海南省2014年初中毕业生学业水平考试数学试题(含答案)

合集下载

2014年海南省中考数学试卷及答案

2014年海南省中考数学试卷及答案

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前海南省2014年初中毕业生学业水平考试数学 ...................................................................... 1 海南省2014年初中毕业生学业水平考试数学答案解析 (4)海南省2014年初中毕业生学业水平考试数学本试卷满分120分,考试时间100分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.5的相反数是( ) A .5B .5-C.15D .15- 2.方程21x +=的解是( ) A .3B .3-C .1D .1-3.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元.数据27100000000用科学记数法表示为( ) A .827110⨯ B .92.7110⨯ C .102.7110⨯D .112.7110⨯4.一组数据:2-,1,1,0,2,1,则这组数据的众数是( ) A .2-B .0C .1D .25.如右下图所示的几何体的俯视图是( )ABCD6.在一个直角三角形中,有一个锐角等于60,则另一个锐角的度数是( )A .120B .90C .60D .307.如图,已知AB CD ∥,与1∠是同位角的角是( )A .2∠B .3∠C .4∠D .5∠8.如图,ABC △与DFE △关于y 轴对称,已知(4,6)A -,(6,2)B -,(2,1)E ,则点D 的坐标为( )A .(4,6)-B .(4,6)C .(2,1)-D .(6,2) 9.下列式子从左到右变形是因式分解的是( )A .2421(4)21a a a a +-=+- B .2421(3)(7)a a a a +-=-+ C .2(3)(7)421a a a a -+=+-D .22421(2)25a a a +-=+-10.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x ,那么x 满足的方程是( )A .2100(1)81x +=B .2100(1)81x -=毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)C .2100(1%)81x -=D .210081x =11.一个圆锥的侧面展开图是半径为8cm ,圆心角为120的扇形,则此圆锥底面圆的半径为( )A .8cm 3B .16cm 3C .3cmD .4cm 312.一个不透明的袋子中有3个分别标有数字3,1,2-的球,这些球除所标的数字不同外其他都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是 ( )A .12B .13C .23D .1613.将抛物线2y x =平移得到抛物线2(2)y x =+,则这个平移过程正确的是 ( )A .向左平移2个单位B .向右平移2个单位C .向上平移2个单位D .向下平移2个单位14.已知120k k >>,则函数1y k x =和2k y x=的图象在同一平面直角坐标系中大致是()ABCD第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题4分,共16分.请把答案填在题中的横线上) 15.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款 元. 16.函数y ,自变量x 的取值范围是 . 17.如图,AD 是ABC △的高,AE 是ABC △的外接圆O 的直径,且AB =,5AC =,4AD =,则O 的直径AE = .18.如图,COD △是AOB △绕点O 顺时针旋转40后得到的图形,若点C 恰好落在AB 上,且AOD ∠的度数为90,则B ∠的度数是 .三、解答题(本大题共6小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分) 计算:(1)22112()82(1)3-⨯-+⨯--.(2)解不等式2723x x--≤,并求出它的正整数解.20.(本小题满分8分)海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:旅游产品喜爱情况条形统计图旅游产品喜爱情况扇形统计图数学试卷 第5页(共16页) 数学试卷 第6页(共16页)根据以上信息完成下列问题: (1)请将条形统计图补充完整;(2)随机调查的游客有 人;在扇形统计图中,A 部分所占的圆心角是 度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有 人. 21.(本小题满分8分)海南五月瓜果飘香.某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?22.(本小题满分9分)如图,一艘核潜艇在海面DF 下600米A 点处测得俯角为30正前方的海底C 点处有黑匣子,继续在同一深度直线航行1464米到B 点处测得正前方C 点处的俯角为45.求海底C 点处距离海面DF 的深度(结果精确到个位,参考数据:1.4141.7322.236≈).23.(本小题满分13分)如图,正方形ABCD 的对角线相交于点O ,CAB ∠的平分线分别交BD ,BC 于点E ,F ,作BH AF ⊥于点H ,分别交AC ,CD 于点G ,P ,连接GE ,GF .(1)求证:OAE OBG △≌△;(2)试问:四边形BFGE 是否为菱形?若是,请证明;若不是,请说明理由; (3)试求:PGAE的值(结果保留根号).24.(本小题满分14分)如图,对称轴为直线2x =的抛物线经过(1,0)A -,(0,5)C 两点,与x 轴另一交点为B .已知0,1M (),,0)E a (,(1,0)F a +,点P 是第一象限内的抛物线上的动点.备用图(1)求此抛物线的解析式;(2)当1a =时,求四边形MEFP 面积的最大值,并求此时点P 的坐标;(3)若PCM △是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。

2010-2014海南中考数学几何大题(含答案)

2010-2014海南中考数学几何大题(含答案)

