3.2不等式的基本性质教学设计

合集下载

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案第一章:不等式的概念与基本性质1.1 不等式的定义介绍不等式的概念,理解不等号(>,<,≥,≤)的含义举例说明不等式的表示方法1.2 不等式的基本性质性质1:如果a>b,a+c>b+c(加法性质)性质2:如果a>b且c>0,ac>bc(乘法性质,正数)性质3:如果a>b且c<0,ac<bc(乘法性质,负数)性质4:如果a>b且c≥0,a-c>b-c(减法性质)第二章:不等式的运算2.1 不等式的加减法运算展示不等式的加减法运算规则,举例说明练习题:求解下列不等式组的解集2.2 不等式的乘除法运算介绍不等式的乘除法运算规则,注意正负数的处理练习题:求解下列不等式组的解集第三章:不等式的解法3.1 简单不等式的解法介绍简单不等式的解法,如直接解、移项、合并同类项等练习题:求解下列简单不等式的解集3.2 不等式组的解法介绍不等式组的解法,如图像法、区间法等练习题:求解下列不等式组的解集第四章:不等式的应用4.1 实际问题中的不等式举例说明不等式在实际问题中的应用,如距离问题、分配问题等练习题:解决下列实际问题中的不等式4.2 不等式的优化问题介绍不等式在优化问题中的应用,如最大值、最小值问题练习题:解决下列优化问题中的不等式第五章:不等式的综合练习5.1 不等式的综合应用综合运用不等式的基本性质、运算和解法解决实际问题练习题:解决下列综合应用问题中的不等式5.2 复习与总结复习不等式的概念、基本性质、运算和解法总结不等式的重要性和在数学中的应用第六章:不等式的标准形式6.1 不等式的标准形式介绍不等式的标准形式:x ≤a 或x ≥a说明标准形式在解不等式组中的重要性6.2 标准形式的不等式解法展示如何将不等式转换为标准形式练习题:将给定的不等式转换为标准形式并求解第七章:不等式的绝对值7.1 不等式中的绝对值解释绝对值在不等式中的含义和作用举例说明绝对值不等式的解法7.2 绝对值不等式的解法展示绝对值不等式的解法步骤练习题:求解含有绝对值的不等式第八章:不等式的函数关系8.1 不等式与函数的关系探讨不等式与函数之间的关系举例说明如何通过函数图像解决不等式问题8.2 函数图像下的不等式解法介绍如何利用函数图像求解不等式练习题:利用函数图像解决给定的不等式问题第九章:不等式的不等式系统9.1 不等式系统的概念介绍不等式系统的概念及其解法说明不等式系统在实际问题中的应用9.2 不等式系统的解法展示如何解不等式系统练习题:求解给定的不等式系统第十章:不等式的拓展与应用10.1 不等式的拓展探讨不等式在其他数学领域的应用介绍不等式的相关拓展知识10.2 不等式的实际应用分析不等式在现实生活中的应用练习题:解决实际生活中的不等式问题教案总结:本教案涵盖了不等式的基本概念、性质、运算、解法、应用以及拓展等内容。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质教学对象:八年级教学课时:2课时教学目标:1. 理解不等式的基本性质,能够运用性质1、2、3解决实际问题。

2. 培养学生的逻辑思维能力和解决实际问题的能力。

教学重难点:1. 掌握不等式的性质1、2、3。

2. 能够运用不等式的性质解决实际问题。

教学准备:1. PPT课件2. 黑板3. 教案教学过程:第一课时一、导入(5分钟)1. 引入不等式的概念,让学生回顾已学过的不等式知识。

2. 提问:不等式有哪些基本性质呢?二、新课讲解(15分钟)1. 讲解不等式的性质1:如果a>b,a+c>b+c(c为任意实数)。

2. 讲解不等式的性质2:如果a>b,ac>bc(c为正数)。

3. 讲解不等式的性质3:如果a>b,c>d,ac>bd(c、d为任意实数)。

三、例题讲解(10分钟)1. 举例讲解不等式性质1的应用。

2. 举例讲解不等式性质2的应用。

3. 举例讲解不等式性质3的应用。

四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

第二课时五、复习导入(5分钟)1. 复习上节课所学的不等式性质。

2. 提问:不等式的性质有哪些应用呢?六、拓展讲解(15分钟)1. 讲解不等式的性质4:如果a>b,a/c>b/c(c为正数)。

2. 讲解不等式的性质5:如果a>b,a^n>b^n(n为正整数)。

七、例题讲解(10分钟)1. 举例讲解不等式性质4的应用。

2. 举例讲解不等式性质5的应用。

八、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学的不等式性质。

2. 解答学生提出的问题,及时给予指导和帮助。

1. 本节课讲解了不等式的基本性质,包括性质1、2、3、4、5。

2. 学生能够运用不等式的性质解决实际问题,提高了解决问题的能力。

3. 通过练习题的训练,巩固了所学知识,为后续学习打下了基础。

不等式的基本性质教学设计教案

不等式的基本性质教学设计教案

不等式的基本性质教学设计-教案一、教学目标:1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生解决实际问题的能力,提高学生的数学思维水平。

