导数在函数中的应用提高班

合集下载

教学设计1:3.3.3 导数的实际应用

教学设计1:3.3.3 导数的实际应用

3.3.3 导数的实际应用【教材分析】(一)三维目标(1)知识与技能使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用;(2)过程与方法提高将实际问题转化为数学问题的能力(3)情感、态度与价值观激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想。

(二)教学重点利用导数解决生活中的一些优化问题。

(三)教学难点利用导数解决生活中的一些优化问题。

(四)教学建议本节课解决最优化问题的关键是建立函数模型,因此需要先审清题意,明确常量与变量及其关系,再写出实际问题的函数关系式。

一般来说,对于实际问题还需要注明变量的取值范围。

【教学过程】一.创设情景生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题.通过前面的学习,我们知道,导数是求函数最大(小)值的有力工具.这一节,我们利用导数,解决一些生活中的优化问题.二.新课讲授导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题,主要有以下几个方面:1、与几何有关的最值问题;2、与物理学有关的最值问题;3、与利润及其成本有关的最值问题;4、效率最值问题。

解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系。

再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具.利用导数解决优化问题的基本思路:三.典例分析例1.海报版面尺寸的设计学校或班级举行活动,通常需要张贴海报进行宣传。

现让你设计一张如图1.4-1所示的竖向张贴的海报,要求版心面积为128dm 2,上、下两边各空2dm,左、右两边各空1dm 。

如何设计海报的尺寸,才能使四周空心面积最小?解:设版心的高为xdm ,则版心的宽为128xdm,此时四周空白面积为 128512()(4)(2)12828,0S x x x x x x =++-=++>。

《导数在函数中的应用——单调性》教学反思(精选15篇)

《导数在函数中的应用——单调性》教学反思(精选15篇)

《导数在函数中的应用——单调性》教学反思〔精选15篇〕篇1:《导数在函数中的应用——单调性》教学反思本节课是一节新授课,教材所提供的信息很简单,假如直接得出结论学生也能承受。

可学生只能进展简单的模拟应用,为了突出知识的发生过程,不把新授课上成习题课。

设计思路如下以便学生会考虑解决问题。

1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。

研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的`关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。

在此根底上提出问题:单调性和导数到底有怎样的关系?学生通过考虑、讨论、交流形成结论。

也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。

2、在结论得出后,继续引导学生考虑,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。

3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开场引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾照应。

4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。

虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深化。

5、数形结合:数形结合不是光口头去说,而是利用一切时机去施行,在例1的教学中,我让学生先纯熟法那么,再从形上分析^p ,加深印象,这样在后面紧接的高考题中〔没有给解析式〕,学生会迎刃而解。

