.当3x <时,y 随x 的增大而增大 8. 下列命题中,正确的是 (▲)A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线9. 如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧AMB上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)A .15°B .20°C .25°D .30°10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲)A .-3B .1C .5D .8P第9题 第10题 第18题二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上. 11. 当x ▲ 时,分式无意义.12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037mg ,已知1g =1000mg ,那么0.000037mg 可以用科学记数法表示为 ▲ .13.计算:222a a b b b a ⎛⎫-÷= ⎪⎝⎭▲ . 14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ . 15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ .17. 已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。

苏科版数学九年级上册《期末检测题》含答案

苏科版数学九年级上册《期末检测题》含答案
(1)用含t的代数式表示出NC与NF;
(2)在点M的运动过程中,能否使得四边形MNEF为正方形?如果能,求出相应的t值,如果不能,说明理由;
(3)求y与t的函数关系式及相应t的取值范围.
28.如图,在平面直角坐标系xOy中,抛物线 ( )与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l: 与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC
A. B. C. D.
[答案]B
[解析]
[分析]
根据已知两根确定出所求方程即可.
[详解]以2和4为根的一元二次方程是x2﹣6x+8=0,
故选B.
[点睛]此题考查了根与系数的关系,弄清根与系数的关系是解本题的关键.
6.⊙O的半径为5,圆心O到直线l的距离为6,则直线l与⊙O的位置关系是()
A. 相交B. 相切C. 相离D. 无法确定
A. 1:3B. 2:5C. 3:5D. 4:9
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()
A. 9B. 10C. D.
二、填空题(本大题共8小题,每小题2分,本大题共16分.不需要写出解答过程,只需把答案直接填写在相应的横线上)
A 3πcmB. 4πcmC. 5πcmD. 6πcm
[答案]D
[解析]
解:∵扇形纸片半径为5cm,用它围成一个圆锥的侧面,该圆锥的高是4cm,∴圆锥的底面半径为: =3(cm),∴该圆锥的底面周长是:2π×3=6π(cm).故选D.
9.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()