3. 引导学生运用不等式的基本性质进行证明和解决问题。

二、教学内容:1. 不等式的定义及表示方法。

2. 不等式的基本性质(性质1、性质2、性质3)。

3. 不等式的运算规则。

三、教学重点与难点:1. 教学重点:不等式的概念、表示方法,不等式的基本性质及运算规则。

2. 教学难点:不等式的基本性质的理解与应用。

四、教学方法:1. 采用问题驱动法,引导学生探索不等式的基本性质。

2. 运用案例分析法,让学生在实际问题中体验不等式的应用。

3. 利用多媒体辅助教学,直观展示不等式的性质及运算过程。

五、教学过程:1. 导入新课:通过生活实例引入不等式的概念,让学生感受不等式的实际意义。

2. 自主学习:让学生阅读教材,了解不等式的表示方法。

3. 课堂讲解:讲解不等式的基本性质,通过示例让学生理解并掌握性质1、性质2、性质3。

4. 课堂练习:设计相关练习题,让学生运用不等式的基本性质进行解答。

5. 拓展与应用:让学生运用不等式的基本性质解决实际问题,培养学生的应用能力。

6. 总结与反思:对本节课的内容进行总结,强调不等式的基本性质的重要性。

7. 布置作业:设计适量作业,巩固所学知识。

教学评价:通过课堂讲解、练习和实际应用,评价学生对不等式的基本性质的理解和运用程度。

六、教学策略与辅助工具1. 教学策略:采用问题-探究教学模式,鼓励学生主动发现问题、解决问题。

利用小组合作学习,促进学生之间的交流与合作。

2. 辅助工具:多媒体教学课件,用于展示不等式的图形和动态变化,增强学生对不等式性质的理解。

七、教学准备1. 教材:准备不等式相关教材和教学参考书,为学生提供丰富的学习资源。

2. 课件:制作多媒体课件,包含动画、图形等元素,生动展示不等式的性质。

3. 练习题:准备一系列练习题,涵盖不等式的基本性质和应用问题。

不等式性质基本性质教案

不等式性质基本性质教案

不等式性质基本性质教案一、教学目标:1. 让学生理解不等式的基本性质,掌握不等式两边同加上或减去同一个数,不等号的方向不变;不等式两边同乘以或除以同一个正数,不等号的方向不变;不等式两边同乘以或除以同一个负数,不等号的方向改变。

2. 培养学生运用不等式的性质解决问题的能力。

3. 通过不等式的性质教学,培养学生抽象思维能力,渗透转化的数学思想。

二、教学内容:1. 不等式两边同加上或减去同一个数,不等号的方向不变。

2. 不等式两边同乘以或除以同一个正数,不等号的方向不变。

3. 不等式两边同乘以或除以同一个负数,不等号的方向改变。

4. 运用不等式的性质解决问题。

三、教学重点与难点:1. 教学重点:让学生掌握不等式的基本性质,能运用不等式的性质解决问题。

2. 教学难点:不等式两边同乘以或除以同一个负数,不等号的方向改变。

四、教学方法:1. 采用启发式教学法,引导学生发现不等式的性质,培养学生抽象思维能力。

2. 采用例题教学法,让学生通过观察、分析、归纳不等式的性质。

3. 采用练习法,巩固所学的不等式性质。

五、教学过程:1. 导入新课:复习相关知识点,如不等式的概念、不等式的解集等,为学生学习不等式的性质做好铺垫。

2. 教学不等式两边同加上或减去同一个数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同加上或减去同一个数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

3. 教学不等式两边同乘以或除以同一个正数,不等号的方向不变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个正数,不等号的方向不变。

(2)让学生用语言表述这一性质。

(3)进行练习,巩固所学知识。

4. 教学不等式两边同乘以或除以同一个负数,不等号的方向改变:(1)展示例题,引导学生观察、分析,发现不等式两边同乘以或除以同一个负数,不等号的方向改变。

(2)让学生用语言表述这一性质。

不等式的基本性质(教案)