23.(13分)(2014•海南)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC 于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).解答:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°.∵BH⊥AF,∴∠AHG=90°,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠GAH=∠OBG,即∠OAE=∠OBG.∴在△OAE与△OBG中,,∴△OAE≌△OBG(ASA);(2)四边形BFGE是菱形,理由如下:∵在△AHG与△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB.∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE ∴EB=FB,∴EG=EB=FB=FG,∴四边形BFGE是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.∵四边形BFGE是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b)∴OG=OE=a﹣b,在Rt△GOE中,由勾股定理可得:2(a﹣b)2=b2,求得 a=b∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b∵PC∥AB,∴△CGP∽△AGB,∴===﹣1,由(1)△OAE≌△OBG得 AE=GB,∴==﹣1,即=﹣1.23.2013(13分)(1)如图(1)点P是正方形ABCD的边CD上一点(点P与点C,D不重合),点E在BC的延长线上,且CE=CP,连接BP,DE.求证:△BCP≌△DCE;如图(2)直线EP交AD于F,连接BF,FC.点G是FC与BP的交点.①若CD=2PC时,求证:BP⊥CF;②若CD=n•PC(n是大于1的实数)时,记△BPF的面积为S1,△DPE的面积为S2.求证:S1=(n+1)S2.证明:(1)在△BCP与△DCE中,,∴△BCP≌△DCE(SAS).(2)①∵CP=CE,∠PCE=90°,∴∠CPE=45°,∴∠FPD=∠CPE=45°,∴∠PFD=45°,∴FD=DP.∵CD=2PC,∴DP=CP,∴FD=CP.在△BCP与△CDF中,,∴△BCP≌△CDF(SAS).∴∠FCD=∠CBP,∵∠CBP+∠BPC=90°,∴∠FCD+∠BPC=90°,∴∠PGC=90°,即BP⊥CF.②证法一:设CP=CE=1,则BC=CD=n,DP=CD﹣CP=n﹣1.易知△FDP为等腰直角三角形,∴FD=DP=n﹣1.S1=S梯形BCDF﹣S△BCP﹣S△FDP=(BC+FD)•CD﹣BC•CP﹣FD•DP=(n+n﹣1)•n﹣n×1﹣(n﹣1)2=(n2﹣1);S2=DP•CE=(n﹣1)×1=(n﹣1).∵n2﹣1=(n+1)(n﹣1),∴S1=(n+1)S2.证法二:∵AD∥BE,∴△FDP∽△ECP,∴=,∴S1=S△BEF.如下图所示,连接BD.∵BC:CE=CD:CP=n,∴S△DCE=S△BED,∵DP:CP=n﹣1,∴S2=S△DCE,∴S2=S△BED.∵AD∥BE,∴S△BEF=S△BED,∴S1=(n+1)S2.23.(11分)(2012•海南)如图(1),在矩形ABCD中,把∠B、∠D分别翻折,使点B、D恰好落在对角线AC上的点E、F处,折痕分别为CM、AN,(1)求证:△ADN≌△CBM;(2)请连接MF、NE,证明四边形MFNE是平行四边形;四边形MFNE是菱形吗?请说明理由;(3)点P、Q是矩形的边CD、AB上的两点,连接PQ、CQ、MN,如图(2)所示,若PQ=CQ,PQ∥MN,且AB=4cm,BC=3cm,求PC的长度.解答:(1)证明:由折叠的性质得出∠DAN=∠NAC,∠BCM=∠ACM,∵AD∥BC,∴∠DAC=∠BCA,∴∠DAN=∠BCM,在Rt△ADN和Rt△CBM中,∵,∴△ADN≌△CBM,(2)解:连接NE、MF,∵△ADN≌△CBM,∴NF=ME,∵∠NFE=∠MEF,∴NF∥ME,∴四边形MFNE是平行四边形,∵MN与EF不垂直,∴四边形MFNE不是菱形;(3)解:设AC与MN的交点为O,EF=x,作QG⊥PC于G点,∵AB=4,BC=3,∴AC=5,∵AF=CE=BC=3,∴2AF﹣EF=AC,即6﹣x=5,解得x=1,∴EF=1,∴CF=2,在Rt△CFN中,tan∠DCA===,解得NF=,∵OE=OF=EF=,∴在Rt△NFO中,ON2=OF2+NF2,∴ON=,∴MN=2ON=,∵PQ∥MN,PM∥MQ,∴四边形MQPN是平行四边形,∴MN=PQ=,∵PQ=CQ,∴△PQC是等腰三角形,∴PG=CG,在Rt△QPG中,PG2=PQ2﹣QG2,即PG==1,∴PC=2PG=2.23、(2011•海南)如图,在菱形ABCD中,∠A=60°,点P、Q分别在边AB、BC上,且AP=BQ.(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).分析:(1)由四边形ABCD是菱形,可证得AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,又由∠A=60°,易得△ABD是等边三角形,然后由SAS即可证得△BDQ≌△ADP;(2)首先过点Q作QE⊥AB,交AB的延长线于E,然后由三角函数的性质,即可求得PE与QE的长,又由勾股定理,即可求得PQ的长,则可求得cos∠BPQ的值.解:(1)∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC,AD∥BC,∵∠A=60°,∴△ABD是等边三角形,∠ABC=120°,∴AD=BD,∠CBD=∠A=60°,∵AP=BQ,∴△BDQ≌△ADP(SAS);(2)过点Q作QE⊥AB,交AB的延长线于E,∵△BDQ≌△ADP,∴BQ=AP=2,∵AD∥BC,∴∠QBE=60°,∴QE=QB•sin60°=2×=,BE=QB•cos60°=2×=1,∵AB=AD=3,∴PB=AB﹣AP=3﹣2=1,∴PE=PB+BE=2,∴在Rt△PQE中,PQ==,∴cos∠BPQ===.23. (2011•海南11分)如图10,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H .(1)证明:△ABG ≌△ADE ; (2)试猜想∠BHD 的度数,并说明理由;(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积为1S ,△ADG的面积为2S ,判断1S 与2S 的大小关系,并给予证明.(1)证明:在正方形ABCD 和正方形AEFG 中∠GAE =∠BAD =90°∠GAE+∠EAB =∠BAD+EAB 即∠GAB =∠EAD 又AG =A E AB =AD ∴△ABG ≌△ADE (2)我猜想∠BHD =90°理由如下:∵△ABG ≌△ADE ∴∠1=∠2 ……5分 而∠3=∠4 ∴∠1+∠3=∠2+∠4∵∠2+∠4=90 ∠1+∠3=90° ……6分 ∴∠BHD =90° ……7分(3)证法一:当正方形ABCD 绕点A 逆时针旋转0°<∠BAE <180°时,S 1和S 2总保持相等. ……8分 证明如下:由于0°<∠BAE <180°因此分三种情况: ①当0°<∠BAE <90°时 (如图10)C F GEDBA图10H过点B 作BM ⊥直线AE 于点M , 过点D 作DN ⊥直线AG 于点N . ∵∠MAN =∠BAD =90° ∴∠MAB =∠NAD又∠AMB =∠AND =90° AB =AD ∴△AMB ≌△AND ∴BM =DN 又AE =AG∴DN AG 21BM AE 21⋅=⋅ ∴21S S = ……9分②当∠BAE =90°时 如图10(a )∵AE =AG ∠BAE =∠DAG =90°AB =AD ∴△ABE ≌△ADG∴21S S = ……10分③当90°<∠BAE <180°时 如图10(b )和①一样;同理可证21S S = 综上所述,在(3)的条件下,总有21S S =.……11分(注:可编辑下载,若有不当之处,请指正,谢谢!)A BCDEF G图10aA BCDEFG图10(b )CAB DEGFMN图10H 1324。

2014年海南省中考数学科试题及参考答案(山寨版)-推荐下载

2014年海南省中考数学科试题及参考答案(山寨版)-推荐下载

D
1
D.
6
4
D. ㎝
3
元.
. 的外接圆⊙O 的直径,且

18.如图 5,△COD 是△AOB 绕点 O 顺时针旋转 40°后得到的图形,若点 C 恰好落在 AB
上,且∠AOD 的度数为 90°,则∠B 的度数是
三、解答题(本大题满分 62 分)
19.(满分 10 分)计算:
(1)12 ( 1) 8 22 (1)2 3
海南省 2014 年初中毕业生学业水平考试
数学科试题
一、选择题(本大题满分 42 分,每小题 3 分)
(考试时间:100 分钟 满分:120 分)
在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正
确的答案的字母代号按要求用 2B 铅笔涂黑.
1.5 的相反数是
A.5
2.方程 x+2=1 的解是
每千克 26 元和 22 元.李叔叔购买这两种水果共 30 千克,共花了 708 元.请问李叔叔购
买的这两种水果各多少千克?
22.(满分 9 分)如图 6,一艘核潜艇在海面 DF 下 600 米的 A 点处测得俯角为 30°正前方的
海底 C 点处有黑匣子,继续在同一深度直线航行 1464 米到 B 点处测得正前方 C 点处的俯
D
A 30°
C
E
海面
图6
A
B 45°
B
A:椰雕
B:黎锦
C:贝雕
D:海水珍珠
E:其它
人.
C
F
度;
23.(满分 13 分)如图 7,正方形 ABCD 的对角线相交于点 O,∠CAB 的平分线分别交 BD、 BC
于点 E、F,作 BH⊥AF 于点 H,分别交 AC、CD 于点 G、P,连结 GE、GF. (1)求证:△OAE≌△OBG. (2)试问:四边形 BFGE 是否为菱形?若是,请证明;若不是,请说明理由.

