第六章 电子束与离子束加工

合集下载

电子束与离子束加工原理及应用

电子束与离子束加工原理及应用

电子束与离子束加工原理及应用电子束与离子束加工原理及应用电子束加工1、电子束加工原理及特点(1)由于电子束能够极其微细地聚焦(束径可达微米级)且在微小面积上叮达到很大的功率密度,因此在轰击点处的瞬时温度可达数千度高温,足以使任何材料熔化或气化。

由此可知,电子束可用来加工任何材料的微孔或窄缝、半导体电路等,是一种精密微细加工方法(2)由于电子束的瞬时热能作用在极微小面积上,所以加工部位的热影响区很小;在加工过程中无机械力作用,故加工后不产生受力变形;此外电子束加工也不存在工具消耗问题。

所以它的加工梢度高、表面质量也好。

(3)能够通过磁场或电场对电子束的强度、位置、聚焦进行直接控制。

位置控制的准确度可达0.15m左右,强度和束斑的大小控制误差也易达到1%以下。

通过磁场或电场几乎可以无惯性、无功率地控制电子束.便于采用计算机控制.实现加工过程自动化。

(4)由于电子束加工是在真空中进行,因此污染少.加工点处能保持原来材料的纯度:适合于加工易级化的金属及合金材料,特别是要求纯度极高的半导体材料。

(5)电子束加工需要一套价格昂贵的专用设备,加工中心成本高,2、电子束加工的应用电子束加工可分为两类;一类称为‘.热型”.即利用电子束把材料的局部加热至熔化或气化点进行加工,如打孔、切割、焊接等;另一类称为“非热型”.即利用电子束的化学效应进行刻蚀的技术,如电子束的光刻等。

(1)电子束的热效应加工。

在电子束的热效应加工中,可通过调整功率密度来达到不同的加工目的,如淬火、熔炼、切割、打孔等。

(2)电子束化学效应加工。

用低功率密度的电子束照射工件表面虽不会引起表面的温升,但入射电子与高分子材料的碰撞,会导致它们的分子链的切断或重新聚合.从而使高分子材料的化学性质和分子量产生变化,这种现象叫电子束的化学效应.利用这种效应进行加工的方法叫电子束光刻。

由于电子束曝光系统柔性大,又能连续扫描写图,既是精密微细图形写图设备,也是目前大规模(IST)及超大规模(VLST)掩膜或基片光刻的主要设备.除此之外,电子束可作为光源进行图形复印等工作。

电子束加工特点

电子束加工特点
15
第六章 电子束和离子束加工
离子束加工方式包括离子蚀刻、离子镀膜及离子溅射沉 积和离子注入等。
16
第六章 电子束和离子束加工
1离子刻蚀
当所带能量为0.1~5keV、直径为十分之几纳米的的氩离子轰 击工件表面时,此高能离子所传递的能量超过工件表面原子 (或分子)间键合力时,材料表面的原子(或分子)被逐个 溅射出来,以达到加工目的。这种加工本质上属于一种原子 尺度的切削加工,通常又称为离子铣削。 离子束刻蚀可用于加工空气轴承的沟槽、打孔、加工极薄材料 及超高精度非球面透镜,还可用于刻蚀集成电路等的高精度 图形。
第六章 电子束和离子束加工
第六章 电子束和离子束加工
1
第六章 电子束和离子束加工
6.1 电子束加工
一. 电子束加工原理和特点
(一)加工原理 电子束加工是利用高速电子的 冲击动能来加工工件的,如图6-1 所示。在真空条件下,将具有很高
速度和能量的电子束聚焦到被加工
材料上,电子的动能绝大部分转变 为热能,使材料局部瞬时熔融、汽
行电子束光刻加工。
3
第六章 电子束和离子束加工
(二)电子束加工特点 (1) 可进行微细加工。
(2) 非接触式加工。
(3) 电子束的能量密度高,加工效率高。
(4)整个加工过程便于实现自动化。
(5)加工在真空中进行,污染ቤተ መጻሕፍቲ ባይዱ,加工表面不易被氧化。
(6)电子束加工需要整套的专用设备和真空系统,价
格较贵。
4
17
2离子溅射沉积
第六章 电子束和离子束加工
采用能量为0.1~5keV的氩离子轰击某种材料制成的靶材,将 靶材原子击出并令其沉积到工件表面上并形成一层薄膜。 实际上此法为一种镀膜工艺。