不等式的基本性质(教案)

不等式的基本性质一、教学目标1. 让学生理解不等式的概念,掌握不等式的基本性质。

2. 培养学生运用不等式解决实际问题的能力。

3. 提高学生对数学逻辑思维的认知。

二、教学内容1. 不等式的定义及表示方法2. 不等式的基本性质1) 不等式的两边加减同一个数,不等号的方向不变。

2) 不等式的两边乘除同一个正数,不等号的方向不变。

3) 不等式的两边乘除同一个负数,不等号的方向改变。

3. 运用不等式的基本性质解决实际问题。

三、教学重点与难点1. 教学重点:不等式的基本性质及其运用。

2. 教学难点:不等式性质3的理解与应用。

四、教学方法1. 采用启发式教学,引导学生发现不等式的基本性质。

2. 通过例题讲解,让学生学会运用不等式解决实际问题。

3. 利用小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入:复习相关知识点,如实数、比较大小等,为学生学习不等式打下基础。

2. 新课讲解:介绍不等式的定义及表示方法,讲解不等式的基本性质,并通过例题展示运用。

3. 课堂练习:布置练习题,让学生巩固不等式的基本性质。

4. 实际问题解决:引导学生运用不等式解决实际问题,如分配问题、排序问题等。

5. 课堂小结:总结不等式的基本性质及运用方法。

6. 课后作业:布置相关作业,巩固所学知识。

六、教学评估1. 课堂提问:通过提问了解学生对不等式基本性质的理解程度。

2. 练习题解答:检查学生运用不等式解决实际问题的能力。

3. 课后作业:评估学生对课堂所学知识的掌握情况。

七、教学拓展1. 对比等式的性质,引导学生发现等式与不等式的异同。

2. 介绍不等式的其他性质,如不等式的传递性、同向不等式的可加性等。

八、课堂互动1. 小组讨论:让学生分组讨论不等式性质的应用,分享解题心得。

2. 教学游戏:设计有关不等式的游戏,提高学生的学习兴趣。

九、教学策略调整1. 根据学生掌握情况,针对性地讲解不等式的难点知识点。

2. 对于学习困难的学生,提供个别辅导,帮助他们跟上课堂进度。

浙教版数学八年级上册3.2《不等式的基本性质》教案

浙教版数学八年级上册3.2《不等式的基本性质》教案

浙教版数学八年级上册3.2《不等式的基本性质》教案一. 教材分析浙教版数学八年级上册3.2《不等式的基本性质》一节,主要让学生掌握不等式的性质,包括不等式的两边同时加上或减去同一个数或整式,不等号的方向不变;不等式的两边同时乘以或除以同一个正数,不等号的方向不变;不等式的两边同时乘以或除以同一个负数,不等号的方向改变。

这些性质是解不等式问题的关键,为后续学习不等式的解法、不等式的应用等奠定基础。

二. 学情分析学生在七年级已经学习了不等式的概念,掌握了不等式的基本运算,但对于不等式的性质理解不够深入。

通过本节课的学习,学生应能理解并掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。

三. 教学目标1.知识与技能:掌握不等式的基本性质,能够运用不等式的性质解决一些实际问题。

2.过程与方法:通过观察、操作、交流、归纳等活动,培养学生的逻辑思维能力和动手操作能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队协作精神。

四. 教学重难点1.重点:不等式的基本性质。

2.难点:不等式性质的运用。

五. 教学方法采用问题驱动法、合作交流法、实践操作法等,引导学生主动探究、合作交流,培养学生的动手操作能力和解决问题的能力。

六. 教学准备1.教具:多媒体课件、黑板、粉笔。

2.学具:练习本、笔。

七. 教学过程1.导入(5分钟)利用多媒体课件展示生活中的不等式图片,如身高、体重等,引导学生回顾不等式的概念,为新课的学习做好铺垫。

2.呈现(10分钟)教师出示不等式,如2x > 3,引导学生观察、思考:不等式的两边同时加上或减去同一个数或整式,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个正数,不等号的方向是否会改变?不等式的两边同时乘以或除以同一个负数,不等号的方向是否会改变?3.操练(10分钟)学生分组讨论,每组选择一个不等式,如3x - 2 > 7,运用不等式的性质进行化简,并解释理由。