为了培养学生的自主学习、自主考虑的才能,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探究新知。

让学生分组讨论,合作交流,共同讨论问题。

但是,真正做到以学生为中心,学生100%参与,表达三维目的,培养学习才能还是比拟困难。

高中数学导数的应用教案

高中数学导数的应用教案

高中数学导数的应用教案
教学目标:学生能够理解导数的概念,掌握导数在实际问题中的应用,并能够运用导数解决相关问题。

教学重点和难点:掌握导数在实际问题中的应用。

教学准备:教师准备课件、实例题目,学生准备笔记本、笔。

教学过程:
一、导入(10分钟)
通过一个生活实例引入导数的概念,让学生初步了解导数在实际中的意义。

二、概念讲解(15分钟)
1. 温故导数的定义和性质;
2. 导数的应用领域;
3. 导数在实际问题中的意义和作用。

三、实例分析(20分钟)
教师通过实例问题,引导学生运用导数进行问题求解,如最值问题、速度问题等。

四、练习(15分钟)
让学生在课堂上进行练习题目,加深对导数应用的理解。

五、总结(10分钟)
通过讨论和总结,让学生掌握导数在实际问题中的应用方法,并复习导数的相关概念。

六、作业布置(5分钟)
布置相关作业,让学生巩固所学知识。

教学反思:
通过实例讲解和练习,能够有效帮助学生掌握导数在实际问题中的应用方法。

同时,通过讨论和总结,可以使学生更深入地理解导数的概念和性质。

导数在研究函数的综合应用(三):高考数学一轮复习基础必刷题

导数在研究函数的综合应用(三):高考数学一轮复习基础必刷题

导数在研究函数的综合应用(三)------高考数学一轮复习基础必刷题姓名:___________��班级:___________��学号:___________一、单选题1.已知函数()f x 的导函数()f x '的图像如图所示,则()y f x =的图像可能为()A .B .C .D .2.已知函数()y f x =的导函数()y f x '=的图象如图所示,则函数()y f x =在区间(),a b 内的极小值点的个数为()A .1B .2C .3D .43.函数()ln 1f x x x =-+单调递增区间是()A .(0,+∞)B .(-∞,0)C .(0,1)D .(1,+∞)4.已知函数()286ln 1f x x x x =-++,则()f x 的极大值为()A .10B .6-C .7-D .05.函数2()2ln f x x x m x =-+在定义域上是增函数,则实数m 的取值范围为()A .12m ≥B .12m >C .12m ≤D .12m <6.若定义在R 上的函数()y f x =的图象如图所示,()f x '为函数()f x 的导函数,则不等式()()20x f x '+>的解集为().A .()()(),32,11,-∞-⋃--⋃+∞B .()()3,11,--⋃+∞C .()()3,10,1-- D .()()3,21,1--⋃-7.如果直线l 与两条曲线都相切,则称l 为这两条曲线的公切线,如果曲线1:ln C y x =和曲线()2:0x aC y x x-=>有且仅有两条公切线,那么常数a 的取值范围是()A .(),0-∞B .()0,1C .()1,e D .(),e +∞8.函数||()sin =-x f x e x 的图像大致是()A .B .C .D .二、填空题9.函数()43ln f x x x x=++的单调递减区间是______.10.若函数()32f x x bx cx d =+++的单调递减区间为()1,3-,则b c +=_________.11.若过定点(1,e)P 恰好可作曲线e (0)x y a a =>的两条切线,则实数a 的取值范围是__________.三、解答题12.已知函数f (x )=ax 2ex ﹣1(a ≠0).(1)求函数f (x )的单调区间;(2)已知a >0且x ∈[1,+∞),若函数f (x )没有零点,求a 的取值范围.13.确定下列函数的单调区间:(1)2y x x =-;(2)3y x x =-.14.已知1x =-,2x =是函数32()13x f x ax bx =-+++的两个极值点.(1)求()f x 的解析式;(2)记()()g x f x m =-,[24]x ∈-,,若函数()g x 有三个零点,求m 的取值范围.15.已知函数2()(1)x f x ax bx e -=++,其中e 为自然对数的底数.(1)若a =0,求函数()f x 的单调区间;(2)若1,3a b ==,证明x >0时,()f x <52ln x x x-+参考答案:1.D 【解析】【分析】根据导数图象,可知函数的单调性,并且结合()00f '=,即可排除选项.【详解】由导数图象可知,()0f x '≥,所以函数单调递增,故排除C ;并且()00f '=,故排除AB ;满足条件的只有D.故选:D 2.A 【解析】【分析】结合导函数图象确定正确选项.【详解】函数的极小值点0x 需满足左减右增,即()'00f x =且左侧()'0f x <,右侧()'0f x >,由图可知,一共有1个点符合.故选:A 3.C 【解析】【分析】求导,令导数大于0,解不等式可得.【详解】()ln 1f x x x =-+的定义域为(0,)+∞令11()10x f x x x-'=-=>,解得01x <<,所以()f x 的单调递增区间为(0,1).故选:C 4.B 【解析】【分析】利用导数可判断函数的单调性,进而可得函数的极大值.【详解】函数()f x 的定义域为()0,∞+,()()()213628x x f x x x x--'=-+=,令()0f x '=,解得1x =或3x =,故x ()0,11()1,33()3,+∞()f x '0>0=0<0=0>()f x 单调递增极大值单调递减极小值单调递增所以()f x 的极大值为()16f =-,故选:B.5.A 【解析】【分析】根据导数与单调性的关系即可求出.【详解】依题可知,()220mf x x x'=-+≥在()0,∞+上恒成立,即221122222m x x x ⎛⎫≥-=--+ ⎪⎝⎭在()0,∞+上恒成立,所以12m ≥.