2014年海南省中考数学试卷(含答案和详细解析

2014年海南省中考数学试卷(含答案和详细解析

2014年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分) 1.5的相反数是( ) A .B . ﹣5C .±5 D .﹣2.方程x+2=1的解是( ) A . 3 B . ﹣3 C . 1 D . ﹣13.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为( ) A . 271×108 B . 2.71×109 C . 2.71×1010 D . 2.71×10114.一组数据:﹣2,1,1,0,2,1,则这组数据的众数是( ) A . ﹣2 B . 0 C . 1 D . 25.如图几何体的俯视图是( )A .B .C .D .6.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A . 120°B . 90°C . 60°D .30°7.如图,已知AB ∥CD ,与∠1是同位角的角是( )A . ∠2B .∠3 C . ∠4 D .∠58.如图,△ABC 与△DEF 关于y 轴对称,已知A (﹣4,6),B (﹣6,2),E (2,1),则点D 的坐标为( )A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)9.下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣2510.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=8111.一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cmC.3cm D.cm12.一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.13.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位14.已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.二、填空题(本大题满分16分,每小题4分)15.购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款_________元.16.函数中,自变量x的取值范围是_________.17.如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=_________.18.如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是_________.三、解答题(本大题满分62分)19.计算:(1)12×(﹣)+8×2﹣2﹣(﹣1)2(2)解不等式≤,并求出它的正整数解.20.海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有_________人;在扇形统计图中,A部分所占的圆心角是_________度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有_________人.21.海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?22.如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)23.如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).24.如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.参考答案与试题解析一、选择题(本大题满分42分,每小题3分)1.(3分)(2014•海南)5的相反数是()A.B.﹣5 C.±5 D.﹣考点:相反数.分析:据相反数的性质,互为相反数的两个数和为0,采用逐一检验法求解即可.解答:解:根据概念,(5的相反数)+5=0,则5的相反数是﹣5.故选B.点评:本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.(3分)(2014•海南)方程x+2=1的解是()A.3B.﹣3 C.1D.﹣1考点:解一元一次方程.分析:根据等式的性质,移项得到x=1﹣2,即可求出方程的解.解答:解:x+2=1,移项得:x=1﹣2,x=﹣1.故选:D.点评:本题主要考查对解一元一次方程,等式的性质等知识点的理解和掌握,能根据等式的性质正确解一元一次方程是解此题的关键.3.(3分)(2014•海南)据报道,我省西环高铁预计2015年底建成通车,计划总投资27100000000元,数据27100000000用科学记数法表示为()A.271×108B.2.71×109C.2.71×1010D.2.71×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将27100000000用科学记数法表示为:2.71×1010.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014•海南)一组数据:﹣2,1,1,0,2,1,则这组数据的众数是()A.﹣2 B.0C.1D.2考点:众数.分析:根据众数的定义求解.解答:解:数据﹣2,1,1,0,2,1中1出现了3次,出现次数最多,所以这组数据的众数为1.故选C.点评:本题考查了众数:一组数据中出现次数最多的数据叫做众数.5.(3分)(2014•海南)如图几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看,三个矩形组成的大矩形,故选:D.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.(3分)(2014•海南)在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是()A.120°B.90°C.60°D.30°考点:直角三角形的性质.分析:根据直角三角形两锐角互余列式计算即可得解.解答:解:∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.点评:本题考查了直角三角形两锐角互余的性质,熟记性质是解题的关键.7.(3分)(2014•海南)如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.8.(3分)(2014•海南)如图,△ABC与△DEF关于y轴对称,已知A(﹣4,6),B(﹣6,2),E(2,1),则点D的坐标为()A.(﹣4,6)B.(4,6)C.(﹣2,1)D.(6,2)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y),进而得出答案.解答:解:∵△ABC与△DEF关于y轴对称,A(﹣4,6),∴D(4,6).故选:B.点评:此题主要考查了关于y轴对称点的性质,准确记忆横纵坐标的关系是解题关键.9.(3分)(2014•海南)下列式子从左到右变形是因式分解的是()A.a2+4a﹣21=a(a+4)﹣21 B.a2+4a﹣21=(a﹣3)(a+7)C.(a﹣3)(a+7)=a2+4a﹣21 D.a2+4a﹣21=(a+2)2﹣25考点:因式分解的意义.分析:利用因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,进而判断得出即可.解答:解;A、a2+4a﹣21=a(a+4)﹣21不是因式分解,故此选错误;B、a2+4a﹣21=(a﹣3)(a+7),正确;C、(a﹣3)(a+7)=a2+4a﹣21,不是因式分解,故此选错误;D、a2+4a﹣21=(a+2)2﹣25,不是因式分解,故此选错误;故选:B.点评:此题主要考查了因式分解的意义,正确把握因式分解的意义是解题关键.10.(3分)(2014•海南)某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x,那么x满足的方程是()A.100(1+x)2=81 B.100(1﹣x)2=81 C.100(1﹣x%)2=81 D.100x2=81考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:若两次降价的百分率均是x,则第一次降价后价格为100(1﹣x)元,第二次降价后价格为100(1﹣x)(1﹣x)=100(1﹣x)2元,根据题意找出等量关系:第二次降价后的价格=81元,由此等量关系列出方程即可.解答:解:设两次降价的百分率均是x,由题意得:x满足方程为100(1﹣x)2=81.故选B.点评:本题主要考查列一元二次方程,关键在于读清楚题意,找出合适的等量关系列出方程.11.(3分)(2014•海南)一个圆锥的侧面展开图形是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为()A.cm B.cmC.3cm D.cm考点:弧长的计算.专题:压轴题.分析:利用弧长公式和圆的周长公式求解.解答:解:设此圆锥的底面半径为r,根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得:2πr=,r=cm.故选A.点评:圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.12.(3分)(2014•海南)一个不透明的袋子中有3个分别标有3,1,﹣2的球,这些球除了所标的数字不同外其他都相同,若从袋子中随机摸出两个球,则这两个球上的两个数字之和为负数的概率是()A.B.C.D.考点:列表法与树状图法.专题:计算题.分析:列表得出所有等可能的情况数,找出这两个球上的两个数字之和为负数的情况数,即可求出所求的概率.解答:解:列表得:3 1 ﹣23 ﹣﹣﹣(1,3)(﹣2,3)1 (3,1)﹣﹣﹣(﹣2,1)﹣2 (3,﹣2)(1,﹣2)﹣﹣﹣所有等可能的情况有6种,其中两个数字之和为负数的情况有2种,则P==.故选B点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.13.(3分)(2014•海南)将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位考点:二次函数图象与几何变换.分析:根据图象左移加,可得答案.