苏科版九年级上册数学期末试卷含答案

苏科版九年级上册数学期末试卷含答案

苏科版九年级上册数学期末试题一、单选题1.若关于x 的一元二次方程26=0x ax -+的一个根是2,则a 的值为()A .2B .3C .4D .52.如图,AB 是⊙O 的直径, 3AC BC=,则∠BAC 的度数为()A .22.5°B .30°C .45°D .67.5°3.将抛物线y =4﹣(x+1)2向右平移1个单位,再向下平移2个单位,所得抛物线必定经过点()A .(﹣2,2)B .(﹣1,1)C .(0,6)D .(1,﹣3)4.如图,AB 为⊙O 的直径,点C 、D 均在⊙O 上,∠ABC=58°,则∠D 为()A .32°B .42°C .29°D .22°5.关于x 的二次函数21(1)22y x =--+下列说法正确的是()A .图象开口向上B .图象顶点坐标为()12,-C .图象与x 轴的交点坐标为()30,和()10,-D .当1x >时,y 随x 的增大而增大6.如图,已知抛物线2y x =-上有A ,B 两点,其横坐标分别为1,2--;在y 轴上有一动点C ,则AC BC +的最小值为()A .22B .32C 3D .57.一组数据3,6,7,7,6,9,7,3的众数是()A .3B .6C .7D .3和68.一个布袋中装有7个红球,2个黑球和1个白球,它们除颜色外都相同.从中任意摸出一个球,被摸到的可能性最大的球是()A .红球B .黑球C .白球D .黄球9.方程22x x =的的解为()A .0x =B .2x =C .0x =或2x =D .0x =或2x =-10.如图,圆锥的底面半径为5,高为12,则该圆锥的侧面积为()A .30πB .60πC .65πD .90π二、填空题11.一元二次方程x 2﹣5=x 两根的和为_____.12.二次函数y =-3x 2-2的最大值为_____.13.若二次函数y =x 2﹣2x+c 的图象与x 轴的一个交点为(﹣1,0),则方程x 2﹣2x+c =0的两根为_____.14.已知一个圆锥的侧面积与全面积的比为3:5,则其侧面展开图的圆心角为_____°.15.二次函数y =ax 2﹣6ax ﹣5(a≠0),当5≤x≤6时,对应的y 的整数值有4个,则a 的取值范围是_____.16.掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是_____.17.已知2,3,5,m ,n 五个数据的方差是1.5,那么3,4,6,m+1,n+1五个数据的方差是________.18.如图,⊙O 的半径为5, AB 的长为3π,则以∠AOB 为内角正多边形的边数为_____.19.如图,四边形ABCD 是平行四边形,△ABD 的外接圆⊙O 与CD 相切,CB 的延长线交⊙O 于E 点,连接AE ,若∠DAE =100°,则∠CDB =_____°.三、解答题20.解下列方程:(1)2(3)6(3)x x x +=+(2)2250x x --=21.一个不透明的袋子中装有4个只有颜色不同的小球,其中2个红球,2个白球,摇匀后从中一次性摸出两个小球.(1)请用列表格或画树状图的方法列出所有可能性;(2)若摸到两个小球的颜色相同,甲获胜;摸到两个小球颜色不同,乙获胜.这个游戏对甲、乙双方公平吗?请说明理由.22.已知二次函数y =x 2﹣4mx+3m 2,0m ≠.(1)求证:该二次函数的图象与x 轴总有两个公共点;(2)若m >0,且两交点间的距离为2,求m 的值并直接写出y >3时,x 的取值范围.23.如图,Rt ABC △中,90ABC ∠=︒,点O ,D 分别在AB ,AC 上,CD CB =,O 经过点B ,D ,弦DF AB ⊥于点E ,连接BF .(1)求证:AC 为O 的切线;(2)若30A ∠=︒,3AE =,求DF 的长.24.如图,BE 是⊙O 的直径,点A 和点D 是⊙O 上的两点,过点A 作⊙O 的切线交BE 延长线于点C .(1)若∠ADE =25°,求∠C 的度数;(2)若AC =CE =4,求阴影部分的面积.25.如图,小明家要建一个面积为150平方米的养鸡场,养鸡场的一边靠墙,另三边(门除外)用竹篱笆围成.这堵墙长18米,在与墙平行的一边,要开一扇2米宽的门.已知围建养鸡场的竹篱笆总长为33米(没有剩余材料,接头忽略不计),那么小明家养鸡场的长和宽应分别为多少米?26.如图,一次函数y kx b =+与二次函数2y ax =的图象交于()1,A m 和()2,4B -(1)直接写出两个函数的解析式;(2)点P 为直线AB 下方抛物线线上一个动点,过P 作PH y ∥轴与AB 交于H 点,当PH 为最大值时,求P 点坐标.27.如图,抛物线247y x mx n =-++与x 轴交于A B ,两点,与y 轴交于点C ,抛物线的对称轴交x 轴于点D ,已知(1004())A C -,,,.(1)求抛物线的表达式;(2)点E 是线段BC 上的一个动点,过点E 作x 轴的垂线与抛物线相交于点F ,当点E 运动到什么位置时,四边形CDBF 的面积最大?求出此时E 点的坐标以及四边形CDBF 的最大面积;(3)在抛物线的对称轴上是否存在点P ,使PCD 是以CD 为边的等腰三角形?如果存在,直接写出P 点的坐标;如果不存在,请说明理由.参考答案1.D2.A3.B4.A5.C6.B7.C8.A9.C 10.C 11.1【分析】先将一元二次方程x2﹣5=x转化为一般形式,然后根据韦达定理x1+x2=ba-填空.【详解】解:由原方程,得x2﹣x﹣5=0,∴由韦达定理,得x1+x2=11--=1;故答案是:1.【点睛】本题考查了根与系数的关系.在利用根与系数的关系x1+x2=ba-解题时,一定要弄清楚公式中的a、b所表示的含义.12.-2【分析】根据二次函数的性质即可求得最值【详解】解:由于二次函数y=-3x2-2的图象是抛物线,开口向下,对称轴为y轴,所以当x=0时,函数取得最大值为-2,故答案为-2.【点睛】本题考查了二次函数y=ax2+k的性质,熟练掌握二次函数y=ax2+k的性质是解题的关键.13.x1=-1,x2=3##x1=3,x2=-1【分析】将(-1,0)代入y=x 2-2x+c 即可求出c 的值,将c 的值代入x 2-2x+c=0,再求出方程的两个根即可.【详解】解:将(-1,0)代入y=x 2-2x+c 得,0=1+2+c ,解得c=-3,∴x 2-2x-3=0,∴(x+1)(x-3)=0,∴x 1=-1,x 2=3.故答案为:x 1=-1,x 2=3.【点睛】本题考查了抛物线与x 轴的交点,抛物线上的点符合函数的解析式,同时要知道一元二次方程的解法.14.240【分析】首先根据圆锥的侧面积与全面积的比为3:5,得到圆锥的侧面积与底面积的比为3:2,即可得到母线l 与底面半径的关系,然后根据侧面展开图的弧长等于底面周长,利用弧长公式即可求得.【详解】解:设圆锥的底面半径长是r ,母线长是l ,∵圆锥的侧面积与全面积的比为3:5,∴圆锥的侧面积与底面积的比为3:2.则2:3:2rl r ππ=,解得23r l =,∴侧面展开图的圆心角度数为根据弧长公式:2180n lr °π=π,解得:n =240°.故答案为:240.【点睛】正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.15.4355a -<≤-或3455a ≤<【分析】根据265y ax ax =--关于632ax a-=-=对称,分当0a >时,开口向上,当3x >时,y 随x 的增大而增大,当a<0时,开口向下,当3x >时,y 随x 的增大而增小,根据y 的整数值有4个,列出不等式进行求解.【详解】解:265y ax ax =-- 关于632ax a-=-=对称,当0a >时,开口向上,当3x >时,y 随x 的增大而增大,当5x =时,2530555y a a a =--=--,当6x =时,363655y a a =--=-,555a y ∴--≤≤-,y 的整数值有4个,9558a ∴-<--≤-,解得:3455a ≤<;当a<0时,开口向下,当3x >时,y 随x 的增大而增小,当5x =时,2530555y a a a =--=--,当6x =时,363655y a a =--=-,555y a ∴-≤≤--,y 的整数值有4个,2551a ∴-≤--<-,解得:4355a -<≤-;综上:4355a -<≤-或3455a ≤<.【点睛】本题考查了二次函数的性质、不等式组的整数解问题,解题的关键是掌握相应的运算法则.16.12.【分析】投掷一枚硬币,是一个随机事件,可能出现的情况有两种:反面朝上或者反面朝下,而且机会相同.据此回答.【详解】解:第10次掷硬币,出现反面朝上的机会和朝下的机会相同,都为12;故答案为:12.【点睛】此题考查概率的意义,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.17.1.5##32##112【分析】设2,3,5,m ,n 五个数据的平均数为x ,则3,4,6,m+1,n+1五个数据的平均数为1x +,根据2,3,5,m ,n 五个数据的方差:22222211(2)(3(5)(( 1.55S x x x m x n x ⎡⎤=-+-+-+-+-=⎣⎦,则3,4,6,m+1,n+1五个数据的方差:22222221(211)(311)(511)(11)(11)5S x x x m x n x ⎡⎤=+--++--++--++--++--⎣⎦进行化简计算即可得.【详解】解:设2,3,5,m ,n 五个数据的平均数为x ,则3,4,6,m+1,n+1五个数据的平均数为1x +,2,3,5,m ,n 五个数据的方差:22222211(2(3(5()( 1.55S x x x m x n x ⎡⎤=-+-+-+-+-=⎣⎦,则3,4,6,m+1,n+1五个数据的方差:22222221(211)(311)(511)(11)(11)5S x x x m x n x ⎡⎤=+--++--++--++--++--⎣⎦=222221(2)(3)(5)()()5x x x m x n x ⎡⎤-+-+-+-+-⎣⎦=1.5,故答案为:1.5.【点睛】本题考查了方差,解题的关键是掌握方差,认真计算.18.5【分析】先利用利用弧长的计算公式计算出∠AOB 的度数,即可求得以∠AOB 为内角正多边形的边数.【详解】解:∵180n rl π=,∴n 18031085ππ⨯==,∴∠AOB=108°,设这个正多边形的边数为x .∵正多边形的一个内角为108°,∴这个正多边形的每个外角等于72°.∴360x︒=72°.∴x=5.故答案为:5.【点睛】本题考查的是弧长公式、多边形的内角与外角公式,正确掌握弧长的计算公式是解决本题的关键.求正多边形的边数时,内角转化为外角,利用外角和360°知识求解更简单.19.40【分析】利用平行四边形的定义得出对边AB CD BC ∥∥,AD ,从而由平行线的性质得出ABE DAB ∠=∠,BDC ABD ∠=∠,然后用切线性质得出BDC DAB ∠=∠,进而得出ABE ABD ∠=∠,再由圆内接四边形的性质求出80DBE ABE ABD ∠=∠+∠=︒,从而得出结论.【详解】如图1,连接DO ,并延长DO 交⊙O 于点F ,连接BF .四边形ABCD 是平行四边形,∴AB CD BC ∥∥,AD ;∴ABE DAB ∠=∠,BDC ABD∠=∠ △ABD 的外接圆⊙O 与CD 相切,∴DF DC ⊥,∴90FDC FDB BDC ∠=∠+∠=︒DF 是⊙O 的直径,∴90DBF ∠=︒,∴90F FDB ∠+∠=︒,∴F BDC ∠=∠,又 F DAB ∠=∠,∴BDC DAB∠=∠∴ABE ABD BDC DAB∠=∠=∠=∠ 四边形AEBD 内接于圆⊙O ,∠DAE =100°∴18010080DBE ∠=︒-︒=︒ABE ABD BDC DAB ∠=∠=∠=∠,DBE ABE ABD ∠=∠+∠,∴1402ABE ABD DBE ∠=∠=∠=︒故答案为:40【点睛】本题是圆的综合题,考查了圆的有关知识,切线的性质、圆周角定理、圆内接四边形性质定理等知识,灵活运用这些性质进行推理是本题的关键.20.(1)123,3x x ==-;(2)11x =21x =【分析】(1)先移项、然后运用因式分解法求解即可;(2)运用公式法求解一元二次方程即可.【详解】(1)解:2(3)6(3)x x x +=+2(3)6(3)0x x x +-+=(26)(3)0x x -+=260x -=或+30x =.所以该方程的解是123,3x x ==-(2)解:125a b c =,=-,=-∴()()22415240=--⨯⨯-=>212x ±===所以该方程的解为11x =21x =【点睛】本题主要考查了解一元二次方程,掌握运用公式法和因式分解法解一元二次方程是解答本题的关键.21.(1)见解析;(2)这个游戏对甲、乙双方不公平,明显乙获胜的概率更高【分析】(1)列表格列出所有可能性;(2)分别求出甲乙获胜的情况个数后比较大小即可.【详解】(1)所有可能性如下表:甲乙红1红2白1白2红1(红,红)(白,红)(白,红)红2(红,红)(白,红)(白,红)白1(红,白)(红,白)(白,白)白2(红,白)(红,白)(白,白)总共12种情况.(2)摸到两个小球的颜色相同有4种,摸到两个小球颜色不同有8种∴甲获胜概率=41123=,乙获胜概率=82123=∴这个游戏对甲、乙双方不公平,明显乙获胜的概率更高.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个人取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.(1)证明见解析(2)m 的值为1;x 的取值范围为x<0或x>4【分析】(1)由题意得一元二次方程22430x mx m -+=,判断判根公式 与0的大小即可;(2)由题意知2121243x x m x x m +=⨯=,,122x x -==解得符合要求的m 的值,然后得到二次函数解析式,令3y =,解得交点坐标,根据图象,即可求解x 的取值范围.【详解】(1)解:证明:由22430y x mx m y ⎧=-+⎨=⎩可得一元二次方程22430x mx m -+=∴该二次方程的()222=4434m m m --⨯= ∵0m ≠∴240m =>∴方程总有两个实数根,二次函数图象与x 轴总有两个公共点.(2)解:由题意知2121243x x m x x m +=⨯=,∴1222x x m -===解得1m =或1m =-(舍去)∴243y x x -+=∵3y =∴2433x x -+=解得10x =或24x =∴由二次函数图象可知,3y >时x 的取值范围为0x <或4x >∴m 的值为1,3y >时x 的取值范围为0x <或>4x .【点睛】本题考查了二次函数与x 轴的交点,二次函数与不等式的解集,一元二次方程根的判别式、一元二次方程根与系数的关系,完全平方公式等知识.解题的关键在于对知识的灵活运用.23.(1)见解析(2)DF =【分析】(1)连接OD ,OC ,根据“SSS ”可得ΔΔOBC ODC ≅,进而可得结论;(2)根据30A ∠=︒可得DE ,再由垂径定理可得DF .【详解】(1)连接OD ,OC ,如图:CD CB = ,OD OB =,OC OC =,∴ΔΔOBC ODC ≅(SSS),90ODC OBC ∴∠=∠=︒,AC ∴是O 的切线.(2)∵30A ∠=︒,3AE =,DF AB⊥∴2AD DE =,222AE DE AD +=∴2223(2)DE DE +=解得:DE =∵BE DF⊥∴2DF DE ==【点睛】本题考查了切线的判定,垂径定理,勾股定理,正确的作出辅助线是解题的关键.24.(1)∠C=40°;(2)阴影部分的面积为83π.【分析】(1)连接OA ,利用切线的性质和角之间的关系解答即可;(2)设OA=OE=r,根据勾股定理得出方程,求出方程的解得出OA=4,由扇形的面积公式和三角形的面积可得出答案.【详解】(1)解:如图,连接OA ,∵AC 是⊙O 的切线,OA 是⊙O 的半径,∴OA ⊥AC ,∴∠OAC=90°,∵∠ADE=25°,∴∠AOE=2∠ADE=50°,∴∠C=90°-∠AOE=90°-50°=40°;(2)解:设OA=OE=r ,在Rt △OAC 中,由勾股定理得:222OA AC OC +=,即222(4)r r +=+,解得:r=4,∴OC=8,∴OA=12OC ,∴∠C=30°,∴∠AOC=60°,∴AOC S ∆=12OA•AC=12∴阴影部分的面积260483603AOC AOE S S ππ∆⋅⋅=-=-=-扇形.【点睛】本题考查了圆周角定理,扇形的面积公式,切线的性质和勾股定理等知识点,熟记圆的切线垂直于经过切点的半径是解题的关键.25.小明家养鸡场的长和宽应分别为15米,10米【分析】设垂直于墙的一边长为x 米,结合题意可得到平行于墙的一边长为()3322x -+米,再通过面积150平方米列出方程,从而计算得到答案.【详解】设垂直于墙的一边长为x 米,则平行于墙的一边长为()3322x -+米,由题意得()3322150x x ⨯-+=∴22351500x x -+=∴1152x =,210x =当10x =时,33221518x -+=<当152x =时,33222018x -+=>(152x =不符合题意,舍去)∴这个养鸡场与墙垂直的一边应长10米.则33210215-⨯+=米∴小明家养鸡场的长和宽应分别为15米,10米.【点睛】本题考查了一元二次方程的应用;求解的关键是熟练掌握一元二次方程的解法并运用到实际问题的求解过程中,即可得到答案.26.(1)2y x =,2y x =-+(2)11,24P ⎛⎫- ⎪⎝⎭【分析】(1)先把()2,4B -代入2y ax =求出a 的值,然后把()1,A m 代入2y ax =,求出m 的值,最后把()2,4B -,()1,A m 代入y kx b =+求出k ,b 的值即可;(2)设()2,P m m ,则(),2H m m -+,22PH m m =--+,然后根据二次函数的性质求解即可.【详解】(1)解:∵()2,4B -在二次函数2y ax =的图象,∴()224a -=,∴1a =,∴二次函数解析式为2y x =,∵()1,A m 在二次函数2y x =的图象,∴1m =,∴()1,1A ,∵()1,1A ,()2,4B -在一次函数y kx b =+的图象上,∴124k b k b +=⎧⎨-+=⎩,解得12k b =-⎧⎨=⎩,∴一次函数解析式为2y x =-+;(2)解:设()2,P m m ,则(),2H m m -+,根据题意得222192224PH m m m m m ⎛⎫=-+-=--+=-++ ⎪⎝⎭,10a =-<,∴当12m =-时,PH 有最大值,∴11,24P ⎛⎫- ⎪⎝⎭.【点睛】本题考查了待定系数法求二次函数、一次函数解析式,二次函数的性质等知识,掌握待定系数法以及二次函数的性质是解题的关键.27.(1)抛物线解析式为2447472y x x =-++;(2)点E 运动到722⎛⎫ ⎪⎝⎭时,四边形CDBF 的面积最大,最大面积为652(3)存在,点P (3)8,或(35),或(3)5-,或2538⎛⎫ ⎪⎝⎭,【分析】(1)点(1004())A C -,,,待定系数法求解析式即可求解;(2)先求出B 点坐标,再求出直线BC 的解析式,设)4,47(E m m -+,用m 表示EF ,再把四边形CDBF 的面积用含m 的代数式表示,最后根据二次函数性质求出最值,进而求得E 点坐标;(3)根据抛物线的对称轴,设出P 点坐标,再求出CD 的长,再分两种情况:CD PD =,CD PC =,PC PD =列出方程求出P 点的坐标即可.【详解】(1)解:将点(1004())A C -,,,代入抛物线247y x mx n =-++得4074m n n ⎧--+=⎪⎨⎪=⎩,解得2474m n ⎧=⎪⎨⎪=⎩.所以,抛物线解析式为2447472y x x =-++;(2)解:令0y =,则20247447x x -++=,整理得,2670x x --=,解得1217x x =-=,,所以,点B 的坐标为()70,∵BCD △的面积不变,∴BCF △的面积最大时四边形CDBF 的面积最大,设直线BC 的解析式为y kx b =+,则704k b b +=⎧⎨=⎩,解得474k b ⎧=-⎪⎨⎪=⎩,所以,447y x =-+,设)4,47(E m m -+则2()424,477F m m m -++,所以:22424444447777EF m m m m m ⎛⎫⎛⎫=-++--+=-+ ⎪ ⎪⎝⎭⎝⎭,所以,22214749(4)72142()2722BCF S m m m m m ∆=-+⨯=-+=--+,∵20-<,∴当72m =时,BCF S 有最大值492,此时,47424272y =-⨯+=-+=,∵1(73)482BCD S =⨯-⨯= ,∴四边形CDBF 的最大面积为4965822+=,所以,点E 运动到722⎛⎫ ⎪⎝⎭,时,四边形CDBF 的面积最大,最大面积为652;(3)解:∵2447472y x x =-++,∴()3,0D .()0,4C ,5CD ∴==,假设在抛物线的对称轴上存在一点P ,使得PCD 是以CD 为边的等腰三角形,设()3,P t ,则DP t =,()222234825PC t t t =+-=-+.①当CD PD =时,有5t =,解得5t =±,此时P 点的坐标为:()3,5或()3,5-;②当CD PC =时,有22CD PC =,即225825t t =-+,解得:8t =或0=t (与D 点重合,故舍去),此时P 点的坐标为()3,8.③当PC PD =时,22825t t t -+=,解得258t =,此时P 点的坐标为2538⎛⎫ ⎪⎝⎭,综上所述存在点P ,使PCD 是以CD 为边的等腰三角形,()3,5或()3,5-或()3,8或2538⎛⎫ ⎪⎝⎭,.【点睛】本题考查了二次函数综合,待定系数法求解析式,面积问题,等腰三角形的定义,勾股定理,掌握二次函数的性质以及数形结合思想方法是解题的关键.。