故选:A .6.A 【解析】利用()y f x =的图象如图判断()f x 单调性,进而判断()f x '在对应区间的正负,解不等式即可【详解】由图像可知:()f x '在(-3,-1),(1,+∞)为正,在(-∞,-3),(-1,1)为负.()()20x f x '+>可化为:20()0x f x +>>'⎧⎨⎩或20()0x f x +<<'⎧⎨⎩解得:-2<x <-1或x >1或x <-3故不等式的解集为:()()(),32,11,-∞-⋃--⋃+∞.故选:A 【点睛】导函数()f x '与原函数()f x 的单调性的关系:(1)()0f x '>⇒原函数在对应区间单增;()0f x '<⇒原函数在对应区间单减;(2)原函数在对应区间单增⇒()0f x '≥;原函数在对应区间单减⇒()0f x '≤.7.B 【解析】【分析】把曲线1C 和曲线2C)1ln 2x -=-有且仅有两解.记())()ln 2,0f x x x =->,利用导数研究单调性和极值,建立不等式20-<-<,即可解得.【详解】曲线1:ln C y x =上一点()11,ln A x x ,11y x '=,切线方程为:1111ln y x x x =-+.曲线()2:0x a C y x x -=>上一点22,1a B x x ⎛⎫- ⎪⎝⎭,22a y x '=,切线方程为:22221a a y x x x =+-.若直线l 与两条曲线都相切,则有2121212ln 11a x x a x x ⎧=⎪⎪⎨⎪-=-⎪⎩,消去2x)1ln 2x -=-因为曲线1:ln C y x =和曲线()2:0x aC y x x-=>有且仅有两条公切线,)1ln 2x -=-有且仅有两解.记())()ln 2,0f x x x =->,则())1ln 2f x x x '=-+=令()0f x '>,得1x >,所以()f x 在()1,+∞上单增;()0f x '<,得01x <<,所以()f x 在()0,1上单增.所以()()min 12f x f ==-.又有()0f x =,解得:0x =(舍)或2x e =.当0x +→,则()0f x →;当x →∞,则()f x →+∞;而0-≤)1ln 2x -=-有且仅有两解,只需20-<-<,解得:01a <<.故选:B 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值);(3)利用导数求参数的取值范围.8.B 【解析】【分析】由导数判断函数的单调性及指数的增长趋势即可判断.【详解】当0x >时,()e cos 1cos 0=->-≥'x f x x x ,∴()f x 在(0,)+∞上单调递增,当0x <时,()cos 1cos 0-=--<--≤'x f x e x x ,∴()f x 在(,0)-∞上单调递减,排除A 、D ;又由指数函数增长趋势,排除C.故选:B .9.()0,1【解析】求出导函数()'f x ,在(0,)+∞上解不等式()0f x '<可得()f x 的单调减区间.【详解】()()()'2+41431x x f x x x x-=-+=,其中0x >,令()'0f x <,则(0,1)x ∈,故函数()43ln f x x x x =++的单调减区间为(0,1),故答案为:(0,1).【点睛】一般地,若()f x 在区间(,)a b 上可导,我们用'()0f x <求,则()f x 在(,)a b 上的减区间,反之,若()f x 在区间(,)a b 上可导且为减函数,则()0f x '≤,注意求单调区间前先确定函数的定义域.10.12-【解析】求出()'f x ,由1-和3是()0f x '=的根可得.【详解】由题意2()32f x x bx c '=++,所以2320x bx c ++=的两根为1-和3,所以2133133bc ⎧-=-+⎪⎪⎨⎪=-⨯⎪⎩,所以3,9b c =-=-,12b c +=-.故答案为:12-.11.(1,)+∞【解析】【分析】求出函数的导数,设切点为(,)m n ,由导数的几何意义和两点的斜率公式可得e(2)e m m a-=-,设()(2)e x f x x =-,利用导数求出其单调区间和极值,再画出函数的图象,结合图象可得a 的取值范围【详解】由e (0)x y a a =>,得e x y a '=,切点为(,)m n ,则切线的斜率为e m a ,所以切线方程为e ()m y n a x m -=-,因为e m n a =,所以e e ()m m y a a x m -=-,因为点(1,e)P 在切线上,所以e e e (1)m m a a m -=-,得e(2)e m m a-=-,令()(2)e x f x x =-,则()(1)e x f x x '=-,当1x >时,()0f x '>,当1x <时,()0f x '<,所以()f x 在(1,)+∞上递增,在(,1)-∞上递减,所以()f x 在1x =处取得极小值e -,当x →-∞时,()0f x →,当x →+∞时,()f x →+∞,由题意可得直线ey a=-与函数()f x 的图象有两个交点,所以ee 0a-<-<,解得1a >,所以实数a 的取值范围为(1,)+∞,故答案为:(1,)+∞12.(1)当a >0时,f (x )的单调递增区间为(﹣∞,﹣2)和(0,+∞),单调递减区间为(﹣2,0);当a <0时,f (x )的单调递增区间为(﹣2,0),单调递减区间为(﹣∞,﹣2)和(0,+∞);(2)1e⎛⎫+∞ ⎪⎝⎭,.【解析】(1)先求导f '(x )=2axex +ax 2ex =axex (2+x ),再分a >0和a <0进行讨论即可得解;(2)根据(1)可知,当a >0时,f (x )在x ∈[1,+∞)上单调递增,则保证f (1)>0即可得解.