解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.14.(3分)(2014•海南)已知k1>0>k2,则函数y=k1x和y=的图象在同一平面直角坐标系中大致是()A.B.C.D.考点:反比例函数的图象;正比例函数的图象.专题:数形结合.分析:根据反比例函数y=(k≠0),当k<0时,图象分布在第二、四象限和一次函数图象与系数的关系进行判断;解答:解:∵k1>0>k2,∴函数y=k1x的结果第一、三象限,反比例y=的图象分布在第二、四象限.故选C.点评:本题考查了反比例函数的图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.二、填空题(本大题满分16分,每小题4分)15.(4分)(2014•海南)购买单价为a元的笔记本3本和单价为b元的铅笔5支应付款(3a+5b)元.考点:列代数式.分析:用3本笔记本的总价加上5支铅笔的总价即可.解答:解:应付款(3a+5b)元.故答案为:(3a+5b).点评:此题考查列代数式,理解题意,利用单价×数量=总价三者之间的关系解决问题.16.(4分)(2014•海南)函数中,自变量x的取值范围是x≥﹣1且x≠2.考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.解答:解:根据题意得:x+1≥0且x﹣2≠0,解得:x≥﹣1且x≠2.故答案为:x≥﹣1且x≠2.点评:考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.17.(4分)(2014•海南)如图,AD是△ABC的高,AE是△ABC的外接圆⊙O的直径,且AB=4,AC=5,AD=4,则⊙O的直径AE=5.考点:相似三角形的判定与性质;圆周角定理.分析:首先根据两个对应角相等可以证明三角形相似,再根据相似三角形的性质得出关于AE的比例式,计算即可.解答:解:由圆周角定理可知,∠E=∠C,∵∠ABE=∠ADC=90°,∠B=∠C,∴△ABE∽△ACD.∴AB:AD=AE:AC,∵AB=4,AC=5,AD=4,∴4:4=AE:5,∴AE=5,故答案为:5.点评:本题考查了圆周角定理,相似三角形的性质和判定的应用,解此题的关键是求出△ADC∽△ABE.18.(4分)(2014•海南)如图,△COD是△AOB绕点O顺时针旋转40°后得到的图形,若点C恰好落在AB上,且∠AOD的度数为90°,则∠B的度数是60°.考点:旋转的性质.分析:根据旋转的性质可得∠AOC=∠BOD=40°,AO=CO,再求出∠BOC,∠ACO,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵△COD是△AOB绕点O顺时针旋转40°后得到的图形,∴∠AOC=∠BOD=40°,AO=CO,∵∠AOD=90°,∴∠BOC=90°﹣40°×2=10°,∠ACO=∠A=(180°﹣∠AOC)=(180°﹣40°)=70°,由三角形的外角性质得,∠B=∠ACO﹣∠BOC=70°﹣10°=60°.故答案为:60°.点评:本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.三、解答题(本大题满分62分)19.(10分)(2014•海南)计算:(1)12×(﹣)+8×2﹣2﹣(﹣1)2(2)解不等式≤,并求出它的正整数解.考点:实数的运算;负整数指数幂;解一元一次不等式;一元一次不等式的整数解.专题:计算题.分析:(2)原式第一项利用异号两数相乘的法则计算,第二项利用负指数幂法则计算,最后一项利用乘方的意义化简,计算即可得到结果.解答:解:(1)原式=﹣4+2﹣1=﹣3;(2)去分母得:3x﹣6≤14﹣2x,移项合并得:5x≤20,解得:x≤4,则不等式的正整数解为1,2,3,4.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.(8分)(2014•海南)海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项.以下是同学们整理的不完整的统计图:根据以上信息完成下列问题:(1)请将条形统计图补充完整;(2)随机调查的游客有400人;在扇形统计图中,A部分所占的圆心角是72度;(3)请根据调查结果估计在1500名游客中喜爱黎锦的约有420人.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)先用D所占的百分比求得所调查的总人数,再用总人数分别减去A、C、D、E的人数即可;(2)用B所占人数除以总人数再乘以360°;(3)用B所占的百分比乘以1500即可.解答:解:(1)60÷15%=400(人),400﹣80﹣72﹣60﹣76=112(人),补全条形统计图,如图:(2)随机调查的游客有400人,扇形图中,A部分所占的圆心角为:80÷400×360°=72°.(3)估计喜爱黎锦的游客约有:1500×(112÷400)=420(人).点评:本题考查了条形统计图以及用样本估计总体,扇形统计图,是基础题,难度不大.21.(8分)(2014•海南)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元,李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?考点:二元一次方程组的应用;一元一次方程的应用.专题:应用题.分析:设李叔叔购买“无核荔枝”x千克,购买“鸡蛋芒果”y千克,根据总质量为30千克,总花费为708元,可得出方程组,解出即可.解答:解:设李叔叔购买“无核荔枝”x千克,购买“鸡蛋芒果”y千克,由题意,得:,解得:.答:李叔叔购买“无核荔枝”12千克,购买“鸡蛋芒果”18千克.点评:本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.22.(9分)(2014•海南)如图,一艘核潜艇在海面DF下600米A点处测得俯角为30°正前方的海底C点处有黑匣子,继续在同一深度直线航行1464米到B点处测得正前方C点处的俯角为45°.求海底C点处距离海面DF的深度(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)考点:解直角三角形的应用-仰角俯角问题.分析:首先作CE⊥AB于E,依题意,AB=1000,∠EAC=30°,∠CBE=45°,设CD=x,则BE=x,进而利用正切函数的定义求出x即可.解答:解:作CE⊥AB于E,依题意,AB=1464,∠EAC=30°,∠CBE=45°,设CE=x,则BE=x,Rt△ACE中,tan30°===,整理得出:3x=1464+x,解得:x=732()≈2000米,∴C点深度=x+600=2600米.答:海底C点处距离海面DF的深度约为2600米.点评:此题主要考查了俯角的定义及其解直角三角形的应用,解题时首先正确理解俯角的定义,然后利用三角函数和已知条件构造方程解决问题.23.(13分)(2014•海南)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.(1)求证:△OAE≌△OBG;(2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由;(3)试求:的值(结果保留根号).考点:四边形综合题.分析:(1)通过全等三角形的判定定理ASA证得:△OAE≌△OBG;(2)四边形BFGE是菱形.欲证明四边形BFGE是菱形,只需证得EG=EB=FB=FG,即四条边都相等的四边形是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.由该菱形的性质CG=GF=b,(也可由△OAE≌△OBG 得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b);然后在Rt△GOE中,由勾股定理可得a=b,通过相似三角形△CGP∽△AGB的对应边成比例得到:==﹣1;最后由(1)△OAE≌△OBG得到:AE=GB,故==﹣1.解答:(1)证明:∵四边形ABCD是正方形,∴OA=OB,∠AOE=∠BOG=90°.∵BH⊥AF,∴∠AHG=90°,∴∠GAH+∠AGH=90°=∠OBG+∠AGH,∴∠GAH=∠OBG,即∠OAE=∠OBG.∴在△OAE与△OBG中,,∴△OAE≌△OBG(ASA);(2)四边形BFGE是菱形,理由如下:∵在△AHG与△AHB中,∴△AHG≌△AHB(ASA),∴GH=BH,∴AF是线段BG的垂直平分线,∴EG=EB,FG=FB.∵∠BEF=∠BAE+∠ABE=67.5°,∠BFE=90°﹣∠BAF=67.5°∴∠BEF=∠BFE∴EB=FB,∴EG=EB=FB=FG,∴四边形BFGE是菱形;(3)设OA=OB=OC=a,菱形GEBF的边长为b.∵四边形BFGE是菱形,∴GF∥OB,∴∠CGF=∠COB=90°,∴∠GFC=∠GCF=45°,∴CG=GF=b,(也可由△OAE≌△OBG得OG=OE=a﹣b,OC﹣CG=a﹣b,得CG=b)∴OG=OE=a﹣b,在Rt△GOE中,由勾股定理可得:2(a﹣b)2=b2,求得a= b∴AC=2a=(2+)b,AG=AC﹣CG=(1+)b∵PC∥AB,∴△CGP∽△AGB,∴===﹣1,由(1)△OAE≌△OBG得AE=GB,∴==﹣1,即=﹣1.点评:本题综合考查了全等三角形的判定与性质,相似三角形的判定与性质,以及菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.24.(14分)(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.考点:二次函数综合题.分析:(1)利用待定系数法求出抛物线的解析式;(2)首先求出四边形MEFP面积的表达式,然后利用二次函数的性质求出最值及点P坐标;(3)四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3所示,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x 轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.解答:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.点评:本题是二次函数综合题,第(1)问考查了待定系数法;第(2)问考查了图形面积计算以及二次函数的最值;第(3)问主要考查了轴对称﹣最短路线的性质.试题计算量偏大,注意认真计算.。