初中数学_不等式的基本性质教学设计学情分析教材分析课后反思

初中数学_不等式的基本性质教学设计学情分析教材分析课后反思

《不等式的基本性质》教学设计一、 教学目标知识目标 掌握不等式的三个基本性质并且能正确应用;能力目标 经历探索不等式基本性质的过程,体会不等式与等式的异同点,发展学生分析问题、解决问题的能力;情感目标 开展研究性学习,使学生初步体会学习不等式基本性质的价值。

二、教学重难点重点:对不等式三个性质的探究,理解,及应用。

难点:应用不等式的三个基本性质对不等式进行变形。

特别是对性质三的应用。

三、教学方法:自主探究-----合作交流四、教学媒体:电脑课件演示五、 教学过程1、问题情境老师想买一辆价值大约10万元左右的汽车,现在有2万元的存款,老师每年的收入除去正常开销外,还余2万元,请同学们算一算,我需要多少年攒的钱才能超过10万元,圆老师的汽车梦?2、填一填:不等式: 2<32×5 3×5 2÷5 3÷5你有什么发现:不等式:2<32 ×(-1)3 ×(-1) 2×(-5) 3×(-5)2×(21-) 3×(21-) 2÷(-2) 3 ÷(-2) 213____212÷÷213____212⨯⨯2÷(21-) 3 ÷(21-)你又有什么发现:三、练一练:已知 ,运用不等式的性质,用“>”“<”填空 1、 2、3、 4、 5、 6、四、变式训练根据下列不等式,说出 与 的大小关系。

1、2、 3、 4、五、试一试将下列不等式化成“ ”或“ ”的形式。

1、 2、六、巩固训练将不等式化成“ ”或“ ”的形式1、 2、b a >1___1++b a b a 3____38____8--b a 2_____2b a b a 3____3--0_____b a -a x >a x <63>-x 635-<x x 15->-x 32>-x a x >a x <b a 44->-22b a >33->-b a ba ->-55a b3、 ≤34、 ≥4七、能力提升比较a 2与a 的大小八、总结升华这节课你有什么收获?学情分析学生已经学习了等式的概念和等式的两个基本性质,并会熟练运用等式的基本性质把等式变形为x=a 的形式。

不等式的基本性质--教学设计

不等式的基本性质--教学设计

《不等式基本性质》教学设计一、教学内容不等式是现实世界中不等关系的一种数学表现形式,它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。

不等式的基本性质是本章的教学重点内容之一。

本节课学生经历类比、猜想、试验、归纳的探索过程,从而发现不等式三条基本性质,初步体会不等式与等式的异同,能够将不等式进行简单转化。

教学重点是探索不等式的基本性质,难点是灵活地掌握和应用不等式基本性质。

教学过程培养学生掌握类比的数学方法以及由试验发现规律的数学方法。

二、教学目标1、知识与技能:①、经历类比、猜想、尝试、归纳的不等式基本性质探索过程,初步体会不等式与等式的异同。

②、掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式。

2、数学思考:学生经历自主探索、合作交流、归纳总结、知识运用的学习过程。

培养学生掌握类比和由试验发现规律的方法。

3、解决问题:会利用不等式的基本性质解决生活中的实际问题,体会学以致用的喜悦,开拓学生的视野。

4、情感与态度:培养学生积极参与、合作交流的意识,勇敢尝试、探索的精神。

三.学生学情分析本章是在学生学习了一元一次方程、二元一次方程组和一次函数的基础上,开始研究简单的不等关系。

通过前面的学习,学生已初步体会到生活中量与量之间的关系是众多而且复杂的,但面对大量的同类量,最容易使人想到的就是它们有大小之分。

此外,八年级学生对知识充满兴趣和渴望,具备一定的合作探究能力。

四、教学策略分析本节课分两个阶段探索不等式的三条基本性质。

首先,学生已学过等式和等式的性质,为了便于和加深对不等式基本性质的理解,采用类比的方式进行教学,通过这样的对比,不但可以复习已学过的等式的基本性质,便于引入新课,而且也有利于掌握不等式的基本性质。