【详解】(1)f '(x )=2axex +ax 2ex =axex (2+x ),令f '(x )=0,则x =0或x =﹣2,①若a >0,当x <﹣2时,f '(x )>0,f (x )单调递增;当﹣2<x <0时,f '(x )<0,f (x )单调递减;当x >0时,f '(x )>0,f (x )单调递增;②若a <0,当x <﹣2时,f '(x )<0,f (x )单调递减;当﹣2<x <0时,f '(x )>0,f (x )单调递增;当x >0时,f '(x )<0,f (x )单调递减;综上所述,当a >0时,f (x )的单调递增区间为(﹣∞,﹣2)和(0,+∞),单调递减区间为(﹣2,0);当a <0时,f (x )的单调递增区间为(﹣2,0),单调递减区间为(﹣∞,﹣2)和(0,+∞).(2)当a >0时,由(1)可知,f (x )在x ∈[1,+∞)上单调递增,若函数没有零点,则f (1)=ae ﹣1>0,解得1a e>,故a 的取值范围为1e ⎛⎫+∞ ⎪⎝⎭.【点睛】本题考查了利用导数研究函数单调性,考查了分类讨论思想,要求较高的计算能力,在高考中考压轴题,属于难题.13.(1)单调递增区间为1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭.(2)单调递增区间为⎛⎫ ⎪ ⎪⎝⎭,单调递减区间为,⎛-∞ ⎝⎭,⎫∞⎪⎪⎝⎭.【解析】【分析】(1)求得导函数,利用导数的正负即可求得单调区间.(2)求得导函数,利用导数的正负即可求得单调区间.(1)2y x x =-,12y x '∴=-,当0y '=时,12x =.当0y '>时,12x <,当0y '<时,12x >,∴2y x x =-的单调递增区间为1,2⎛⎫-∞ ⎪⎝⎭,单调递减区间为1,2⎛⎫+∞ ⎪⎝⎭.(2)3y x x =-,213y x '∴=-,当0y '=时,3x =.当0y '>时,33x -<<,当0y '<时,3x >,或3x <-∴3y x x =-的单调递增区间为33⎛⎫ ⎪ ⎪⎝⎭,单调递减区间为,3⎛-∞- ⎝⎭,3⎛⎫∞ ⎪ ⎪⎝⎭.14.(1)3211()2132f x x x x =-+++;(2)15,63⎛⎤- ⎥⎝⎦【解析】【分析】(1)根据极值点的定义,可知方程()0f x '=的两个解即为1x =-,2x =,代入即得结果;(2)根据题意,将方程()0g x =转化为()f x m =,则函数()y f x =与直线y m =在区间[2-,4]上有三个交点,进而求解m 的取值范围.【详解】解:(1)因为32()13x f x ax bx =-+++,所以2()2f x x ax b '=-++根据极值点定义,方程()0f x '=的两个根即为1x =-,2x =,2()2f x x ax b '=-++ ,代入1x =-,2x =,可得120440a b a b --+=⎧⎨-++=⎩,解之可得,122a b ⎧=⎪⎨⎪=⎩,故有3211()2132f x x x x =-+++;(2)根据题意,3211()2132g x x x x m =-+++-,[2x ∈-,4],根据题意,可得方程32112132m x x x =-+++在区间[2-,4]内有三个实数根,即函数3211()2132f x x x x =-+++与直线y m =在区间[2-,4]内有三个交点,又因为2()2f x x x '=-++,则令()0f x '>,解得12x -<<;令()0f x '<,解得2x >或1x <-,所以函数()f x 在[)2,1--,(]2,4上单调递减,在(1,2)-上单调递增;又因为1(1)6f -=-,()1323f =,5(2)3f -=,()1343f =-,函数图象如下所示:若使函数3211()2132f x x x x =-+++与直线y m =有三个交点,则需使1563m -< ,即15,63m ⎛⎤∈- ⎥⎝⎦.15.(1)见解析;(2)见解析【解析】【分析】(1)求得()f x 的导数,讨论0b =,0b >,0b <,解不等式可得所求单调区间;(2)分别求得()f x 的最大值,()52ln P x x x x =-+的最小值,比较即可得证.【详解】(1)若0a =,则'2(1)(1)()()x x x x be e bx bx b f x e e -+-+-==,(i )当0b =时,'1()0x f x e-=<,函数()f x 在R 上单调递减;(ii )当0b ≠时,'1[(1()xb x b f x e ---=,①若0b >,当1(,1)x b∈-∞-时,'()0f x >,函数()f x 单调递增;当1(1,)x b∈-+∞时,'()0f x <,函数()f x 单调递减.②若0b <,当1(,1)x b∈-∞-时,'()0f x <,函数()f x 单调递减;当1(1,)x b∈-+∞时,'()0f x >,函数()f x 单调递增.综上可知,当0b >时,函数()f x 的单调递增区间为1(,1)b -∞-,单调递减区间为1(1,)b-+∞;当0b =时,函数()f x 的单调递减区间为R ,无单调递增区间;当0b <时,函数()f x 的单调递增区间为1(1,)b -+∞,单调递减区间为1(,1)b -∞-;(2)若1,3,a b ==则2()(31)x f x x x e -=++,0x >,要证不等式()52ln f x x x x <-+,即证23152ln x x x x x x e++<-+,记()52ln P x x x x =-+,则'1()2ln 1ln P x x x x x=-++⋅=-+,故当(0,)x e ∈时,'()0P x <,函数()P x 单调递减,当(+)x e ∈∞,时,'()0P x >,函数()P x 单调递增,所以()()52ln 5P x p e e e e e ≥=-+=-;又22'2(23)(31)2(2)(1)()()x x x x x x e x x e x x x x f x e e e +-++--++-===-,故(0,1)x ∈时,'()0f x >,函数()f x 单调递增;(1,)x ∈+∞时,'()0f x <,函数()f x 单调递减,所以0x >时,5()(1)f x f e ≤=因为 2.7e ≈,所以55(5)5()0e e e e --=-+>,所以55e e->,所以0x >时,()52ln f x x x x <-+.【点睛】本题考查利用导数求函数单调性及最值,考查了学生转化的问题的能力及计算能力,是中档题.。