(完整word版)江苏省苏州市苏教版九年级上册数学期末模拟试卷及答案

(完整word版)江苏省苏州市苏教版九年级上册数学期末模拟试卷及答案

苏教版九年级上册数学期末模拟试卷一、选择题(本大题共10小题,每小题3分,共30 分)1 •下列实数中,为无理数的是()A . 0.2B .壬C .菽D 52•下列算式中,正确的是()A. 3a 2— 4a 2= - 1 B . (a 3b ) 2=a 3b 2C . (- a 2) 3=a 6 D . a 2^a=a3. 一个几何体的主视图和左视图都是矩形,俯视图是圆,则这个几何体是(A .三棱柱B .圆柱C . 三棱柱D .圆锥4. 数据:2, 5, 4, 5, 3, 4, 4的众数与中位数分别是()A . 4, 3B . 4, 4C . 3, 4D . 4, 55在函数y=M‘E - !■中,自变量x 的取值范围是()A . x <1B . x NC . x v 1D . x > 16在不透明的布袋中装有1个红球,2个白球,3个黑球, 袋中任意摸出一个球,则摸出红球的概率是( )7在平面直角坐标系中,已知点 E (- 4, 2), F (- 2,- 2),以原点O 为位似中心, 相似比为吉把△ EFO 缩小,则点E 的对应点E 的坐标是()A . (-2, 1)B . (- 8, 4)C . (- 8, 4)或(8,- 4)D . (- 2, 1)或(2,- 1) 8 如图,AB 是。

O 的直径,TA 切。

O 于点A ,连结TB 交。

O 于点C , / BTA=40 °A . 50°B . 50° 或 130°C . 40°D . 40 或 140°9如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后回家.其中 x 表示时间,y 表示小明离家的距离,小明家、食堂、图书馆在同一直线上.根据图中提 供的信息,有下列说法:(D 食堂离小明家0.4km ;⑵ 小明从食堂到图书馆用了 3min ;(3 图书馆在小明家和食堂之间;(4 小明从图书馆回家的平均速度是0.04km/mi n. 其中正确的有()它们除颜色外完全相同,从 B . D.则/ BMC 的度数等于(A . 4个B . 3个C . 2个D . 1个10 如图,四边形ABCD 为正方形,边长为4,点F 在AB 边上,E 为射线AD 上一点, 正方形ABCD 沿直线EF 折叠,点A 落在G 处,已知点G 恰好在以AB 为直径的圆上, 则CG 的最小值等于()二、填空题(本大题共 8小题,每小题3分,共4分)11 反比例函数 讳勺图象在象限.12. __________________________________ 分解因式:(a+b ) 2-4ab=14 如图,0F 平分Z MON ,PE 丄0M 于E ,PF 丄0N 于F ,OA=OB,则图中有 ________ 对全等三角形.15一个圆锥的侧面积为12/m 2,母线长为6cm ,则这个圆锥底面圆的半径为 cm .16 在平面直角坐标系中,将抛物线y=x 2 - 4先向右平移2个单位,再向上平移2个单 位,得到的抛物线解析式为. D. 2 r -2如图,直线AB ,CD 相交于点O , 0E 丄AB ,Z BOD=2Q°,则/ COE 等于 ° s 25 281317 如图,将△ ABC绕点B逆时针旋转40°得到△ A 'B'C',若点C恰好落在边BA的延长线上,且AC ' /BC,连接CC 贝U/ ACC, ___________ 度.21.已知:菱形OBCD 在平面直角坐标系中位置如图所示,点 B 的坐标为(2, 0),/ DOB=60°(1) 点D 的坐标为_,点C 的坐标为(2) 若点P 是对角线OC 上一动点,点E (0,-代),求PE+PB 的最小值.22.小明同学在用描点法画二次函数y=ax 2+bx+c 图象时,由于粗心,他算错了一个y 值, 列出了下面表格: X … -1 0 1 23 … y=ax 2+bx+c … 5 3 2 3 6 … (1 请指出这个错误的y 值,并说明理由;18.已知关于x 的方程X 2+2 (a - 1) x+a 2- 7a- 4=0的两根为x i ,(2X 2 - 3 ) =29 , 贝U a 的 值为 _____ .三、解答题(本大题共10小题,共 96 分)19.( 1)计算: ■-2-1+| --2| X 2,且满足(2X 1 - 3)20. 解不等式组 2x-l 3 并求出所有正整数解的和.(2)先化简,再求值: -1),其中 a=3.1・D 丿⑵ 若点M (a , y i ), N (a+4, y 2)在二次函数y=ax 2+bx+c 图象上,且a >- 1,试比较 y i 与y 2的大小.23. 如图,一枚棋子放在。