特种加工第六章课后习题答案

特种加工第六章课后习题答案

第六章电子束和离子束加工一、课内习题及答案1.电子束加工和离子束加工在原理上和在应用范围上有何异同?答:二者在原理上的相同点是均基于带电粒子于真空中在电磁场的加速、控制作用下,对工件进行撞击而进行加工。

其不同处在于电子束加工是基于电能使电子加速转换成动能,在撞击工件时动能转换成热能使金属熔化、气化而被蚀除。

而离子束加工是电能使质量较大的正离子加速后,打到工件表面,是靠机械撞击能量使工件表面的原子层变形、破坏或切除分离,并不发热。

在工艺上:有离子刻蚀、溅射沉积、离子镀、离子注入(表面改性)等多种形式,而不像电子束加工,有打孔、切割、焊接、热处理等形式。

2.电子束加工、离子束加工和激光加工相比各自的适用范围如何,三者各有什么优缺点?答:三者都适用于精密、微细加工,但电子束、离子束需在真空中进行,因此加工表面不会被氧化、污染,特别适合于“清洁”、“洁净”加工。

离子束主要用于精微“表面工程”,激光因可在空气中加工,不受空间结构的限制,故也适用于大型工件的切割、热处理等工艺。

3.电子束、离子束、激光束三者相比,哪种束流和相应的加工工艺能聚焦得更细?最细的焦点直径大约是多少?答:激光聚焦后焦点的直径取决于光的波长。

波长为0.69μm的红色激光,聚焦后的光斑直径很难小于1μm,因为聚焦透镜有像差等误差。

二氧化碳气体激光器发出1.06μm的红外激光,其焦点光斑直径更大。

波长较短的绿色激光和准分子激光器可获得较小的焦点,常用于精密、微细加工。

电子束最佳时可获得0.25μm的聚焦直径,可用于制作大规模集成电路的光刻。

如果用波长很短的X光射线(波长为10-9~10-10m,即1~0.1nm),可得到0.1μm 左右的聚焦直径。

4.电子束加工装置和示波器、电视机的原理有何异同之处?答:它们都有一个电子枪用来发射电子,使电子奔向高电压的正极,而后再用线圈(电磁透镜)进行聚焦,用电场进行偏转,控制扫描出图形来。

只不过电子束加工装置的功率较大,而示波器、电视机的功率较小而已。

第6章 电子束和离子束加工

第6章 电子束和离子束加工

特种加工技术
二、电子束加工装臵
电子枪
电子发射阴极、控制 栅极和加速阳极等;
真空系统 控制系统
电磁透镜、偏转线圈、 工作台系统
电源系统 辅助装臵
特种加工技术
电子枪
用途:

钨丝

发射高速电子流 电子束的预聚焦 电子束的强度控制
小功率
大功率
组成

电子发射阴极(纯钨或纯钽) 控制栅极 加速阳极

非热型(化学效应)

利用电子束的化学效应进行刻蚀

刻蚀
特种加工技术
功率密度对加工模式的影响
a) 低密度 b) 中低密度 c) 高密度
表面改性
电子束焊接
电子束打孔、切槽
特种加工技术
电子束加工的应用范围
ቤተ መጻሕፍቲ ባይዱ
特种加工技术
(1)高速打孔
特点

能打各种孔(最小φ3μm )