2013-2014学年海南省海口市九年级(上)期末数学试卷

2013-2014学年海南省海口市九年级(上)期末数学试卷

2013-2014学年海南省海口市九年级(上)期末数学试卷一、单项选择题(每小题3分,共42分)1.(3分)下列二次根式中,最简二次根式是()A .B .C .D .2.(3分)在等边三角形、平行四边形、矩形和圆这四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个3.(3分)设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只,则从中任取一只,是二等品的概率等于()A .B .C .D .4.(3分)如果x=4是一元二次方程x2﹣3x=a2的一个根,那么常数a的值是()A.2 B.﹣2 C.±2 D.±45.(3分)计算的结果是()A .B.2 C .D.1.4146.(3分)下列计算正确的是()A .=2B .•=C .﹣=D .=﹣37.(3分)二次函数y=x2的图象向右平移3个单位,得到新的图象的函数表达式是()A.y=x2+3 B.y=x2﹣3 C.y=(x+3)2D.y=(x﹣3)28.(3分)如图,AB是⊙0的弦,BC与⊙0相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于()A.15°B.20°C.30°D.70°9.(3分)若两圆的半径分别是1cm和5cm,圆心距为6cm,则这两圆的位置关系是()A.内切B.相交C.外切D.外离10.(3分)(2012•平阳县模拟)二次函数y=(x+1)2+2的最小值是()A.2 B.1 C.﹣3 D .11.(3分)二次函数y=x2﹣2x+2的图象与x轴的交点个数是()A.0个B.1个C.2个D.3个12.(3分)二次函数y=ax2+bx+c的图象如图所示,下列结论错误的是()A.a>0B.b>0C.c<0D.abc>013.(3分)将二次函数y=x2﹣2x+3化为y=(x﹣h)2+k的形式,结果为()A.y=(x+1)2+4 B.y=(x﹣1)2+4 C.y=(x+1)2+2 D.y=(x﹣1)2+214.(3分)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()A.80°B.50°C.40°D.20°二、填空题(每小题4分,共16分)15.(4分)函数中自变量x的取值范围是.16.(4分)方程2x2+5x+3=0的解是.17.(4分)(某个房间的地板用如图所示的黑白瓷砖铺满,每块瓷砖都是边长相等的正方形,阴影部分是黑瓷砖,小华随意向其内部抛一个小玻璃球,则小球落点在黑瓷砖区域内的概率是.18.(4分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=20,CD=16,那么线段OE的长为.三、解答题(本大题共62分)19.(10分)计算:(1)()÷(2)(4+2)(4﹣2).20.(8分)(某中学准备建一个面积375平方米的矩形游泳池,且游泳池的宽比长短10米,求游泳池的长与宽.21.(9分)现有一项资助贫困生的公益活动,每位参与者需交赞助费5元,活动规则如下:如图是两个可以自由转动的转盘,每个转盘被分成4个相等的扇形,参与者转动这两个转盘,转盘停止后,指针各自指向一个数字,(若指针在分格线上,则重转一次,直到指针指向某一数字为止),若指针最后所指的数字之和为8,则获得一等奖,奖金16元;若指针最后所指的数字之和为7,则获得二等奖,奖金8元;若指针最后所指的数字之和为6,则获得三等奖,奖金为4元;其余均不得奖;此次活动所集到的赞助费除支付获奖人员的奖金外,其余全部用于资助贫困生的学习和生活;(1)分别求出此次活动中获得一等奖、二等奖、三等奖的概率;(2)若此次活动有2000人参加,请你估计此次活动结束后有多少赞助费用于资助贫困生?22.(8分)在所给的正方形网格中,每个小正方形的边长均为1,(1)作出格点△ABC关于直线DE对称的△A1B1C1;(2)将△A1B1C1绕着点B1顺时针方向旋转90°后所得的△A2B2C2;(3)求点A1所经过的路径的长.23.(13分)已知:如图,△ABC内接于⊙O,点D在半径OB延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为8,求BD的长.24.(14分)如图,已知二次函数y=ax2+bx+3(a≠0)的图象与x轴交于点A(1,0)、B(﹣3,0),与y轴交于点C.(1)求这个二次函数的解析式;(2)设抛物线的对称轴与x轴交于点M,与直线BC交于点P,求△ABP的周长.2013-2014学年海南省琼海市九年级(下)期末数学试卷参考答案一、单项选择题(每小题3分,共42分)1.C 2.B 3.C 4.C 5.C 6.B 7.D 8.B 9.C 10.A 11.A 12.B 13.D 14.D二、填空题(每小题4分,共16分)15.x≥2 16.x1=-1,x2=-1.5 17.18.6三、解答题(本大题共62分)19.20.21.22.23.24.。