苏科版九年级上册数学期末试卷含答案

苏科版九年级上册数学期末试卷含答案

苏科版九年级上册数学期末试题一、单选题1.下列关于x 的方程中,一定是一元二次方程的是()A .20ax bx c ++=B .2(2)(3)(1)x x x +-=-C .210x +=D .11x x+=2.已知一组数据2,3,5,x ,5,3有唯一的众数3,则x 的值是()A .3B .5C .2D .无法确定3.若一元二次方程2210ax x ++=有两个不相等的实数根,则实数a 的取值范围是()A .1a<B .1a ≤C .1a ≤且0a ≠D .1a<且0a ≠4.⊙O 的直径为10cm ,点A 到圆心O 的距离OA=6cm ,则点A 与⊙O 的位置关系为()A .点A 在圆上B .点A 在圆外C .点A 在圆内D .无法确定5.二次函数22y x x =-的顶点坐标是()A .(2,4)-B .(2,4)C .(1,1)-D .(1,1)6.将半径为16cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面半径是()A .4cmB .6cmC .8cmD .10cm7.如图,在ABCD Y 中,E 为BC 边上的点,若:2:3BE EC =,AE 交BD 于F ,则:BF FD 等于()A .4:5B .2:5C .5:9D .4:98.抛物线23y x bx =++的对称轴为直线1x =.若关于x 的一元二次方程230x bx t ++-=(t 为实数)在13x -<<的范围内有实数根,则t 的取值范围是()A .211t ≤<B .2t ≥C .611t <<D .26t ≤<9.二次函数()20y ax bx c a =++≠的图象如图所示,对称轴是直线=1x -,下列结论:①>0abc ;②24>0b ac -;③42<0a b c ++;④2b a =.其中正确的是()A .③④B .①②③C .①②④D .①②③④10.如图,点A ,B ,C 在O 上,=90AOC ︒∠,2AB =1BC =,则O 的半径为()A 3B 52C 102D .212二、填空题11.四边形ABCD 内接于⊙O ,若85B ∠=︒,则D ∠=______︒.12.已知234x y z==,则x y z+=______.13.已知点(0,),(4,)A a B b 是抛物线222022y x x =-+上的两点,则a ,b 的大小关系是_____.14.甲、乙、丙、丁四人参加射击比赛,经过三轮的初赛,他们成绩的方差分别是22220.2,0.3,0.25,0.4s s s s ====乙丁甲丙,你认为成绩更稳定的是__________.15.已知1x ,2x 是一元二次方程2430x x -+=的两根,则12122x x x x +-=_______.16.已知圆心角为135︒的扇形面积为24π,则扇形的半径为______.17.如图,在O 中,3OA =,45C ∠=︒,则图中阴影部分的面积是_________.(结果保留π)18.在平面直角坐标系中,二次函数2(0)y ax bx c a =++≠的图象如图所示,现给出以下结论:①<0abc ;②20c a +<;③930a b c -+=;④()a b m am b -≥+(m 为实数),其中正确的结论有___.(只填序号)19.如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且4AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是_______.三、解答题20.计算:(1)2230x x --=(2)先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 满足2330a a +-=.21.关于x 的一元二次方程x 2﹣(k+1)x+2k ﹣2=0.(1)求证:方程总有两个实数根;(2)若方程有一根小于2,求k 的取值范围.22.将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为.(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).23.如图,在Rt ABC 中,90,C AE ∠=︒平分BAC ∠交BC 于点E ,点D 在AB 上,DE AE ⊥.⊙O 是Rt ADE △的外接圆,交AC 于点F .(1)求证:BC 是⊙O 的切线;(2)若⊙O 的半径为10,16AC =,求ADE S .24.某校利用课外活动时间,开设了书法、健美操、兵兵球和朗诵四个社团活动,每个学生选择一项活动参加,为了了解活动开展情况,学校随机抽取了部分学生进行调查,将调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)请直接填写抽取的学生有人,n =,=a .(2)补全条形统计图;(3)若该校有学生4000人,估计参加书法社团活动的学生人数.25.如图,河对岸有一路灯杆AB ,在灯光下,小明在点D 处,自己的影长4m DF =,沿BD 方向到达点F 处再测自己的影长5m FG =,如果小明的身高为1.6m ,求路灯杆AB 的高度.26.老李在驻村干部的帮助下,销售一批成本为每件30元的商品,按单价不低于成本价,且不高于50元销售,经调查发现,该商品每天的销售量y (件)与销售单价x (元)之间满足一次函数关系,部分数据如表所示.销售单价x (元)304045销售数量y (件)1008070(1)求该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式;(2)销售单价定为多少元时,每天的销售利润为800元?(3)销售单价定为多少元时,才能使销售该商品每天获得的利润w (元)最大?最大利润是多少元?27.如图①,ABC 和ADE V 是有公共顶点的等腰直角三角形,90BAC DAE ∠=∠=︒,点P 为射线,BD CE 的交点.(1)如图②,将ADE V 绕点A 旋转,当C 、D 、E 在同一条直线上时,连接BD 、BE ,求证:BD CE =且BD CE ⊥.(2)若8,4AB AD ==,把ADE V 绕点A 旋转,①当90EAC ∠=︒时,求PB 的长;②旋转过程中线段BP 长的最小值是_______.28.如图,在平面直角坐标系内,抛物线28(0)y ax bx a =+-≠与x 轴交于点A 、点B ,与y 轴交于点C ,且2OB OA =.过点A 的直线4y x =+与抛物线交于点E .点P 为第四象限内抛物线上的一个动点,过点P 作PH AE ⊥于点H .(1)抛物线的表达式中,=a ________,b =________;(2)在点P 的运动过程中,若PH 取得最大值,求这个最大值和点P 的坐标;(3)在(2)的条件下,在x 轴上求点Q ,使以A ,P ,Q 为顶点的三角形与ABE 相似.参考答案1.C【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【详解】解:A 、a =0时,不是一元二次方程,选项错误;B 、原式可化为:x−7=0,是一元一次方程,故选项错误;C 、符合一元二次方程的定义,正确;D 、是分式方程,选项错误.故选:C.【点睛】本题考查一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.A【分析】根据众数的定义,结合这组数据的具体情况进行判断即可.【详解】解:在这组已知的数据中,“3”出现2次,“5”出现2次,“2”出现1次,要使这组数据有唯一的众数3,因此x所表示的数一定是3.故选:A.【点睛】本题考查众数的定义,掌握一组数据中出现次数最多的数据是这这组数据的众数是正确判断的关键.3.D【分析】根据一元二次方程的定义和判别式的意义得到a≠0且△=22-4a>0,然后求出两不等式的公共部分即可.【详解】解:根据题意得a≠0且△=22-4a>0,解得a<1且a≠0.故选:D.【点睛】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.4.B【分析】根据题意得⊙O的半径为5cm,则点A到圆心O的距离大于圆的半径,则根据点与圆的位置关系可判断点A在⊙O外.【详解】解:∵⊙O的直径为10cm,∴⊙O的半径为5cm,而点A到圆心O的距离OA=6cm>5cm,∴点A在⊙O外.故选B.【点睛】本题考查了点与圆的位置关系:设⊙O的半径为r,点P到圆心的距离OP=d,则有点P在圆外,则d>r;点P在圆上,则d=r;点P在圆内,则d<r.5.C【分析】将抛物线解析式化为顶点式求解.【详解】解:∵()22211y x x x =-=--,∴二次函数22y x x =-的顶点坐标为(1,−1),故选:C .【点睛】本题考查二次函数的性质,解题关键是掌握将抛物线解析式化为顶点式的方法.6.C【分析】易得圆锥的母线长为16cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【详解】解:圆锥的侧面展开图的弧长为2π×16÷2=16π(cm ),∴圆锥的底面半径为16π÷2π=8(cm ),故选:C .【点睛】本题考查了圆锥的计算.用到的知识点为:圆锥的弧长等于底面周长.7.B【分析】通过证明△ADF ∽△EBF ,可求解.【详解】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC ,∵BE :EC =2:3,∴BE :AD =2:5,∵AD ∥BC ,∴△ADF ∽△EBF ,∴BF :FD =BE :AD =2:5,故选:B .【点睛】本题考查的是平行四边形的性质和相似三角形的判定和性质,灵活运用平行四边形的性质定理和相似三角形的判定和性质定理是解题的关键.8.D【分析】由抛物线的对称轴可得抛物线解析式,将x 2+bx+3﹣t =0转化为抛物线y =x 2+bx+3与直线y =t 在﹣1<x <3的范围内有交点的问题,进而求解.【详解】解:∵抛物线y =x 2+bx+3的对称轴为直线x =2b-=1,∴b =﹣2,∴y =x 2﹣2x+3,∵y =x 2﹣2x+3=(x ﹣1)2+2,∴抛物线开口向上,顶点坐标为(1,2),将x 2+bx+3﹣t =0整理为x 2﹣2x+3=t ,∴当t =2时,抛物线顶点落在直线y =2上,满足题意,把(﹣1,t )代入y =x 2﹣2x+3得t =6,把(3,t )代入y =x 2﹣2x+3得t =6,∴2≤t <6满足题意,故选:D .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图像与系数的关系.9.D【分析】根据二次函数的图象和性质逐个判断求解即可.【详解】∵对称轴是直线=1x -,∴12ba-=-,即2b a =,故④正确;∵抛物线开口向下,∴0<a ,∴<0b ,∵抛物线与y 轴交于正半轴,∴0c >,∴>0abc ,故①正确;∵抛物线与x 轴有两个交点,∴20ax bx c ++=有两个不相等的实数根,∴24>0b ac -,故②正确;当2x =时,42<0y a b c =++,故③正确;综上所述,正确的有①②③④.故选:D .【点睛】本题考查的是二次函数图象与系数的关系,掌握二次函数()20y ax bx c a =++≠系数符号与抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数的关系是解题的关键.10.C【分析】作AD CB ⊥交CB 的延长线于点D ,连结AC ,OB .只要证明ADB 是等腰直角三角形,即可推出1AD DB ==,再利用勾股定理即可求出AC ,进而求出O 的半径.【详解】解:如图,作AD CB ⊥交CB 的延长线于点D ,连结AC .∵OB OC =,OB OA =,∴OBC OCB ∠=∠,OBA OAB ∠=∠,又∵=90AOC ︒∠,∴()13601352ABC OBA OBC AOC ∠=∠+∠=︒-∠=︒,∴1359045BAD ABC BDA ∠=∠-∠=︒-︒=︒,∴ADB 是等腰直角三角形.∴22222AD DB AD AB +==,∴122AD DB AB ====,∴112DC DB BC =+=+=,∴AC ===∵OC OA =,=90AOC ︒∠,∴OC AC ==⨯=,∴O 故选C .【点睛】本题考查圆的基本认识,三角形外角的性质,勾股定理,等腰三角形的判定与性质等,解题的关键是证明ADB 是等腰直角三角形.11.95【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠B=85°,∴∠D=180°-85°=95°,故答案为:95.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.12.54【分析】利用设k 法进行计算即可解答.【详解】解:设234xy z k ===,∴x =2k ,y =3k ,z =4k ,∴23544x y k k z k ++==.故答案为:54.【点睛】本题考查了比例的性质,熟练掌握设k 法是解题的关键.13.a b<【分析】根据抛物线解析式可得抛物线对称轴与开口方向,根据点A ,B 到抛物线对称轴的距离求解.【详解】解:∵()222202212021y x x x =-+=-+,∴抛物线的对称轴为直线x=1,且开口向上,∵1-0<4-1,∴点A 到对称轴的距离小于点B 到对称轴的距离,∴a<b ,故答案为:a<b【点睛】本题考查二次函数图象上点的坐标特征,解题关键是掌握二次函数的性质,14.甲【分析】根据方差的定义,方差越小数据越稳定即可求解.【详解】解:∵22220.2,0.3,0.25,0.4s s s s ====乙丁甲丙,∴方差最小的为甲,∴成绩更稳定的是甲.故答案为:甲.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.2-【分析】根据根与系数的关系得到x 1+x 2=4,x 1x 2=3,然后利用整体代入的方法计算x 1+x 2﹣2x 1x 2的值.【详解】解:根据题意得x 1+x 2=4,x 1x 2=3,∴x 1+x 2﹣2x 1x 2=4﹣2×3=﹣2.故答案为﹣2.【点睛】本题考查了一元二次方程根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c =0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a,掌握根与系数的关系是解题的关键.16.8【分析】根据扇形面积的计算公式进行计算即可得出答案.【详解】解:根据S =2360n r π,可得:24π=2135360r π,解得:r =8.故答案为:8.【点睛】本题主要考查了扇形面积的计算,熟练掌握扇形面积的计算方法进行计算是解决本题的关键.17.9942π-【分析】由45C ∠=︒,根据圆周角定理得出90AOB ∠=︒,根据S 阴影=S 扇形AOB -AOB S 可得出结论.【详解】解:∵45C ∠=︒,∴90AOB ∠=︒,∴S 阴影=S 扇形AOB -AOBS29031=333602π⨯⨯-⨯⨯99=42π-,故答案为:9942π-.【点睛】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.18.