生产效率高
可加工各种材料
实际应用
打400孔;3mm厚时,φ1mm的锥形孔,每秒可打20孔。)
可加工斜孔。 可以加工各种直的型孔和型面,也可以加工弯孔和曲面。
特种加工技术
电子束加工曲面
电子束在磁场中运动,由于受到电磁力,其轨迹会发生偏转。 如果在磁场中对工件加工,则可切割出曲面。
特种加工技术
电子束加工弯槽
电子束在磁场中运动,由于受到电磁力,其轨迹会发生偏转。 如果在磁场中对工件中部进行切割时,则可加工出弯槽。
特种加工技术
电子束加工分类
通过控制电子束能量密度的大小和能量注入时 间,就可以达到不同的加工目的。 电子束打孔、切割等加工:高电子束能能量密度, 使材料融化和气化,就可以进行; 电子束焊接:使材料局部融化就可以进行; 电子束热处理:只使材料局部加热就可以进行; 电子束光刻加工:利用较低能量密度的电子束轰击 高分子材料时产生化学变化的原理,即可进行。

电子 离子 激光束加工的区别

电子 离子 激光束加工的区别

电子束加工、离子束加工和激光束加工的区别:
⏹一、原理不同:①电子束加工:在真空中从灼热的灯丝阴极发射出的电子,在高电
压(30~200千伏)作用下被加速到很高的速度,通过电磁透镜会聚成一束高功率密度的电子束。

当冲击到工件时,电子束的动能立即转变成为热能,产生出极高的温度,。

②离子束加工:当离子(正离子)束打击到材料表面上,会产生所谓撞击效应、溅
射效应和注入效应,从而达到不同的加工目的。

③激光加工:经过透镜聚焦后,在焦点上达到很高的能量密度,光能转化为热能,靠光热效应来加工的
⏹二、应用不同:①电子束加工:1)高速打孔2)加工型孔及特殊表面4)焊接5)
热处理6)电子束光刻②离子束加工:1)刻蚀加工2)镀膜加工3)离子注入加工
③激光加工:1)激光切割2)激光打孔3)激光打标4)激光焊接5)激光热处理
6)激光雕刻
⏹三、装置不同:与电子束和离子束加工装置比起来,激光束加工装置比较简单。

⏹。

特种加工技术---第六章:电子束和离子束加工

特种加工技术---第六章:电子束和离子束加工

h
17
2 离子束加工在高真空环境下进行,所以污染少,特别适用于对易 氧化的金属、合金材料和高纯度半导体进行加工。
3 离子束加工是靠离子轰击材料表面的原子来实现的,是一种微观 作用,宏观压力很小,所以加工应力、热变形极小,加工质量高, 适合于加工各种材料和低刚度薄壁零件。
4 与电子束加工类似,离子束加工设备费用贵、成本高,应用范围 受到一定的限制。
h
4
三 电子束加工装置 一般说来,一套典型的电子束加工装置主要包括以下几个 主要组成部分
➢ 电子枪 ➢ 真空系统 ➢ 控制系统 ➢ 电源
h
5
1 电子枪 作用:发射电子束 组成:发射阴极,控制栅极、加速阳极
h
6
2 真空系统 真空系统的主要作用是保证电子束加工时维持1.33×10-21.33×10-4Pa的真空度,因为只有在真空中,电子才能高 速运动。此外,加工时产生的金属蒸汽会影响电子的发射 和运动,因此也需要不断地把加工中产生的金属蒸汽不断 抽走。
第六章 电子束和离子束加工
电子束加工-----Electron Beam Machining
离子束加工-----Ion Beam Machining
电子束加工主要用于打孔、焊接、切割、刻蚀、热处理和光刻 加工等方面。 离子束加工主要用于离子刻蚀、离子镀膜加工以及离子注入 加工等方面。
h
1
第一节 电子束加工
3 控制系统和电源
电子束加工设备控制系统主要包括:束流聚焦控制、束流位置 控制和束流强度控制。
束流的位置控制是为了改变电子束的方向,常用电磁偏转来控制
电子束焦点的位置。
电子束加工设备对电源电压的稳压性要求较高,因为电压波动
会影响电子束聚焦的稳定性。 h