变上限定积分导数的应用

变上限定积分导数的应用

变上限定积分导数的应用积分和导数是微积分中的两个重要概念,它们在数学和物理学等领域都有着广泛的应用。

在实际问题中,有时会遇到需要求变上限定积分导数的情况,这种情况涉及到对导数和积分的组合运用,需要进行适当的推导和计算。

本文将围绕着变上限定积分导数的应用展开讨论,希望能够让读者更加深入地理解这一概念及其应用。

一、变上限定积分导数的定义在介绍变上限定积分导数的应用之前,我们需要首先了解一下变上限定积分的概念。

变上限定积分是指积分的上限不是一个常数,而是一个关于变量的函数。

其一般的形式可以表示为:\[F(x) = \int_{a(x)}^{b(x)} f(t) dt\]a(x)和b(x)是定义在区间[a,b]上的两个函数,它们的值随着x的变化而变化,f(t)是积分函数。

那么,当我们要求解这种形式的积分导数时,就需要运用变上限定积分导数的概念了。

对于上述形式的变上限定积分,我们可以定义其导数为:这就是所谓的变上限定积分导数。

要计算这个导数,就需要运用导数的定义和积分的性质,通过适当的推导和计算,得到最终的结果。

下面我们将通过一些具体的例子来展示变上限定积分导数的应用。

假设我们要求解如下形式的变上限定积分的导数:我们需要将积分的上限和下限分别视为常数,然后对积分进行求导。

具体步骤如下:\[F'(x) = 2x^2 - x^2 = x^2\]该变上限定积分的导数为x^2。

通过上述两个示例,我们可以看到,对于变上限定积分导数的求解,需要运用对积分的求导和常见函数的导数计算。

虽然看上去比较复杂,但只要按部就班地进行计算,是可以得到最终结果的。

变上限定积分导数在实际问题中有着广泛的应用,特别是在物理学、工程学和经济学等领域。

以下是一些具体的应用领域:1. 物理学中的运动学问题:在描述物体的运动过程中,经常会遇到对象速度、加速度、位移等随时间变化的情况,这时就会涉及到变上限定积分导数的计算。

通过求取相应的变上限定积分导数,可以得到物体在不同时间点的速度、加速度等信息,从而更好地描述其运动规律。

导数在求值(极值、最值)中的应用

导数在求值(极值、最值)中的应用

补充习题1.1.11、判定下列函数奇偶性?A .)12sin()(++=x x x fB .)1ln()(2++=x x x f C .xe x xf x-=)( D .xxx x f sin 1)(2⋅-=2、判断下列说法是否正确(1)复合函数y=f[g(x)]的定义域即为u= g(x) 的定义域.(2)若y=y(u)为偶函数,u=u(x)为奇函数,则y=y[u(x)] 为偶函数. (3) 设⎩⎨⎧<+≥=010)(x x x xx f ,由于y=x 和y=x+1都是初等函数,所以f(x) 是初等函数.(4)设y=arcsinu,u=2x +2,这两个函数可以复合成一个函数y=arcsin(2x +2). 3、下列函数的定义域:(1)211xx y --=; (2)⎪⎩⎪⎨⎧=≠=.0,0,0,1sin x x xy 4、设)(x f y =的定义域为[]2,1,求)ln 1(x f -的定义域.5、指出下列初等函数由哪些基本初等函数复合而成?(1)xey 12sin=; (2)))1ln(arccos(2-=x y . (3)y=)35(si n 2+x6、将下列函数复合成一个函数(1)y=sinu,u=v ,v=2x-1 (2)y=lgu,u=1+v,v=2x补充习题1.1.21、.用铁皮做一个容积为的圆柱形罐头筒,试将它的全面积表示成底半径的函数,并确定此函数的定义域.2、某厂生产产品1000吨,定价为130元/吨.当售出量不超过700吨时,按原定价出售;超过700吨的部分按原价的九折出售.试将销售收入表示成销售量的函数.3、某手表厂生产一只手表的可变成本为15元,每天的固定成本为2000元。