①②③【分析】由抛物线的开口方向判断a 的正负,由抛物线与y 轴交点判断c 的正负,由抛物线对称轴判断a 与b 的关系,根据抛物线的图象的性质对结论进行判断.【详解】由图象可得a>0,c<0,-2b a<0,∴b>0,∴abc<0,故①正确,符合题意.由抛物线对称轴-2b a =-1可得b=2a ,∵x=1时,y=a+b+c=0,a+2a+c=0,即c+3a=0,c+2a=-a<0,故②正确,符合题意.∵图象对称轴为直线x=-1,且经过点(1,0)∴抛物线与x 轴另一个交点坐标为(-3,0),x=-3时,y=9a-3b+c=0,故③正确,符合题意.当x=-1时,函数有最小值为a-b+c ,当x=m 时,y=am 2+bm+c ,∴am 2+bm+c≥a-b+c ,整理得a-b≤m(am +b),故④错误,故不符合题意.所以正确的有:①②③故答案为:①②③.【点睛】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与不等式的关系,二次函数与方程的关系.19.3m 7≤≤【分析】取AB 的中点M ,连接QM 、CM ,得到QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,求得QM 、CM 的长,在△QMC 中利用三角形三边关系得到CQ 的范围即可.【详解】取AB 的中点M ,连接QM 、CM ,∴QM 是△APB 的中位线,CM 是Rt ABC 斜边上的中线,∴122QM AP ==,12CM AB =,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,∴10AB =,∴CM=5,∵点P 是平面内一个动点,∴点Q 是动点,且点Q 以点M 为圆心,QM 长为半径的圆上运动,∴C 、Q 、M 可以三点共线,∴CM-MQ ≤CQ ≤CM+MQ ,∴3m 7≤≤,故答案为:3m 7≤≤.【点睛】本题考查勾股定理、直角三角形斜边中线的性质,中位线定理、三角形三边关系等知识,分析点Q 的运动是解题的关键.20.(1)121,3x x =-=(2)232+a a ,32【分析】(1)利用因式分解法求解可得;(2)先根据分式的减法法则进行计算,再根据分式的除法法则进行计算,求出a 2+3a =3,最后把a 2+3a =3代入化简的结果,即可求出答案.(1)解:x 2﹣2x ﹣3=0,(x ﹣3)(x+1)=0,可得x ﹣3=0或x+1=0,解得:x 1=3,x 2=﹣1;(2)解:原式=()()()()22221222a a a a a a ⎛⎫+-- ⎪+⨯ ⎪--⎝⎭()221222a a a a a -+⎛⎫=+⨯ ⎪--⎝⎭()2322a a a a -+=⨯-232a a +=,由a 2+3a ﹣3=0得a 2+3a =3,∴原式32=.【点睛】本题考查了解一元二次方程,分式的化简求值,熟练掌握运算法则是解本题的关键.21.(1)见解析.(2)3k <.【分析】(1)利用根的判别式,求出0≥ 恒成立,即可得出结论.(2)利用因式分解法得到该方程的两个根,一个是2,一个是1k -,根据方程有一根小于−3,即可求出k 的取值范围.(1)∵a =1,b =﹣(k+1),c =2k ﹣2,∴Δ=b 2﹣4ac =[﹣(k+1)]2﹣4×1×(2k ﹣2)=k 2﹣6k+9=(k ﹣3)2≥0,∴方程总有两个实数根.(2)∵x 2﹣(k+1)x+2k ﹣2=0,即[x ﹣(k ﹣1)](x ﹣2)=0,∴x 1=2,x 2=k ﹣1,又∵方程有一个根小于2,∴k ﹣1<2,∴k <3,即k 的取值范围为k <3.【点睛】本题考查一元二次方程根的判别式和利用因式分解法解一元二次方程,解题的关键是熟练运用这些知识点进行求解.22.(1)14;(2)716【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.【详解】(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为14,故答案为:14;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为716.【点睛】本题考查了用列表法或树状图法求随机事件的概率,解题时需要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.23.(1)见解析(2)80【分析】(1)连接OE ,利用角平分线的性质和等腰三角形的性质证明AC ∥OE ,即可解答;(2)先证明△ACE ∽△AED ,求出AE 的长,再利用勾股定理求出DE 的长,进行计算即可解答.(1)证明:连接OE ,∵OA =OE ,∴∠1=∠OEA ,∵AE 平分∠BAC ∴∠1=∠2,∴∠2=∠OEA ,∴AC ∥OE ,∴∠C =∠OEB =90°,∵OE 是⊙O 的半径,∴BC 是⊙O 的切线;(2)∵AD 是⊙O 的直径,∴∠AED =90°,∴∠C =∠AED =90°,∵∠1=∠2,∴△ACE ∽△AED ,ACE AED ∽,∴AC AE AE AD =,即1620AE AE =,∴85AE =去),∴DE ()2222208545AD AE --=,∴S △ADE =12AE•DE =1855802⨯.【点睛】本题考查了切线的判定与性质,三角形外接圆与外心,圆周角定理,熟练掌握角平分线的性质和等腰三角形的性质证明平行线是解题的关键.24.(1)200,54,25(2)见解析(3)约1000人【分析】(1)根据参加乒乓球社团的人数为80人,占抽取的总人数的40%,可求得抽取的总人数,从而求得n与a的值.(2)根据(1)问中求得的抽取的总人数,计算其中参加朗诵社团的人数,从而补全条形统计图.(3)根据参加书法社团的人数占抽取的总人数的25%,估算全校参加书法社团的学生人数.(1)解:∵参加乒乓球社团的人数为80人,占抽取的总人数的40%,∴抽取的总人数为8040%200÷=(人),∵参加健美操社团的人数为30人,抽取的总人数为200人,∴参加健美操社团的人数占抽取的总人数的30100%200⨯=15%,在扇形统计图中,36015%54n︒=︒⨯=︒,即n=54,∵参加书法社团的人数为50人,抽取的总人数为200人,∴参加书法社团的人数占抽取的人数的50100%200⨯=25%,即a=25,故答案为:200;54;25;(2)解:∵抽取的总人数为200人,又∵参加健美操社团的人数为30人,参加书法社团的人数为50人,参加乒乓球社团的人数为80人,∴参加朗诵社团的人数为,200-30-50-80=40(人)∴条形统计图如下:(3)解:4000×25%=1000(人)答:估计参加书法社团活动的学生人数为1000人.【点睛】本题考查了数据的整理和分析,熟练掌握各社团人数及其所占百分比是解题的关键.25.8m【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD EF AB ∥∥,∴可以得到ABF CDF ∽,ABG EFG △∽△,∴AB BF CD DF =,AB BG EF FG=,又∵CD EF =,∴BF BG DF FG=∵4DF =,5FG =,4BF BD DF BD =+=+,9BG BD DF FG BD =++=+,∴4945BD BD ++=,∴16,16420BD BF ==+=,∴201.64AB =,解得8AB =.答:路灯杆AB 的高度为8米.【点睛】本题主要考查了相似三角形的应用,本题只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.26.(1)y =-2x +160(2)销售单价定为40元时,每天的销售利润为800元(3)销售单价定为50元时,每天的利润最大,最大利润是1200元【分析】(1)设该商品每天的销售量y (件)与销售单价x (元)之间的函数关系式为y kx b =+,用待定系数法求解即可;(2)根据每件的利润乘以销售量等于利润800元,列出方程并求解,再结合单价不低于成本价,且不高于50元销售,可得符合题意的答案;(3)根据每件的利润乘以销售量等于利润得出w 关于x 的二次函数,将其写成顶点式,根据二次函数的性质及自变量的取值范围可得答案.(1)解:设y =kx +b 把(30,100),(40,80)代入得301004080k b k b +=⎧⎨+=⎩解得:k =-2b=160∴y =-2x +160当x =45,y =70时也适合.所以y 与x 的一次函数关系式是y =-2x +160;(2)解:根据题意,得800=(x -30)(-2x +160)整理,得211028000x x +=-解得1240,70x x ==∵30≤x≤502x =70(不合题意,舍去)∴销售单价定为40元时,每天的销售利润为800元;(3)解:由题意,得w =(x -30)(-2x +160)=-222204800x x +-=2-2(55)x -+1250∵a =-2<0,∴w 有最大值.∵30≤x ≤50,当x <55时,w 随x 的增大而增大,∴当x =50时,w 有最大值,此时,w =-2(50-55)2+1250=1200答:销售单价定为50元时,每天的利润最大,最大利润是1200元.【点睛】本题考查了二次函数和一元二次方程在销售问题中的应用,明确成本利润问题的基本数量关系并熟练掌握二次函数的性质是解题的关键.27.(1)见解析(2)①PB =4【分析】(1)证明ABD ACE ≌△△,可得BD CE =,ABD ACE ∠=∠,再由90CAB ∠=︒,可得90ACE AFB ∠+∠=︒.再根据三角形的内角和定理,即可求证;(2)①分两种情况讨论:当点E 在AB 上时;当点E 在BA 延长线上时,即可求解;②以A 为圆心AD 为半径画圆,当CE 在A 下方与A 相切时,PB的值最小.根据勾股定理可得BD CE ==AEPD 是矩形,可得4PD AE ==,即可求解.(1)解:如图,∵ABC 和ADE V 是等腰直角三角形,∴AB=AC ,AD=AE ,∵90BAC DAE ∠=∠=︒,∴BAC DAC DAE DAC ∠+∠=∠+∠,即BAD CAE ∠=∠.在ABD△和ACE △中,AD AE BAD CAE AB AC =⎧⎪∠=∠⎨⎪=⎩,∴ABD ACE SAS △≌△(),∴BD CE =,ABD ACE ∠=∠,∵90CAB ∠=︒,∴90ABD AFB ∠+∠=︒,∴90ACE AFB ∠+∠=︒.∵DFC AFB ∠=∠,∴90ACE DFC ∠+∠=︒,∴90FDC ∠=︒,∴BD CE ⊥;(2)解:①如图,当点E 在AB 上时,844BE AB AE =-=-=.∵90EAC ∠=︒,AE=4,AC=8,∴22228445CE AE AC =+=+=,同(1)可证△≌△ADB AEC .∴DBA ECA ∠=∠.∵PEB AEC ∠=∠,∴△∽△PEB AEC .∴PB BE AC CE =,∴4845PB =,∴855PB =.如图,当点E 在BA 延长线上时,12BE AB AE =+=.∵90EAC ∠=︒,∴22224845CE AE AC =+=+=,同(1)可证:△≌△ADB AEC ,∴DBA ECA ∠=∠,∵BEP CEA ∠=∠,∴△∽△PEB AEC ,∴PB BE AC CE =,∴12845PB =,∴2455PB =.综上.855PB =或2455.②如图,以A 为圆心AD 为半径画圆,当CE 在A 下方与A 相切时,PB 的值最小.理由:设AB 交PC 于点M ,∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE ,∵AB=AC ,AD=AE ,∴△ABD ≌△ACE ,∴∠ABD=∠ACE ,∠ADP=∠AEC=∠AEP=90°,BD=CE ,∵∠BMP=∠AMC ,∴∠BPM=∠CAB=90°,∴PBC 是直角三角形,∵斜边BC 为定值,∴BCE ∠最小,因此PB最小,∵AE EC ⊥,∴EC ===,∴BD CE ==,∵90ADB AEC ∠=∠=︒,∴90ADP DAE AEP ∠=∠=∠=︒,∴四边形AEPD 是矩形,∴4PD AE ==,∴4PB BD PD =-=.综上所述,PB长的最小值是4【点睛】本题主要考查了相似三角形的判定和性质,切线的性质,解直角三角形,全等三角形的判定和性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,切线的性质,解直角三角形,全等三角形的判定和性质,勾股定理等知识是解题的关键.28.(1)14,1-(2)PH的最大值为P 的坐标为(4,8)-(3)(2,0)或52,03⎛⎫ ⎪⎝⎭【分析】(1)根据直线y=x+2与x 轴交于点A ,先求出点A 的坐标,再根据OB=2OA 求出点B 的坐标,将点A 、B 的坐标代入y=ax 2+bx-8得到方程组,解方程组求出a 、b 的值即可;(2)过点P 作PF ⊥x 轴交直线y=x+4于点F ,由(1)得抛物线的表达式为y =14x 2−x−8,设P(x ,14x 2−x−8)(0<x <8),到得PF 关于x 的函数表达式,再根据二次函数的性质求出PH 的最大值以及此时点P 的坐标;(3)作PG ⊥x 轴于点G ,则∠PGA=90°,先证明∠BAP=∠BAE=45°,再求出AP 、AE 的长;A ,P ,Q 为顶点的三角形与△ABE 相似分两种情况,一是∠AQP=∠ABE 时,△AQP ∽△ABE ,二是∠AQP=∠ABE 时,△AQP ∽△ABE ,根据相似三角形的对应边成比例求出AQ 的长,再转化为点Q 的坐标.(1)直线y=x+4,当y=0时,则x+4=0,解得x=-4,∴A (-4,0),OA=4,∴OB=2OA=8,∴B (8,0),把A (-4,0),B (8,0)代入y=ax 2+bx-8,得1648064880a b a b --=⎧⎨+-=⎩,解得141a b ⎧=⎪⎨⎪=-⎩,故答案为:14,-1;(2)如图1,过点P 作PF x ⊥轴交直线4y x =+于点F ,由(1)得抛物线的表达式为2184y x x =--,设21,8(08)4P x x x x ⎛⎫--<< ⎪⎝⎭,则4(),F x x +,∴2211(4)821244PF x x x x x ⎛⎫=+---=-++ ⎪⎝⎭,21(4)164x =--+当4x =时PF 取得最大值,且最大值为16,此时16PH ===2144884⨯--=-∴点P 的坐标为(4,8)-∴当4x =时,PH 的最大值为P 的坐标为(4,8)-(3)如图2,作PG x ⊥轴于点G ,则90,(4,0)PGA G ∠=︒∴8AG PG ==,∴45BAP BAE ∠=∠=︒,∵4AE y x =+抛物线2184y x x =--∴(12,16)E ,∴AE AP ==,当AQP ABE ∠=∠时,AQP ABE ∽,∴AQ AP AB AE =,∵8(4)12AB =--=,∴6AB AP AQ AE -===,∴462Q x =-+=,∴(2,0)Q ;如图3,当APQ ABE ∠=∠时,APQ ABE ∽,∴AQ AP AE AB =,∴64123AE AP AQ AB ⋅===,∴6452433Q x =-+=,∴52,03Q ⎛⎫ ⎪⎝⎭,综上所述,点Q 的坐标为(2,0)或52,03⎛⎫ ⎪⎝⎭.。