2014 2014年中招考试数学试卷及答案

2014   2014年中招考试数学试卷及答案

2014年数学试卷及答案一、选择题(每小题3分,共24分)1.下列各数中,最小的数是()(A). 0 (B).13(C).-13(D).-32. 据统计,2013年河南省旅游业总收入达到3875.5亿元.若将3875.5亿用科学计数法表示为3.8755×10n,则n等于()(A) 10 (B) 11 (C).12 (D).133.如图,直线AB、CD相交于O,射线OM平分∠AOC,O N⊥OM,若∠AOM =350,则∠CON的度数为()(A) .350(B). 450(C) .550(D). 6504.下列各式计算正确的是()(A)a +2a =3a2(B)(-a3)2=a6(C)a3·a2=a6(D)(a+b)2=a2 + b25.下列说法中,正确的是()(A)“打开电视,正在播放河南新闻节目”是必然事件(B)某种彩票中奖概率为10%是指买十张一定有一张中奖(c)神州飞船发射前钻要对冬部件进行抽样检查(D)了解某种节能灯的使用寿命适合抽样调查6:将两个长方体如图放皿,到所构成的几何体的左视田可能是()7.如图, ABCD 的对角线AC 与BD 相交于点O,AB ⊥AC.若AB =4,AC =6,则BD 的长是( ) (A)8 (B) 9 (C)10 (D )118.如图,在Rt △ABC 中,∠C=900,AC=1cm ,BC=2cm ,点P 从A 出发,以1cm/s 的速沿折线AC CB BA 运动,最终回到A 点。

设点P 的运动时间为x (s ),线段AP 的长度为y (cm ),则能反映y 与x 之间函数关系的图像大致是 ( )二、填空题(每小题3分,共21分) 9.计算:2-= . 10.不等式组3x 6042x 0+≥⎧⎨-⎩>的所有整数解的和是.11.在△ABC 中,按以下步骤作图:①分别以B 、C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M 、N ;②作直线MN 交AB 于点D ,连接CD. 若CD=AC ,∠B=250,则∠ACB 的度数为 .12.已知抛物线y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x=2.则线段AB 的长为 .13.一个不进明的袋子中装有仅颇色不同的2个红球和2个白球,两个人依次从袋子中随机摸出一个小球不放回,到第一个人摸到红球且第二个人摸到白球的概率是 .14.如图,在菱形ABCD 中,AB =1,∠DAB=600,把菱形ABCD 绕点A 顺时针旋转300得到菱形AB'C'D',其中点C 的运动能路径为/CC,则图中阴影部分的面积为 .15.如图,矩形ABCD 中,AD=5,AB=7.点E 为DC 上一个动点,把△ADE 沿AE 折叠,当点D 的对应点D /落在∠ABC 的角平分线上时,DE 的长为 .三、解答题(本大题共8个,满分75分) 16.(8分)先化简,再求值:222x 1x 12x x x ⎛⎫-+÷+ ⎪-⎝⎭,其中117.(9分)如图,CD 是⊙O 的直径,且CD=2cm ,点P 为CD 的延长线上一点,过点P 作⊙O 的切线PA 、PB ,切点分别为点A 、B.(1)连接AC,若∠APO =300,试证明△ACP 是等腰三角形; (2)填空:①当DP= cm 时,四边形AOBD 是菱形; ②当DP= cm 时,四边形AOBP 是正方形.18.(9分)某兴趣小组为了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为 ; (2)请补全条形统计图;(3)该校共有1200名男生,请估什全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.19.(9分)在中俄“海上联合—2014”反潜演习中,我军舰A测得潜艇C的俯角为300.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为680.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数。

2014年学业水平考试模拟考试数学试卷(含答案)

2014年学业水平考试模拟考试数学试卷(含答案)