如果每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?补充习题1.2.11、下列函数f(x)在x 的何种趋势时是无穷小量?在x 的何种趋势时f(x)是无穷大量? (1)f(x)=12-+x x ; (2) f(x)=lgx (3) f(x)=222xx +2、利用无穷小量的性质,求下列函数的极限 (1)xx x 1sinlim 2→ (2)x xx arctan 1lim∞→(3)11lim1-+→x x x (4)xx x x 1cos)2(lim 2+→补充习题 1.2.2.1求下列函数的极限1.)1311(lim 31xxx ---→ 2. 1392lim323++-∞→x x x x3. 231lim 221+--→x x x x 4. )1(lim 22+-+∞→x x x x5 xxx 3s i n lim 2x +→ 6. xx x 3sin )21ln(lim+→7 . xe xx 3tan 1lim-→ 8. xx arcsin 13-1limx -→补充习题 1.2.2.2求下列函数的极限1.xx x x sin 2cos 1lim-→ 2. xx x 1tanlim ∞→3. 3sinlim22xx x → 4 xx xx )3lim +∞→(5. xx x x )11lim +-∞→(6. ]ln )2[ln(lim n n n n -+∞→补充习题 1.2.2.31、求函数321)(2--+=x x x x f 的连续区间,并求极限)(lim 0x f x →,)(lim 3x f x →及)(lim 3x f x -→。

2024届河北省保定市曲阳县第一高级中学高三(高补班)下学期期末数学试题试卷

2024届河北省保定市曲阳县第一高级中学高三(高补班)下学期期末数学试题试卷

2024届河北省保定市曲阳县第一高级中学高三(高补班)下学期期末数学试题试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭2.在ABC 中,D 为BC 边上的中点,且||1,|2,120AB AC BAC ==∠=︒,则||=AD ( )A .2B .12C .34D .43.关于函数22tan ()cos 21tan xf x x x=++,下列说法正确的是( )A .函数()f x 的定义域为RB .函数()f x 一个递增区间为3,88ππ⎡⎤-⎢⎥⎣⎦ C .函数()f x 的图像关于直线8x π=对称D .将函数2y x =图像向左平移8π个单位可得函数()y f x =的图像 4.函数()231f x x x =-+在[]2,1-上的最大值和最小值分别为( ) A .23,-2 B .23-,-9 C .-2,-9 D .2,-25.设f (x )是定义在R 上的偶函数,且在(0,+∞)单调递减,则( )A .0.30.43(log 0.3)(2)(2)f f f -->>B .0.40.33(log 0.3)(2)(2)f f f -->>C .0.30.43(2)(2)(log 0.3)f f f -->> D .0.40.33(2)(2)(log 0.3)f f f -->>6.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( )A .3B .2(51)-C .45D .47.已知点()2,0A 、()0,2B -.若点P 在函数y x =的图象上,则使得PAB △的面积为2的点P 的个数为( )A .1B .2C .3D .48.已知直线2:0l x m y +=与直线:0n x y m ++=则“//l n ”是“1m =”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件9.对于函数()f x ,定义满足()00f x x =的实数0x 为()f x 的不动点,设()log a f x x =,其中0a >且1a ≠,若()f x 有且仅有一个不动点,则a 的取值范围是( ) A .01a <<或a e =B .1a e <<C .01a <<或1e a e =D .01a <<10.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?根据上述问题的已知条件,若该女子共织布3531尺,则这位女子织布的天数是( ) A .2B .3C .4D .111.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4±B .4C .2±D .2 12.定义在上的函数满足,且为奇函数,则的图象可能是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

【教案】校级公开课--导数的应用(教案)

【教案】校级公开课--导数的应用(教案)

《导数的应用》教学设计开课班级:高二(1)开课教师:教学设计背景本节是高中数学人教A版选修2-2第一章“导数在研究函数中的应用”内容基础上,进一步拓展延伸应用的内容。

导数除了在函数的单调性及函数的极值、最值等方面应用外,还可以应用于探究函数的零点或方程的解问题,以及应用于不等式证明问题,既灵活多变,又具有一定的综合能力要求,基于教材和学生知能背景及前期教学状况,相应作此导数的应用教学设计,以帮助学生进一步树立联系的观点利用导数处理问题的意识.学情分析学生前期已经学习导数在研究函数中的应用等内容,体会了导数的思想,初步感受了导数应用价值,初步具备了利用导数处理问题的意识和能力。

教学目标通过变式教学过程,用联系的观点,进一步探究导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用,培养运用函数与方程、化归与转化、数形结合及分类讨论等数学思想方法解决问题的能力。