2019-2020学年苏州市区九年级上册数学期末考试试卷(有答案)苏科版-最新推荐

2019-2020学年苏州市区九年级上册数学期末考试试卷(有答案)苏科版-最新推荐

苏州市区学校 2019-2020学年度第 二 学 期 期终考试 试卷九 年级 数学本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲) A .-3+5B. -3-5C. |-3+5|D. |-3-5|2. 下列计算正确的是 (▲) A .330--= B .02339+= C .331÷-=- D .()1331-⨯-=-3.下列运算正确的是 (▲)A .x 4+x 2=x 6B .x 2•x 3=x 6C .(x 2)3=x 6D .x 2﹣y 2=(x ﹣y )24. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲) A .23,24 B .24,22 C .24,24 D .22,245.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)A .M <NB .M =NC .M >ND .不能确定6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲) A .222y x =+B .222y x =-C .22(2)y x =-D .22(2)y x =+7. 由二次函数22(3)1y x =-+,可知 (▲)A.其图像的开口向下B.其图像的对称轴为直线3x =-C.其最小值为1D.当3x <时,y 随x 的增大而增大8. 下列命题中,正确的是 (▲) A .平面上三个点确定一个圆 B .等弧所对的圆周角相等 C .平分弦的直径垂直于这条弦 D .与某圆一条半径垂直的直线是该圆的切线9. 如图,过⊙O 外一点P 引⊙O 的两条切线PA 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧AMB 上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)A .15°B .20°C .25°D .30°10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,与x 轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲) A .-3 B .1 C .5 D .8MP第9题 第10题 第18题二、填空题 本大题共8小题,每小题3分,共24分,把答案直接填在答题纸相对应位置上.11. 当x ▲ 时,分式无意义.12.花粉的质量很小,一粒某种植物花粉的质量约为0.000037mg ,已知1g =1000mg ,那么0.000037mg 可以用科学记数法表示为 ▲ .13.计算:222a a b b b a ⎛⎫-÷= ⎪⎝⎭▲ . 14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ . 15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ .17. 已知抛物线y =x 2-2mx -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。