2014年学业水平考试模拟考试数学试题(含答案)第1卷(选择题共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-6的绝对值是D.67如图,所给图形中是中心对称图形但不是轴对称图形的是3.直线口,6被直线c所截,的度数是A. 1290B. 510C. 490D. 4004.下列运算,正确的是A.3x2-2x2=1B.(2ab)2=2a2b2C.(a+b)2=a2+b2D. -2(a-l)=-2a+25.不等式的解集在数轴上表示正确的是6.己知点P(2,m)在直线y=x-n的函数图象上,则m+n的值为7.已知等腰三角形两边的长分别为4,9,则这个等腰三角形的周长为A. 13 B. 17 C. 22 D. 17或228.计算的结果为:9.一组数据:3,2,1,2,2的众数,中位数分别是A.2,1 B.2,2 C.3,l D.2,310.在Rt△ABC中,∠C=900, sinA=4/5,则 cosB的值等于11.下表为某公司200名职员年龄的人数分配表,其中36~42岁及50~56岁的人数因污损而无法看出.若36~42岁及50~56岁职员人数所占的百分比分别为a%、b%,则a+b的值A.10 B.45 C.55 D.9912.对于一次函数y=-2x+4,下列结论错误的是A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=-2x的图象D.函数的图象与x轴的交点坐标是(0.,4)13.如图,AB是点D是AC上一点,于点E,且CD=2,DE=1,则BC的长为14.如图,将一张边长为4的正三角形纸片剪成四个全等的小正三角形,得到4个小正三角形,然后将其中的一个三角形再剪成四个全等的小正三角形,得到7个小正三角形.根据以上操作,若得到2014个小正三角形时,则最小正三角形的面积等于15.如图,在平面直角坐标系中,A(1,0),B(3,0),C(O,-3),CB平分/ACP,则直线PC 的解析式为第II卷(非选择题共75分)16.分解因式:X2 +X=17.近期我国雾霾天气多发,PM2.5颗粒物被称为大气污染的元凶.PM2.5是指直径小于或等于2.5微米的颗粒物,已知l毫米=1000微米,用科学记数法表示2.5微米是____ 毫米.18.不等式组的解集是____19.如图,在的角平分线DE与BC交于点E.若BE=CE则∠DAE=____度.20.函数的图象的交点坐标为(口,6),则的值为21.如图所示,点P(m,n)为抛物线上的任意一点,以点P为圆心,1为半径作圆,当与x轴相交时,则m的取值范围为三、解答题(本大题共7个小题.共57分.解答应写出文字说明、证明过程或演算步骤.)22(1)(本小题满分3分)22(2)(本小题满分4分)解方程组:如图,四边形ABCD是平行四边形,点E、A、C、F在同一直线上,且AE=CF求证:BE=DF.23(2)(本小题满分4分)如图,在弦AB与半径OC相交于点D,AB=12,CD=2.24(本小题满分8分)某校为了创建书香校园,购进了一批科普书和文学书.其中科普书的单价比文学书的单价多4元,用12000元购进的科普书与用8000元购进的文学书本数相等,则文学书有多少本?25.(本小题满分8分)小亮和小明对一个问题观点不一致,小亮认为:从2,-2,4,-4这四个数中任取两个不同的数分别作为点P(x,y)的横、纵坐标,则点P(x,y)落在反比例函数图象上的概率一定大于落在正比例函数y= -x图象上的概率,而小明认为两者的概率相同,你赞成谁的观点?说明你的理由,已知:AB为的直径,P为AB延长线上的任意一点,过点P作的切线,切点为C,∠APC的平分线PD与AC交于点D.(1)如图l,若∠CPA恰好等于300,求∠CDP的度数;(2)如图2,若点P位于(1)中不同的位置,(1)的结论是否仍然成立?说明你的理由,27.(本小题满分9分)己知一次函数y= -x +1与抛物线交于A(O,1),B两点,B点纵坐标为10,抛物线的顶点为C.(1)求b,c的值;(2)判断△ABC的形状并说明理由;(3)点D、E分别为线段AB、BC上任意一点,连接CD,取CD的中点,连接AF,EF.当四边形ADEF为平行四边形时,求平行四边形ADEF的周长,如图,等腰的直角边长为点D为斜边AB的中点,点P为AB上任意点,连接PC,以PC为直角边作等腰(1)求证:(2)请你判断AC与BD有什么位置关系?并说明理由.(3)当点P在线段AB上运动时,设AP=x,△PBD的面积为S,求S与x之间的函数关系式.。

2010-2014海南中考数学函数大题(含标准答案)

2010-2014海南中考数学函数大题(含标准答案)