培养学生综合思考问题的能力,以及克服困难解决问题的信心与毅力。

教学重点、难点重点应用导数导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用难点利用联系的观点,运用函数与方程、化归与转化、数形结合及分类讨论等数学思想解决问题教法变式教学、学生探究、引导讲授教学用具:多媒体教学过程一、复习回顾知识点一:导数的几何意义函数y=f (x) 在点x0导数的几何意义,就是曲线y=f (x) 在点P(x, f(x))处的切线的斜率,曲线y=f (x) 在P (x0, f (x))处的切线方程为y-y=f′(x) (x-x)知识点二:函数的单调性当函数y=f(x)在某个区间(),a b 内可导如果'()0f x >,则函数y=f(x)在这个区间上为增函数;如果'()0f x <,则函数y=f(x)在这个区间上为减函数.知识点三:函数的极值对于可导函数f(x)判断其极值的方法为如果在0x 附近的左侧'()0f x >,右侧'()0f x <,那么,0()f x 是极大值;如果在0x 附近的左侧'()0f x <,右侧'()0f x >,那么,0()f x 是极小值.知识点四:函数的最值闭区间[a ,b]上连续函数f(x)必有最大值与最小值,其求法为:○1求函数f(x)在(a ,b)内的极值;○2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年春季高2016级提高班(教、学案)高二数学备课组班级: 姓名: 课题:导数在函数中的应用函数的单调性与导数例1 (1)已知函数f (x )=ax +ln x ,则当a <0时,f (x )的单调增区间是________,单调减区间是______.[解析] ∵f ′(x )=a +1x (x >0)=a (x +1a )x ,∴当x ≥-1a 时f ′(x )≤0,当0<x <-1a 时f ′(x )>0,∴f (x )的单调增区间为(0,-1a ),单调减区间为(-1a,+∞)(2)已知函数f (x )=ln x ,g (x )=12ax 2+2x ,a ≠0.若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a的取值范围.[解] h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2.因为h (x )在[1,4]上单调递减,所以x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x恒成立,所以a ≥G (x )max ,而G (x )=(1x -1)2-1.因为x ∈[1,4],所以1x ∈[14,1],所以G (x )max =-716(此时x =4), 所以a ≥-716.当a =-716时,h ′(x )=1x +716x -2=16+7x 2-32x 16x=(7x -4)(x -4)16x.因为x ∈[1,4],所以h ′(x )=(7x -4)(x -4)16x≤0,即h (x )在[1,4]上为减函数.故实数a 的取值范围是[-716,+∞).跟踪训练:1. [2014·课标全国卷Ⅱ]若函数f (x )=kx -ln x 在区间(1,+∞)单调递增,则k 的取值范围是( )A. (-∞,-2]B. (-∞,-1]C. [2,+∞)D. [1,+∞)解析:因为f (x )=kx -ln x ,所以f ′(x )=k -1x .因为f (x )在区间(1,+∞)上单调递增,所以当x >1时,f ′(x )=k -1x ≥0恒成立,即k ≥1x 在区间(1,+∞)上恒成立.因为x >1,所以0<1x <1,所以k ≥1.故选D.2. [2015·苏州模拟]已知a ∈R ,函数f (x )=(-x 2+ax )e x ,x ∈R ,e 为自然对数的底数. (1)当a =2时,求函数f (x )的单调递增区间;(2)函数f (x )是否为R 上的减函数,若是,求出a 的取值范围;若不是,请说明理由. 解:(1)当a =2时,f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x < 2. 所以函数f (x )的单调递增区间是(-2,2). (2)f (x )不是R 上的减函数. 若函数f (x )在R 上单调递减, 则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立. 因为e x >0,所以x 2-(a -2)x -a ≥0对x ∈R 都成立. 所以Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能是R 上的减函数. 二 函数的极值与导数例2 [2014·重庆高考]已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间与极值.[解] (1)对f (x )求导得f ′(x )=14-a x 2-1x ,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,解得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32,则f ′(x )=x 2-4x -54x 2,令f ′(x )=0,解得x =-1或x =5.因x =-1不在f (x )的定义域(0,+∞)内,故舍去.当x ∈(0,5)时,f ′(x )<0,故f (x )在(0,5)内为减函数;当x ∈(5,+∞)时,f ′(x )>0,故f (x )在(5,+∞)内为增函数.由此知函数f (x )在x =5时取得极小值f (5)=-ln5,无极大值.跟踪训练3. [2013·课标全国卷Ⅰ]已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 解:(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4.故b =4,a +b =8. 从而a =4,b =4.(2)由(1)知f (x )=4e x (x +1)-x 2-4x , f ′(x )=4e x(x +2)-2x -4=4(x +2)(e x-12).令f ′(x )=0,得x =-ln2或x =-2.从而当x ∈(-∞,-2),(-ln2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln2,+∞)上单调递增, 在(-2,-ln2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).三 函数的最值与导数例3 [2014·安徽高考]设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0. (1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值. [解] (1)f (x )的定义域为(-∞,+∞),f ′(x )=1+a -2x -3x 2. 