(苏科版)初中数学九年级上册 期末测试试卷03及答案

(苏科版)初中数学九年级上册 期末测试试卷03及答案

期末测试一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.(3分)一元二次方程()()120x x --=的解是()A .1x =B .2x =C .1212x x ==,D .1212x x =-=-,2.(3分)若25x y =,则x y y+的值为( )A .25B .72C .57D .753.(3分)若直线l 与半径为5的O ⊙相离,则圆心O 与直线l 的距离d 为( )A .5d <B .5d >C .5d =D .5d ≤4.ABC R t △9031AC BC °===,,,则sin A )A B C .13D 5.(3分)将抛物线2y x =先向左平移2个单位,再向下平移2个单位,那么所得抛物线的函数关系式是( )A .()222y x =++B .()222y x =+-C .()222y x =-+D .()222y x =--6.(3分)已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( )A .265cm pB .290cm pC .2130cm pD .2155cm p 7.(3分)某电影上映第一天票房收入约3亿元,以后每天票房收入按相同的增长率增长,三天后累计票房收入达到10亿元.若增长率为x ,则下列方程正确的是( )A .()3110x +=B .()23110x +=C .()233110x ++=D .()()23313110x x ++++=8.(3分)如下图,已知正五边形ABCDE 内接于O ⊙,连结BD CE , 相交于点F ,则BFC Ð的度数是( )A .60°B .70°C .72°D .90°9.(3分)对于二次函数2610y x x =-+,下列说法不正确的是( )A .其图象的对称轴为过()31,且平行于y 轴的直线B .其最小值为1C .其图象与x 轴没有交点D .当3x <时,y 随x 的增大而增大10.(3分)将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD Ð的值为( )A B 1+C 1D .二、填空题(本大题共8小题,每小题2分,满分16分,将答案填在答题纸上)11.(2分)已知1x =是方程210x mx ++=的一个根,则m =________.12.(2分)若有一组数据为8、4、5、2、1,则这组数据的中位数为________.13.(2分)若关于x 的一元二次方程240x x m -+=没有实数根,则m 的取值范围是________.14.(2分)如下图,在平行四边形ABCD 中,13BE DF BC ==,若1BEG S =△,则ABF S =△________.15.(2分)如下图,ABC △是O ⊙的内接三角形,¶45BAC BC °Ð=,的长是54p ,则O ⊙的半径是________.16.(2分)已知实数a b c ,,满足0a ¹,且0a b c -+=,930a b c ++=,则抛物线2y ax bx c =++图象上的一点()24-,关于抛物线对称轴对称的点为________.17.(2分)如下图,由边长为1的小正方形组成的网格中,点A B C D ,,,为格点(即小正方形的顶点),AB 与CD 相交于点O ,则AO 的长为________.18.(2分)如下图,已知二次函数()()3144y x x =-+-的图象与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C P ,为该二次函数在第一象限内的一点,连接AP ,交BC 于点K ,则PK AK 的最大值为________.三、解答题:本大题共10小题,共84分.解答应写出文字说明、证明过程或演算步骤.19.(8分)(1()0°20202tan60p --(2)解方程:2210x x --=20.(8分)如下图,在平面直角坐标系中,ABC △的三个顶点的坐标分别为点()()()103001A B C ,、,、,.(1)ABC △的外接圆圆心M 的坐标为________.(2)①以点M 为位似中心,在网格区域内画出DEF △,使得DEF △与ABC △位似,且点D 与点A 对应,位似比为2:1.②点D 坐标为________.(3)DEF △的面积为________个平方单位.21.(8分)某校根据课程设置要求,开设了数学类拓展性课程,为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(每人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整).请根据图中信息回答问题:(1)求m n ,的值.(2)补全条形统计图.(3)该校共有1 200名学生,试估计全校最喜欢“数学史话”的学生人数.22.(8分)在一个不透明的盒子中装有4张卡片,4张卡片的正面分别标有数字1,2,3,4,这些卡片除数字外都相同,将卡片搅匀.(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是________;(2)先从盒子中任意抽取一张卡片,再从余下的3张卡片中任意抽取一张卡片,求抽取的2张卡片标有数字之和大于4的概率.(请用画树状图或列表等方法求解).23.(8分)如下图,已知AB 是O ⊙的直径,C 是O ⊙上的点,点D 在AB 的延长线上,BCD BAC Ð=Ð.(1)求证:CD 是O ⊙的切线;(2)若302D BD °Ð==,,求图中阴影部分的面积.24.(8分)如下图,90ABD BCD DB °Ð=Ð=,平分ADC Ð,过点B 作BM CD ∥交AD 于M .连接CM 交DB 于N .(1)求证:2BD AD CD =g ;(2)若68CD AD ==,,求MN 的长.25.(8分)2019年12月27日,我国成功发射了“长征五号”遥三运载火箭.如下图,“长征五号”运载火箭从地面A 处垂直向上发射,当火箭到达B 处时,从位于地面M 处的雷达站测得此时仰角45AMB °Ð=,当火箭继续升空到达C 处时,从位于地面N 处的雷达站测得此时仰角30ANC °Ð=,已知120km 40km MN BC ==,.(1)求AB 的长;(2)若“长征五号”运载火箭在C 处进行“程序转弯”,且105ACD °Ð=,求雷达站N 到其正上方点D 的距离.26.(8分)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式;(2)若该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)在(2)的条件下,第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.27.(10分)如下图,已知二次函数()22230y x mx m m =-++>的图象与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,顶点为点D .(1)点B 的坐标为________,点D 的坐标为________;(用含有m 的代数式表示)(2)连接CD BC ,.①若CB 平分OCD Ð,求二次函数的表达式;②连接AC ,若CB 平分ACD Ð,求二次函数的表达式.28.(10分)如下图,在ABC R t △中,90660C AC BAC AD °°Ð==Ð=,,,平分BAC Ð交BC 于点D ,过点D 作DE AC ∥交AB 于点E ,点M 是线段AD 上的动点,连结BM 并延长分别交DE AC ,于点F G 、.(1)求CD 的长.(2)若点M 是线段AD 的中点,求EF DF的值.(3)请问当DM 的长满足什么条件时,在线段DE 上恰好只有一点P ,使得60CPG °Ð=?期末测试答案解析一、1.【答案】C【解析】解:10x -=或20x -=,所以1212x x ==,.故选:C .2.【答案】D 【解析】解:25x y =∵,27155x y x y y y y +===+=∴,故选:D .3.【答案】B【解析】解:∵直线l 与O ⊙的位置关系是相离,d r ∴>,5r =∴,5d ∴>,故选:B .4.【答案】A【解析】解:∵在ABC R t △中,9031C AC BC °Ð===,,,∴由勾股定理得到:AB ===.sin BC A AB ===∴故选:A .5.【答案】B【解析】解:∵抛物线2y x =先向左平移2个单位,再向下平移2个单位,∴平移后的抛物线的顶点坐标为()22--,,∴所得抛物线的函数关系式是()222y x =+-.故选:B .6.【答案】B 【解析】解:这个圆锥的侧面积()225113m 265c p p ´´==´.底面积为:()22525cm p p ´=,所以全面积为()2652590cm p p p +=.故选:B .7.【答案】D【解析】解:设增长率为x ,依题意,得:()()23313110x x ++++=.故选:D .8.【答案】C【解析】解:如下图所示:∵五边形ABCDE 为正五边形,108BC CD DE BCD CDE °==Ð=Ð=∴,,180108362CBD CDB CED DCE °°°-Ð=Ð=Ð=Ð==∴,72BFC BDC DCE °Ð=Ð+Ð=∴.故选:C .9.【答案】D【解析】解:∵二次函数()2261031y x x x =-+=-+,∴对称轴为3x =,故选项A 正确,不符合题意;顶点坐标为()31,,所以有最小值1,故选项B 正确,不符合题意;()2641040=--´=-△<,故选项C 正确,不符合题意,开口向上,当3x <时y 随着x 的增大而减小,故选:D .10.【答案】B【解析】解:如下图作AH CB ^交CB 的延长线于H .9045ABD DBC °°Ð=Ð=∵,,45ABH °Ð=∴,90AHB °Ð=∵,ABH ∴△是等腰直角三角形,AH BH =∴,设AH BH a ==,则AB BD BC CD CH a =====,,,,90AHB DCB °Ð=Ð=∵,AH DC ∴∥,ACD CAH Ð=Ð∴,tan tan 1CH ACD CAH AHÐ=Ð==+∴,故选:B .二、11.【答案】2-【解析】解:∵关于x 的一元二次方程210x mx ++=有一个根是1,2110m ++=∴,解得:2m =-,故答案为:2-;12.【答案】4【解析】解:把这组数据从小到大排列为1,2,4,5,8,最中间的数是4,则中位数是4;故答案为4.13.【答案】4m >【解析】解:由题意可知:0△<,1640m -∴<,4m ∴>故答案为:4m >14.【答案】6【解析】解:过点G 作MN AD ^于点M ,交BC 于点N ,如下图所示.∵四边形ABCD 为平行四边形,AD BC AD BC =∴∥,.13BE DF BC ==∵,2AF BE =∴.AF BE ∵∥,FAG BEG ∴△∽△,2FAG BEG S AF GM AF S EB GN EBöæ==ç÷èø△△∴,,42FAG S GM GN ==△∴,,32MN GM =∴,113326222ABF FAG S AF MN AF GM S ====g g g △△∴.故答案为:6.15.【答案】52【解析】解:连接OB OC ,,45BAC °Ð=∵,290BOC BAC °Ð=Ð=∴,¶BC ∵的长是54p ,9051804OB p p ´=g ∴,52OB =∴,O ∴⊙的半径是52,故答案为:52.16.【答案】()44,【解析】解:0a b c -+=∵和930a b c ++=,32c a b a =-=-∴,,∴抛物线解析式为223y ax ax a =--,∴对称轴为212a x a-=-=,()24-∴,关于抛物线对称轴对称的点为()44,.故答案是:()44,.17.【解析】解:如下图所示:在BDF △和ECF △中,°90DBF CEF BFD EFCBD CE ìÐ==ïÐ=Ðíï=î,()BDF ECF AAS ∴△≌△,12BF EF ==∴,又BF DA ∵∥,BFO ADO ∴△∽△,AO AD BO BF=∴,又4AD =∵,8AO BO =∴,在ABD R t △中,由勾股定理得,AB ===,又AB AO BO =+∵,AO =∴,.18.【答案】45【解析】解:过P 作PQ AB ∥,与BC 交于点Q,如下图,∵二次函数()()3144y x x =-+-的图象与x 轴交于A B ,两点(点A 在点B 的左侧),与y 轴交于点C ,()()()104003A B C -∴,,,,,,设BC 的解析式为:()0y mx n m =+¹,则340n m n =ìí+=î,343m n ì=-ïíï=î∴,3:34BC y x =-+∴,设()()3144P t t t öæ-+-ç÷èø,,则()()233144Q t t t t öæ--+-ç÷èø,,24PQ t t =-+∴,PQ AB ∵∥,PQK ABK ∴△∽△,()224144155PK PQ t t t t AK AB -+===-+--∴,105-∵<,∴当452125t =-=öæ´-ç÷èø时,PK AK 有最大值为214422555-´+´=,故答案为:45.三、19.【答案】解:(1)原式11=-=(2)2210x x --=∵,2212x x -+=∴,()212x -=∴,1x =∴20.【答案】(1)()22,(2)①如下图所示:DEF △即为所求;②()46D ,(3)4【解析】解:(1)如下图:()22M ,;故答案为:()22,;(3)DEF △的面积为:14242´´=.故答案为:4.21.【答案】解:(1)观察条形统计图与扇形统计图知:选A 的有12人,占20%,故总人数有1220%60¸=人,1560100%25%m =¸´=∴960100%15%n =¸´=;(2)选D 的有6012159618----=人,故条形统计图补充为:(3)全校最喜欢“数学史话”的学生人数为:120025%300´=人.22.【答案】(1)12(2)根据题意列表得:12341345235634574567由表可知,共有12种等可能结果,其中抽取的2张卡片标有数字之和大于4的有8种结果,所以抽取的2张卡片标有数字之和大于4的概率为82123=.【解析】解:(1)从盒子中任意抽取一张卡片,恰好抽到标有奇数卡片的概率是为2142=,故答案为:12.23.【答案】解:(1)连接OC ,OA OC =∵,BAC OCA Ð=Ð∴,BCD BAC Ð=Ð∵,BCD OCA Ð=Ð∴,AB ∵是直径,90ACB °Ð=∴,90OCA OCB BCD OCB °Ð+Ð=Ð+Ð=∴90OCD °Ð=∴OC ∵是半径,CD ∴是O ⊙的切线(2)设O ⊙的半径为r ,2AB r =∴,3090D OCD °Ð=°Ð=∵,,260OD r COB °=Ð=∴,22r r +=∴,2120r AOC °=Ð=∴,2BC =∴,∴由勾股定理可知:AC =易求112AOC S =´=△12044363OAC S p p ´==扇∴阴影部分面积为4324.【答案】证明:(1)DB ∵平分ADC Ð,ADB CDB Ð=Ð∴,且90ABD BCD °Ð=Ð=,ABD BCD∴△∽△AD BD BD CD=∴2BD AD CD=g ∴(2)BM CD∵∥MBD BDCÐ=Ð∴ADB MBD Ð=Ð∴,且90ABD °Ð=BM MD MAB MBA=Ð=Ð∴,4BM MD AM ===∴2BD AD CD =g ∵,且68CD AD ==,,248BD =∴,22212BC BD CD =-=∴22228MC MB BC =+=∴MC =∴BM CD∵∥MNB CND∴△∽△23BM MN CD CN ==∴,且MC =MN =∴25.【答案】解:(1)设AB 为xkm ,则AM 为xkm ,在ACN R t △中,30°Ð∵,tan AC ANC AN Ð=∴40120x x +=+,解得:x =AB =∴;(2)作DH CN ^,垂足为点H ,由(1)可得,40AC =+,80CN =∴,105ACD °Ð=∵,45NCD °Ð=∴,90AND °Ð=∵,60CND °Ð=∴,设HN 为y ,则DH CH ==,80y +=,解得:80y =,2160DN y ==∴,答:雷达站N 到其正上方点D 的距离为160km .26.【答案】解:(1)()()216268032236W x x x x =--+-=-+-.(2)由题意:22032236x x =-+-.解得:16x =,答:该产品第一年的售价是16元.(3)∵公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.1416x ∴≤≤,()()225262031150W x x x x =--+-=-+-,∵抛物线的对称轴15.5x =,又1416x ≤≤,14x =∴时,2W 有最小值,最小值88=(万元),答:该公司第二年的利润2W 至少为88万元.27.【答案】解:(1)在二次函数2223y x mx m =-++中,当0y =时,123x m x m ==-,,∵点A 在点B 的左侧,0m >,()()030A m B m -∴,,,,()2222234y x mx m x m m =-++=--+∵,∴顶点()24D m m ,,∴故答案为:()()2304m m m ,,,;(2)①如图1,过点D 作DH AB ^,交BC 于点E ,则DH OC ∥,DEC OCE Ð=Ð∴,BC ∵平分OCD Ð,OCE DCE Ð=Ð∴,DEC DCE Ð=Ð∴,CD DE =∴,由(1)知,()()()203030C m A m B m -,,,,,,233OC m OB m ==∴,,23tan 3m ABC m mÐ==∵,22HE m =∴,222422DE DH HE m m m =-=-=∴,CD DE =∵,22CD DE =∴,242m m +∴,解得:12m m ==(舍去),∴二次函数的关系式为:21y x =-+;②如图2,过点D 作DH AB ^,交BC 于点E ,过点C 作y 轴的垂线CK ,过点B 作x 轴的垂线交CK 于点K ,连接AE ,tan tan DG BK DCG m KCB m CG CKÐ==Ð==∵,,DCG KCB Ð=Ð∴,CK AB ∴∥,KCB EBA Ð=Ð∴,由对称性知,DH 垂直平分AB ,EA EB =∴,EAB EBA Ð=Ð∴,DCG KCB EBA EAB Ð=Ð=Ð=Ð∴,AEC EAB EBA DCB DCG KCB CB Ð=Ð+ÐÐ=Ð+Ð∵,,平分ACD Ð,DCB AEC ACE Ð=Ð=Ð∴,AC AE =∴,2222AC AE EH AH ==+∴,244294m m m ++∴解得:12m m ==,∴二次函数的关系式为:295y x x =-+.28.【答案】解:(1)AD ∵平分60BAC BAC °ÐÐ=,,1302DAC BAC °Ð=Ð=∴,在ADC R t △中,°tan306DC AC ===g .(2)由题意易知:BC BD ==,DE AC ∵∥,FDM GAM Ð=Ð∴,AM DM DMF AMG =Ð=Ð∵,,()DFM AGM ASA ∴△≌△,DF AG =∴,DE AC ∵∥,EF BE BD AG AB BC ==∴,23EF EF BD DF AG BC ====∴.(3)60CPG °Ð=∵,过C P G ,,作外接圆,圆心为Q ,CQG ∴△是顶角为120°的等腰三角形.①当Q ⊙与DE 相切时,如下图3-1中,作QH AC ^于H ,交DE 于P .连接QC QG ,.设Q ⊙的半径为r .则1122QH r r r =+=,r =∴42AG ==∴,,由DFM AGM △∽△,可得43DM DF AM AG ==,47DM AD ==∴.②当Q ⊙经过点E 时,如下图3-2中,延长CQ 交AB 于K ,设CQ r =.120QC QG CQG °=Ð=∵,,30KCA °Ð=∴,60CAB °Ð=∵,90AKC °Ð=∴,在EQK R t △中,1QK r EQ r EK =-==,,,()2221rr +-=∴,解得r ,143CG ==∴,由DFM AGM △∽△,可得DM =.③当Q ⊙经过点D 时,如下图3-3中,此时点M ,点G 与点A 重合,可得DM AD ==.观察图象可知:当DM =DM ≤P 只有一个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏州市区学校 2017-2018学年度
第 二 学 期 期终考试 试卷 九 年级 数学
本试卷由填空题、选择题和解答题三大题组成.共28小题,满分130分.考试时间120分钟.
注意事项
1.答题前,考生务必将自己的考试号、学校、姓名、班级,用0. 5毫米黑色墨水签字笔填写在答题纸相对应的位置上,并认真核对;
2.答题必须用0. 5毫米黑色墨水签字笔写在答题纸指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;
3.考生答题必须答在答题纸上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.
一、选择题 本大题共有10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题纸相应位置上.
1. 数轴上点A 、B 表示的数分别是5、-3,它们之间的距离可以表示为 (▲)
A .-3+5 B. -3-5 C. |-3+5| D. |-3-5|
2. 下列计算正确的是 (▲)
A .330--=
B .02339+=
C .331÷-=-
D .()1331-⨯-=-
3.下列运算正确的是 (▲)
A .4+2=6
B .2•3=6
C .(2)3=6
D .2﹣y 2=(﹣y )2
4. 我市5月的某一周七天的最高气温(单位:℃)统计如下:19,20,24,22,24,26,27,则这组数据的中位数与众数分别是 (▲)
A .23,24
B .24,22
C .24,24
D .22,24
5.已知M =a ﹣1,N =a 2﹣a (a 为任意实数),则M 、N 的大小关系为 (▲)
A .M <N
B .M =N
C .M >N
D .不能确定
6. 在平面直角坐标系中,将二次函数22y x =的图象向上平移2个单位,所得函数图象的解析式为(▲)
A .222y x =+
B .222y x =-
C .22(2)y x =-
D .22(2)y x =+ 7. 由二次函数22(3)1y x =-+,可知 (▲)
A.其图像的开口向下
B.其图像的对称轴为直线3x =-
C.其最小值为1
D.当3x <时,y 随x 的增大而增大
8. 下列命题中,正确的是 (▲)
A .平面上三个点确定一个圆
B .等弧所对的圆周角相等
C .平分弦的直径垂直于这条弦
D .与某圆一条半径垂直的直线是该圆的切线
P 9. 如图,过⊙O 外一点P 引⊙O 的两条切线P A 、PB ,切点分别是A 、B ,OP 交⊙O 于点C ,点D 是优弧AMB 上不与点A 、点B 重合的一个动点,连接AD 、CD ,若∠APB =80°,则∠ADC 的度数是 (▲)
A .15°
B .20°
C .25°
D .30°
10. 如图,点A ,B 的坐标分别为(1, 4)和(4, 4),抛物线n m x a y +-=2)(的顶点在线段AB 上运动,
与轴交于C 、D 两点(C 在D 的左侧),点C 的横坐标最小值为3-,则点D 的横坐标的最大值为 (▲)
A .-3
B .1
C .5
D .8
第18题
.
时,分式无意义.,已知1g =1000mg ,那么0.000037mg 可14.在一个暗箱中,只装有a 个白色乒乓球和10个黄色乒乓球,每次搅拌均匀后,任意摸出一个球后又放回,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,则a = ▲ .
15. 一圆锥的侧面积为15π,底面半径为3,则该圆锥的母线长为 ▲ .
16. 已知抛物线234y x x =+-与x 轴的两个交点为()1,0x 、()2,0x 则212315x x -+= ▲ . 17. 已知抛物线y =2-2m -4 (m >0)的顶点M 关于坐标原点O 的对称点为M '.若点M '在这条抛物线上,则点M 的坐标为 ▲ 。