2010-2014海南中考数学函数大题24.(14分)(2014•海南)如图,对称轴为直线x=2的抛物线经过A(﹣1,0),C(0,5)两点,与x轴另一交点为B.已知M(0,1),E(a,0),F(a+1,0),点P是第一象限内的抛物线上的动点.(1)求此抛物线的解析式;(2)当a=1时,求四边形MEFP的面积的最大值,并求此时点P的坐标;(3)若△PCM是以点P为顶点的等腰三角形,求a为何值时,四边形PMEF周长最小?请说明理由.ﻩ解答:解:(1)∵对称轴为直线x=2,∴设抛物线解析式为y=a(x﹣2)2+k.将A(﹣1,0),C(0,5)代入得:,解得,∴y=﹣(x﹣2)2+9=﹣x2+4x+5.(2)当a=1时,E(1,0),F(2,0),OE=1,OF=2.设P(x,﹣x2+4x+5),如答图2,过点P作PN⊥y轴于点N,则PN=x,ON=﹣x2+4x+5,∴MN=ON﹣OM=﹣x2+4x+4.S四边形MEFP=S梯形OFPN﹣S△PMN﹣S△OME=(PN+OF)•ON﹣PN•MN﹣OM•OE=(x+2)(﹣x2+4x+5)﹣x•(﹣x2+4x+4)﹣×1×1=﹣x2+x+=﹣(x﹣)2+∴当x=时,四边形MEFP的面积有最大值为,此时点P坐标为(,).(3)∵M(0,1),C(0,5),△PCM是以点P为顶点的等腰三角形,∴点P的纵坐标为3.令y=﹣x2+4x+5=3,解得x=2±.∵点P在第一象限,∴P(2+,3).四边形PMEF的四条边中,PM、EF长度固定,因此只要ME+PF最小,则PMEF的周长将取得最小值.如答图3,将点M向右平移1个单位长度(EF的长度),得M1(1,1);作点M1关于x轴的对称点M2,则M2(1,﹣1);连接PM2,与x轴交于F点,此时ME+PF=PM2最小.设直线PM2的解析式为y=mx+n,将P(2+,3),M2(1,﹣1)代入得:,解得:m=,n=﹣,∴y=x﹣.当y=0时,解得x=.∴F(,0).∵a+1=,∴a=.∴a=时,四边形PMEF周长最小.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学科试题及答案 第1页(共9页)海南省2014年初中毕业生学业水平考试数学科试题(考试时间:100分钟 满分:120分)一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.5的相反数是( )A .5B .-5C .51D .512.方程x +2=1的解是( ) A .3B .-3C .1D .-13.据报道,我省西环高铁预计2015年底建成通车,计划总投资27100 000 000元,数据27100 000 000用科学记数法表示为( )A .271×108B .2.71×109C .2.71×1010D .2.71×1011 4.一组数据:-2,1,1,0,2,1.则这组数据的众数是( ) A .-2B .0C .1D .25.如图1几何体的俯视图是( )6.在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( ) A .120°B .90°C .60°D .30°7.如图2,已知AB ∥CD ,与∠1是同位角的角是( )A .∠2B .∠3C .∠4D .∠58.如图3,△ABC 与△DEF 关于y 轴对称,已知A (-4,6),B (-6,2),E (2,1),则点D 的坐标为( ) A .(-4,6) B .(4,6) C .(-2,1) D .(6,2)图1A B CD数学科试题及答案 第2页(共9页)9.下列式子从左到右变形是因式分解的是( )A .a 2+4a -21=a (a +4)-21B .a 2+4a -21=(a -3)(a +7)C .(a -3)(a +7)=a 2+4a -21D .a 2+4a -21=(a +2)2-2510.某药品经过两次降价,每瓶零售价由100元降为81元.已知两次降价的百分率都为x , 那么x 满足的方程是( )A .100(1+x )2=81B .100(1-x )2=81C .100(1-x %)2=81D .100x 2=8111.一个圆锥的侧面展开图是半径为8cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为( ) A .83cm B .163cm C .3cm D .43cm 12.一个不透明的袋子中有3个分别标有数字3, 1,-2的球,这些球除所标的数字不同外其它都相同.若从袋子中随机摸出两个球,则这两个球上的两个数字之和..为负数的概率是( ) A .12 B .13 C .23 D .1613.将抛物线y =x 2平移得到抛物线y =(x +2)2,则这个平移过程正确的是( ) A .向左平移2个单位 B .向右平移2个单位 C .向上平移2个单位 D .向下平移2个单位 14.已知k 1>0>k 2,则函数y =k 1x 和y =2k x的图象在同一平面直角坐标系中大致是( )图 2图3A B C D数学科试题及答案 第3页(共9页)二、填空题(本大题满分16分,每小题4分)15.购买单价为a 元的笔记本3本和单价为b 元的铅笔5支应付款 元. 16.函数y =x 的取值范围是 . 17.如图4,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径, 且AB=AC =5,AD =4,则⊙O 的直径AE = .18.如图5,△COD 是△AOB 绕点O 顺时针旋转40°后得到的图形, 若点C 恰好落在AB 上,且∠AOD 的度数为90°,则∠B 的度数是 . 三、解答题(本大题满分62分) 19.(满分10分)计算: (1)()221128213-⎛⎫⨯-+⨯-- ⎪⎝⎭(2)解不等式2723x x--≤,并求出它的正整数解.图4 图5数学科试题及答案 第4页(共9页)20.(满分8分)海南有丰富的旅游产品.某校九年级(1)班的同学就部分旅游产品的喜爱情况对游客随机调查,要求游客在列举的旅游产品中选出喜爱的产品,且只能选一项,以下是同学们整理的不完整的统计图:根据以上信息完成下列问题: (1)请将条形统计图补充完整;(2)随机调查的游客有 人;在扇形统计图中,A 部分所占的圆心角是 度; (3)请根据调查结果估计在1500名游客中喜爱黎锦的约有 人.21.(满分8分)海南五月瓜果飘香,某超市出售的“无核荔枝”和“鸡蛋芒果”单价分别为每千克26元和22元.李叔叔购买这两种水果共30千克,共花了708元.请问李叔叔购买这两种水果各多少千克?数学科试题及答案 第5页(共9页)23.(满分13分)如图7,正方形ABCD 的对角线相交于点O ,∠CAB 的平分线分别交BD 、BC 于E 、F ,作BH ⊥AF 于点H ,分别交AC 、CD 于点G 、P ,连结GE 、GF .(1)求证:△OAE ≌△OBG .图7图6数学科试题及答案 第6页(共9页)24.(满分14分)如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点. (1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由.图8O A E FBMCPxyMCyP数学科试题及答案 第7页(共9页)参考答案一、选择题(本大题满分42分,每小题3分)二、填空题(本大题满分16分,每小题4分)15.(3a +5b ) 16. 1x ≥-且2x ≠ 17.18. 60°三、解答题:19.(1)解:原式 11128134⎛⎫=⨯-+⨯- ⎪⎝⎭421=-+- 3=-(2)解: ()()3227x x -≤- 36142x x -≤- 32146x x +≤+ 520x ≤ 4x ≤ ∴不等式2723x x--≤的正整数解为:1,2,3,420.解:(1)60÷15%-80-72-60-76=112(人),如图所示, (2)60÷15%=400(人),80÷400×360°=72°, (3)1500×(112÷400)=420(人),21. 解:设李叔叔购买“无核荔枝” x 千克,购买“鸡蛋芒果” y 千克,80112 726076数学科试题及答案 第8页(共9页)由题意,得:302622708x y x y +=⎧⎨+=⎩,解得:1218x y =⎧⎨=⎩.23.解:(1)证明:∵四边形ABCD 是正方形∴OA =OB ,∠AOE =∠BOG =90° ∵BH⊥AF ∴∠AHG =90°∴∠GAH +∠AGH =90°=∠OBG +∠AGH ∴∠GAH =∠OBG∴△OAE ≌△OBG .(2)四边形BFGE 是菱形,理由如下: ∵∠GAH =∠BAH ,AH =AH , ∠AHG =∠AHB ∴△AHG ≌△AHB ∴GH =BH∴AF 是线段BG 的垂直平分线 ∴EG =EB ,FG =FB ∵∠BEF =∠BAE +∠ABE =5.67454521=+⨯,∠BFE =90°-∠BAF =67.5°数学科试题及答案 第9页(共9页)∴∠BEF =∠BFE ∴EB =FB∴EG =EB =FB =FG∴四边形BFGE 是菱形(3)设OA =OB =OC =a ,菱形GEBF 的边长为b . ∵四边形BFGE 是菱形,∴GF ∥OB , ∴∠CGF =∠COB =90°, ∴∠GFC =∠GCF =45°, ∴CG =GF =b(也可由△OAE ≌△OBG 得OG =OE =a -b ,OC -CG =a -b ,得CG =b )∴OG =OE =a -b ,在Rt △GOE 中,由勾股定理可得:22)(2b b a =-,求得b a 222+=∴AC =b a )22(2+=,AG =AC -CG =b )21(+∵PC ∥AB , ∴△CGP ∽△AGB , ∴12)21(-=+==bbAG CG GB PG , 由(1)△OAE ≌△OBG 得AE =GB , ∴12-=AEPG24. 解:(1)设抛物线为k x a y +-=2)2( ∵二次函数的图象过点A (-1,0)、C (0,5) ∴⎩⎨⎧=+=+.54;09k a k a解得:⎩⎨⎧=-=91k a∴二次函数的函数关系式为9)2(2+--=x y 即y =-x 2+4x +5 (2)当a =1时,E (1,0),F (2,0), 设P 的坐标为(x ,-x 2+4x +5)G数学科试题及答案 第10页(共9页)过点P 作y 轴的垂线,垂足为G , 则四边形MEFP 面积EOM MGP OFPG S S S S ∆∆--=四边形=OM OE MG GP OG GP OF ∙-∙-∙+2121)(21 =1121)154(21)54)(2(2122⨯⨯--++--++-+x x x x x x =29292++-x x=16153)49(2+--x所以,当49=x 时,四边形MEFP 面积的最大,最大值为16153,此时点P 坐标为)16143,49(.(3)EF =1,把点M 向右平移1个单位得点M 1,再做点M 1关于x 轴的对称点M 2,在四边形FMEF 中,因为边PM ,EF 为固定值,所以要使四边形FMEF 周长最小,则ME +PF 最小,因为ME =M 1F =M 2F ,所以只要使M 2F+PF 最小即可,所以点F 应该是直线M 2P 与x 轴的交点,由OM =1,OC =5,得点P 的纵坐标为3,根据y =-x 2+4x +5可求得点P (3,62+)又点M 2坐标为(1,-1), 所以直线M 2P 的解析式为:51645464+--=x y , 当y =0时,求得456+=x ,∴F (456+,0) ∴416,4561+=+=+a a 所以,当416+=a 时,四边形FMEF 周长最小.1M 2M。

相关文档
最新文档