电子行业电子束和离子束加工

电子行业电子束和离子束加工

电子行业电子束和离子束加工简介在电子行业中,电子束和离子束加工是两种常用的微细加工技术。

它们利用高能电子束和离子束对材料进行加工,具有高精度、高效率和非接触等特点,在电子器件制造、表面改性和纳米加工等领域有广泛应用。

电子束加工基本原理电子束加工利用高速运动的电子束对材料表面进行加工。

通过控制电子束的能量和聚焦方式,可以实现在纳米到微米级别的精确加工。

其基本原理如下:•加速电子:采用电子枪将电子加速到较高能量,通常在几十千伏至几百千伏之间。

•焦点控制:利用一系列电场和磁场聚焦系统,将电子束聚焦到较小的直径,达到高分辨率的效果。

•扫描加工:通过控制电子束的位置和扫描速度,实现对材料表面的精确加工。

应用领域电子束加工在电子行业中有广泛的应用,包括但不限于以下领域:1.纳米微型器件加工:电子束加工可用于制造微型电子器件,如纳米线、纳米晶体管和MEMS器件等。

2.光刻:电子束激光刻蚀技术是集成电路制造中常用的工艺之一。

3.表面改性:通过控制电子束的能量和扫描方式,可以实现对材料表面的纹理、硬度和导电性等物理性质的改变。

4.纳米加工:电子束可以直接对纳米颗粒进行加工,制备纳米材料和纳米结构。

离子束加工基本原理离子束加工利用高能离子束对材料进行加工。

与电子束加工相比,离子束加工具有更高的穿透能力和更大的功率密度,可以实现更深入和更精确的加工效果。

其基本原理如下:•加速离子:采用离子源将离子加速到高能量,通常在几百电子伏至几千电子伏之间。

•焦点控制:通过控制电场和磁场分别作用的方式,实现对离子束的聚焦控制。

•碰撞损伤:高速离子束与材料表面相碰撞,产生碰撞损伤和表面变化。

应用领域离子束加工在电子行业中也有广泛的应用,主要应用于以下领域:1.纳米加工:离子束加工可用于纳米线、纳米颗粒和纳米薄膜的制备。

2.材料改性:通过离子束的碰撞和改变材料表面的结构,可以实现材料的硬化、改变导电性和抗腐蚀等性能。

3.表面涂层:离子束沉积技术可以实现对材料表面的镀膜、涂层和纳米颗粒的制备。

电子束和离子束加工

电子束和离子束加工

第六章电子束和离子束加工电子束加工(Electron Beam Machining简称EBM)和离子束加工(Ion Beam Machining简称IBM)是近年来得到较大发展的新兴特种加工。

它们在精密微细加工方面,尤其是在微电子学领域中得到较多的应用。

电子束加工主要用于打孔、焊接等热加工和电子束光刻化学加工。

离子束加工则主要用于离子刻蚀、离子镀膜和离子注入等加工。

近期发展起来的亚微米加工和毫微米(纳米)加工技术,主要是用电子束加工和离子束加工。

第一节电子束加工一、电子束加工的原理和特点(一)电子束加工的原理如图6-1所示,电子束加工是在真空条件下,利用聚焦后能量密度极高(106~109W/cm2)的电子束,以极高的速度冲击到工件表面极小面积上,在极短的时间(几分之一微秒)内,其能量的大部分转变为热能,使被冲击部分的工件材料达到几千摄氏度以上的高温,从而引起材料的局部熔化和气化,被真空系统抽走。

控制电子束能量密度的大小和能量注入时间,就可以达到不同的加工目的。

如只使材料局部加热就可进行电子束热处理;使材料局部熔化就可进行电子束焊接;提高电子束能量密度,使材料熔化和气化,就可进行打孔、切割等加工;利用较低能量密度的电子束轰击高分子材料时产生化学变化的原理,即可进行电子束光刻加工。

(二)电子束加工的特点1)由于电子束能够极其微细地聚焦,甚至能聚焦到0.1μm。

所以加工面积可以很小,是一种精密微细的加工方法。

2)电子束能量密度很高,使照射部分的温度超过材料的熔化和气化温度,去除材料主要靠瞬时蒸发,是一种非接触式加工。

工件不受机械力作用,不产生宏观应力和变形,加工材料范围很广,对脆性、韧性、导体、非导体及半导体材料都可加工。

3)电子束的能量密度高,因而加工生产率很高,例如,每秒钟可以在2。

5mm厚的钢板上钻50个直径为0.4mm的孔。

4)可以通过磁场或电场对电子束的强度、位置、聚焦等进行直接控制,所以整个加工过程便于实现自动化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