其次,引导学生用试验的方法,归纳出三条基本性质。

数学家欧拉说过:“数学这门科学,需要观察,也需要试验。

”通过教学培养学生掌握由试验发现规律的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.2不等式基本性质教学设计
一教学目标
1、经历不等式基本性质领悟归纳得出的过程,理解不等式的三个基本性质.
2、会用不等式的基本性质进行不等式的变形,进一步养成言必有据的习惯.
二教学重点
不等式的基本性质
三教学难点
不等式基本性质3
课前准备
学生分小组,展示表格课堂前测
四教学过程
(一) 认知冲突,激发兴趣
这是真得吗?“2<1”
小军从不等式a<0出发,进行了一系列的变形,最后得出了“2<1”的结论?
两边都加上a,得a+a<0+a,即2a<a,
两边都除以a得,2<1.
同学们,你们觉得呢?---点明变形是否正确,在于变形是否有依据?进入课题
(二) 创设线索,导入性质
课前前测1导入
数可以在数轴上表示,数轴可以反应不同数之间的大小关系,你能把a<b b<c这两个不等式在数轴上表达?
直观观察得到a<c.追问a,b,c可以表示什么数?(正数,负数,0)实数
概括:不等式基本性质1:a<b,b<c⇒a<c (不等式的传递性)让学生明白传递的是原来的小于关系.
直接说等式的基本性质1:a=b,b=c⇒a=c (等式的传递性)
问七年级我们还学了等式的哪些性质?
那么不等式是否有类似的性质?点明这将是我们进一步研究不等式基本性质的内容?(三) 两种方法,获得性质
问:1、在不等式两边都加上(或都减去)同一个数时,结果怎么样?
假设a<b,比较a+c与b+c大小关系?c有什么要求?你能举例说明?
如举例:年龄为a与b,5年后?7年前?
当a<b,你能在a+c,b+c在数轴上表示?运用几何画板演示
先在数轴上出现a、b,你同学先想一下a+c,b+c可能出现的位置,再在数轴上演示.
问学生从图中你判断a+c与b+c大小关系?如果换成a-c与b-c大小关系?
得出不等式的基本性质2
不等式的两边都加上(或都减去)同一个数,所得到的不等式仍成立
适时巩固
选择适当的不等号填空:
(1) ∵0 1
∴a a+1( )
(2) ∵(a-1)2 0
∴(a-1)2-2 -2( )
(3) 若a<-b,则a+2 2-b
让学生感受思考的顺序是1、不等式两边如何变形2、依据什么?加深对性质中“仍成立”是指原来的不等关系仍成立,即原来的不等号仍适用.
继续研究
讨论
3、在不等式两边都乘以同一个数时,结果怎么样?
当a<b 时,思考ac 与bc 的大小关系?
小组合作
1、在白纸上用记号笔写下a,b,c 的值,
通过计算判定ac 与bc 的关系
2、多写几组找找规律.
3、写下结论.
小组代表展示
数轴直观演示,利用除法可转化为乘法,数轴上的任何一个数(除0外)都可以在数轴上找到它的倒数.得出在不等式两边都除以同一个数(0除外)时,结论一样.
得出不等式基本性质3
不等式的两边都乘(或都除以)同一个正数,所得的不等式仍成立.
不等式的两边都乘(或都除以)同一个负数,必须改变不等号的方向,所得的不等式成立.获得代数性质常用的方法:举实例归纳,运用数轴
判断以下各题的结论是否正确.说说为什么?
(1) 如果a>b,且c>0,那么ac>bd;
(2) 如果a>b,那么ac 2>bc 2;
(3) 如果ax>b,且a≠0,那么x< a
b ; 再次回到这是真得吗?“2<1”,找到问题第两次变形时两边都除的a 是负数,必须改变不等号的方向,.
例:已知a<0 ,试比较2a 与a 的大小.
比比赛赛,哪组最先交流,哪组方法最多.
(四) 题组训练,加深理解
1.填空
(1)若x+1>0,两边都加上(-1),得(依据:)
(2)若2x>-1,两边都除以2 ,得(依据:)
(3)若-3x>2,两边都乘(-3),得(依据:)
2.设a>b,用不等号连结下列各题中的两式:
(1)a-3 b-3;(2)-a -b (3)2a-3 2b-3 (4) 5-6a 5-6b
3.若a>0,且(1-b)a<0,则b 1
若x<y,且(a-3)x>(a-3)y,则a 3
若不等式(a-5)x<a-5可变形为x>1,则a 5.
(五) 课堂小结,优化结构
课堂小结
通过本堂课学习,……
学生边说边完成知识框架图,同时对比等式与不等式的基本性质的异同.
预设:
同:都有传递性,两边都加上或都减去同一个数,乘以或除以同一个正数时式子仍成立. 异:等式两边同乘以或同除以(不为零的数)时不用讨论,而不等式需要讨论,特别是负数时,要先改变不等号的方向才行.
……。

相关文档
最新文档