18. 如图,△ABC 中,∠BAC =60°,∠ABC =45°,AB = D 是线段BC 上的一个动点,
以AD 为直径画⊙O 分别交AB ,AC 于E ,F ,连接EF ,则线段EF 长度的最小值为 ▲ .
三、解答题 本大题共10小题,共76分..请把解答过程写在答题纸相对应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.
19. (本题满分5分)计算101231)2-⎛⎫⨯+-+ ⎪⎝⎭
20.(本题满分5分)分解因式:22+4+2
21.(本题满分6分)先化简再求值:232()121
x x x x x x --
÷+++,其中x 满足220x x +-=.
22.(本题满分7分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课
外阅读时间(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m 的值和E 组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数。

23.(本题满分7分) 在校园文化艺术节中,九年级一班有1名男生和2名女生获得美术奖,另有2名男生和2名女生获得音乐奖.
(1)从获得美术奖和音乐奖的7名学生中选取1名参加颁奖大会,求刚好是男生的概率;
(2)分别从获得美术奖、音乐奖的学生中各选取1名参加颁奖大会,用列表或树状图求刚好是一
男生一女生的概率.
24.(本题满分8分)如图,已知⊙O的直径AB垂直于弦CD于E,连结AD、BD、OC、OD,且OD=5。

(1)若sin∠BAD=3
5
,求CD的长;
(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π)。

25.(本题满分8分) 观察表格:根据表格解答下列问题:
(l) a=,b=,c=;
(2) 在右图的直角坐标系中画出函数
y=a2+b+c的图象,并根据图象,
直接写出当取什么实数时,不等式a2+b+c > -3成立;
(3)该图象与轴两交点从左到右依次分别为A、B,与y轴交点为C,
求过这三个点的外接圆的半径.
26.(本题满分10分)为满足市场需求,某超市在新年临前夕,购进一款商品,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,如果每盒售价每提高1元,则每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
27.(本题满分10分)如图,已知Rt△ABC的直角边AC与Rt△DEF的直角边DF在同一条直线
上,且AC=60cm,BC=45cm,DF=6cm,EF=8cm.现将点C与点F重合,再以4cm/s的速度沿
CA方向移动△DEF;同时,点P从点A出发,以5cm/s的速度沿AB方向移动.设移动时间为
t(s),以点P为圆心,3t(cm)长为半径的⊙P与直线AB相交于点M,N,当点F与点A重合时,
△DEF与点P同时停止移动,在移动过程中:
(1)连接ME,当ME∥AC时,t=________s;
(2)连接NF,当NF平分DE时,求t的值;
(3)是否存在⊙P与Rt△DEF的两条直角边所在的直线同时相切的时刻?若存在,求出t的值;若不存在,说明理由.
28. (本题满分9分)如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,-1),N为线段CD上一点(不与C,D重合).
(1)求以C为顶点,且经过点D的抛物线解析式;
(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;
(3)求(2)中N1 N2的最小值;
(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且
∠PQA=∠BAC,求当PQ最小时点Q坐标.。

相关文档
最新文档