(一)电子枪 (二)真空系统 (三)控制系统和电源
电子束加工设备 电子枪
控制系统
真空系统
电子束加工装置
真空系统
三、电子束加工的应用





(一)高速打孔 (二)加工型孔及特殊表面 (三)刻蚀 (四)焊接 (五)热处理 (六)电子束光刻
(一)高速打孔

利用极高能量密度的电子束冲击材料,使材 料汽化,而实现钻孔的目的。 电子束打孔具有下列的特点: 1.可加工细微的孔,目前最小加工直径可达 0.003mm左右。 2.加工深孔,孔的深径比大于10:1,其深度 亦可达10公分以上。
离子注入零件

3.孔径误差很小,正负5%以内。 4.适合硬度高的材料打孔。 5.可打斜度的孔,倾斜角可达15˚。 7.加工各种直的型孔和成型表面,加工弯孔和立 体曲面。 7.加工速度快。
(二)加工型孔及特殊表面


电子束可以用来切割各种复杂型面,如下图 所示,电子束加工的喷丝头异形孔截面的一 些实例。 电子束还可以加工弯孔和曲面。利用电子束 在磁场中偏转的原理,使电子束在工件内部 偏转。控制电子速度和磁场强度,即可控制 曲率半径,加工出弯曲的孔。

上面、側面が改善されたサンプル
放電面
放電面+照射面
面粗さ:0.8μmRa
面粗さ:0.09μmRa
(六)电子束光刻
电子束光刻是先利用低功率密度的电子束照射 称为电致抗蚀剂的高分子材料,由入射电子与 高分子相碰撞,使分子的链接被切断或重新聚 合而引起的分子量的变化,这一步骤称为电致 曝光。 电子束曝光可以用电子束扫描,即将聚焦到小 于1μm的电子束斑在大约0.5-5mm的范围内按 程序扫描,可曝光出任意图形。
第二节离子束加工
一、离子束加工原理、分类和特点
(一)离子束加工的原理和物理基础 离子束加工是在真空条件下,先由电子枪产生 电子束,再引入已抽成真空且充满惰性气体之 电离室中,使低压惰性气体离子化。由负极引 出阳离子又经加速、集束等步骤,最后射入工 件表面。
(二)离子束加工分类


离子束加工依其目的可以分为蚀刻及镀膜两 种。 蚀刻又可在分为溅散蚀刻和离子蚀刻两种。 离子在电浆产生室中即对工件进行撞击蚀刻, 为溅散蚀刻。 产生电子使以加速之离子还原为原子而撞击 材料进行蚀刻为离子蚀刻。






(二)离子束镀膜加工 离子束镀膜加工有溅射沉积和离子镀两种形 式。 离子镀可镀材料范围广泛,不论金属、非金 属表面上均可镀制金属或非金属薄膜,各种 合金、化合物、或某些合成材料、半导体材 料、高熔点材料亦均可镀覆。 离子束镀膜技术可用于镀制润滑膜、耐热膜、 耐磨膜、装饰膜和电气膜等。 离子束装饰膜。 离子束镀膜代替镀铬硬膜,可减少镀铬公害。 提高刀具的寿命。
(五)热处理
电子束热处理也是把电子束作为热源,但适当 降低电子束的功率密度,使金属表面加热而不 熔化,达到热处理的目的。 电子束热处理与激光器热处理类同,但电子束 的电热转换效率高,可达90%,而激光的转换 效率只有7%-10%。电子束热处理在真空中进 行,可以防止材料氧化,电子束设备的功率可 以做得比激光功率大。
(四)焊接

电子束焊接是利用电子束作为热源的一种焊接 工艺。 主要优点: 1.电子束穿透能力强,焊缝深宽比大,可达到 70: 1。 2.焊接速度快,热影响区小,焊接变形小。 3.电子束焊接不仅可以防止熔化金属受到氧、氮 等有害气体的影响,适于活泼金属的焊接。 4.可焊接难以接近部位的接缝。 5.可实现复杂接缝的自动焊接。
离子束流的的产生方法是把要电离的气态原子 (惰性气体或金属蒸气)注入电离室中,藉由高 频放电、电弧放电使气态原子电离为等离子体, 可引出离子束流。 (一)考夫曼型离子源 (二)双等离子体型离子源
減速型高出力イオン銃・電子銃両用銃
三、离子束加工的应用