令f ′(x )=0,得x 1=-1-4+3a 3,x 2=-1+4+3a 3,x 1<x 2,所以f ′(x )=-3(x -x 1)(x -x 2). 当x <x 1或x >x 2时,f ′(x )<0; 当x 1<x <x 2时,f ′(x )>0.故f (x )在(-∞,x 1),(x 2,+∞)内单调递减,在(x 1,x 2)内单调递增.其中x 1=-1-4+3a 3,x 2=-1+4+3a3.(2)因为a >0,所以x 1<0,x 2>0. ①当a ≥4时,x 2≥1.由(1)知,f (x )在[0,1]上单调递增.所以f (x )在x =0和x =1处分别取得最小值和最大值. ②当0<a <4时,x 2<1.由(1)知,f (x )在[0,x 2]上单调递增,在[x 2,1]上单调递减. 所以f (x )在x =x 2=-1+4+3a3处取得最大值.又f (0)=1,f (1)=a ,所以当0<a <1时,f (x )在x =1处取得最小值;当a =1时,f (x )在x =0处和x =1处同时取得最小值; 当1<a <4时,f (x )在x =0处取得最小值. 跟踪训练4.已知函数f (x )=(x -k )e x . (1)求f (x )的单调区间;(2)求f (x )在区间[0,1]上的最小值. 解:(1)由题意知f ′(x )=(x -k +1)e x . 令f ′(x )=0,得x =k -1.f (x )与f ′(x )的情况如下:所以,f (x )的单调递减区间是(-∞,k -1);单调递增区间是(k -1,+∞). (2)当k -1≤0,即k ≤1时,f (x )在[0,1]上单调递增,所以f (x )在区间[0,1]上的最小值为f (0)=-k ; 当0<k -1<1,即1 <k <2时,f (x )在[0,k -1)上单调递减,在(k -1,1]上单调递增, 所以f (x )在区间[0,1]上的最小值为f (k -1)=-e k -1;当k -1≥1,即k ≥2时,f (x )在[0,1]上单调递减, 所以f (x )在区间[0,1]上的最小值为f (1)=(1-k )e. 综上,当k ≤1时,f (x )在[0,1]上的最小值为f (0)=-k ; 当1<k <2时,f (x )在[0,1]上的最小值为f (k -1)=-e k -1;当k ≥2时,f (x )在[0,1]上的最小值为f (1)=(1-k )e. 分类讨论思想在导数中的应用[2014·山东高考]设函数f (x )=a ln x +x -1x +1,其中a 为常数.(1)若a =0,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)讨论函数f (x )的单调性.[解] (1)由题意知a =0时,f (x )=x -1x +1,x ∈(0,+∞),此时f ′(x )=2(x +1)2.可得f ′(1)=12,又f (1)=0,所以曲线y =f (x )在(1,f (1))处的切线方程为x -2y -1=0. (2)函数f (x )的定义域为(0,+∞). f ′(x )=a x +2(x +1)2=ax 2+(2a +2)x +a x (x +1)2.当a ≥0时,f ′(x )>0,函数f (x )在(0,+∞)上单调递增, 当a <0时,令g (x )=ax 2+(2a +2)x +a , Δ=(2a +2)2-4a 2=4(2a +1). ①当a =-12时,Δ=0,f ′(x )=-12(x -1)2x (x +1)2≤0,函数f (x )在(0,+∞)上单调递减.②当a <-12时,Δ<0,g (x )<0,f ′(x )<0,函数f (x )在(0,+∞)上单调递减.③当-12<a <0时,Δ>0,设x 1,x 2(x 1<x 2)是函数g (x )的两个零点, 则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a.由于x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减, x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增, x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a , ⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减,在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.跟踪训练[2015·揭阳模拟]已知函数f (x )=ln x ,g (x )=f (x )+ax 2+bx ,函数g (x )的图象在点(1,g (1))处的切线平行于x 轴.(1)确定a 与b 的关系; (2)试讨论函数g (x )的单调性.解:(1)依题意得g (x )=ln x +ax 2+bx ,则g ′(x )=1x +2ax +b ,由函数g (x )的图象在点(1,g (1))处的切线平行于x 轴,得g ′(1)=1+2a +b =0,∴b =-2a -1.(2)由(1)得g ′(x )=2ax 2-(2a +1)x +1x =(2ax -1)(x -1)x .∵函数g (x )的定义域为(0,+∞),∴当a ≤0时,2ax -1<0在(0,+∞)上恒成立,由g ′(x )>0得0<x <1,由g ′(x )<0得x >1,即函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当a >0时,令g ′(x )=0得x =1或x =12a ,若12a <1,即a >12时,由g ′(x )>0得x >1或0<x <12a, 由g ′(x )<0得12a <x <1,即函数g (x )在⎝⎛⎭⎫0,12a ,(1,+∞)上单调递增,在⎝⎛⎭⎫12a ,1上是单调递减;若12a >1,即0<a <12时,由g ′(x )>0得x >12a 或0<x <1,由g ′(x )<0得1<x <12a ,即函数g (x )在(0,1),⎝⎛⎭⎫12a ,+∞上单调递增,在⎝⎛⎭⎫1,12a 上单调递减; 若12a =1,即a =12时,在(0,+∞)上恒有g ′(x )≥0,即函数g (x )在(0,+∞)上单调递增. 综上可知,当a ≤0时,函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减;当0<a <12时,函数g (x )在(0,1)单调递增,在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增;当a =12时,函数g (x )在(0,+∞)上单调递增;当a >12时,函数g (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,1上单调递减,在(1,+∞)上单调递增.。

相关文档
最新文档