(一)蚀刻加工 离子蚀刻用于加工陀螺仪空气轴承和动压马达 上的沟槽,分辨率高,精度、重复一致性好。 离子束蚀刻应用的另一个方面是蚀刻高精度图 形,如集成电路、光电器件和光集成器件等征 电子学构件。 太阳能电池表面具有非反射纹理表面。 离子束蚀刻还应用于减薄材料,制作穿透式电 子显微镜试片。



主要缺点: 1.设备比较复杂、费用比较昂贵。 2.焊接前对接头加工、装配要求严格。 3.被焊工件尺寸和形状受到工作室的限制。 4.电子束易受电磁场的干扰,影响焊接质量。 5.电子束焊接时会产生X射线,对操作人员的健 康和安全会造成威胁。
焊接热影响小、变形小
高エネルギー加速器研究機構より加工依頼を 受けた超電導空洞用加速器に使用するポート付 ビームパイプ(R型、L型)。材質はNb(ニオ ブ)材です。
3 3
1
1— 工件; 2— 工件运动方向; 3— 电子束 2
(a)
(b)
(c)
(d)
电子束加工曲面、穿孔
适合于高频率、多孔加工
各种火焰筒上的冷却孔
(三)刻蚀
在微电子器件生产中,为了制造多层固体组件, 可利用电子束对陶瓷或半导体材料刻出许多微 细沟槽和孔来。 电子束刻蚀还可用于制版,在铜制印刷滚筒上 按色调深浅刻出许多大小与深浅不一的沟槽或 凹坑,直径为70-120μm,深度为5-40μm,小 坑代表浅色,大坑代表深色。
(三)离子束加工的特点

离子束工主要特点如下: 1.加工的精度非常高。 2.污染少。 3.加工应力、热变形等极小、加工精度高。 4.离子束加工设备费用高、成本贵、加工效 率低。
二、离子束工装置
离子束加工装置可分为:
离子源系统、真空系统、控制系统、电源系统
二、离子束工装置





(三)离子注入加工 离子注入加工是在工件表面直接注入离子, 可达10%~40%,注入深度可达1μm甚至更 深。 离子注入常用于半导体的制程上,例如用硼、 磷等离子注入半导体 离子注入可以改变金属表面的物力和化学性 能 离子注入可以提高材料的耐腐蚀性能 离子注入可以改善金属材料的耐磨性能 离子注入还可以提高金属材料的硬度 在光学方面还可以制造光波导,生成具有超 导性能的Nb3Sn导线
(二)电子束加工的特点



1.是一种精密微细的加工方法。 2.非接触式加工,不会产生应力和变形。 3.电子束的能量密度高,加工生产率很高。 4.加工过程可自动化。 5.在真空腔中进行,污染少,材料加工表面不氧 化。 6.电子束加工需要一整套专用设备和真空系统, 价格较贵。
二、电子束加工装置
离子镀膜零件
イオンビーム蒸着(IBAD)法
蒸着時にイオンビームを蒸着膜上に別々に制御しなが ら同時に照射することにより、膜質を向上させることが できます。 金属、ゴム、プラスチック、ガラス、セラミ ックス、布などの表面に強固に蒸着できます。
イオンビーム蒸着加工例
Au on Silkの浮世絵
カテーテル銀抗菌
第六章电子束和离子束加工
第六章电子束和离子束加工
第一节 第二节 电子束加工 离子束加工
第一节电子束加工
一、电子束加工的原理和特点 (一)电子束加工的原理


电子束加工是在真空条件下,利用聚焦后能量 密度极高的电子束,以极高的速度冲击到工件 表面极小面积上,在极端的时间内,其能量大 部分转变为热能,使被冲击部分的工件材料达 到几千摄氏度以上的高温,从而引起材料的局 部熔化和气化,被真空系统抽走。
相关文档
最新文档