北京市西城区2018-2019学年高一上学期期末考试数学试卷-
北京市东城区2018-2019学年高一上学期期末考试数学试卷 Word版含解析

北京市东城区2018-2019学年高一上学期期末检测数学试题一、选择题(本大题共10小题,共30.0分)1.已知集合,那么下列结论正确的是A. B. C. D.【答案】D【解析】【分析】由,解得x范围,可得即可判断出结论.【详解】解:由,解得,或..可得0,1,,故选:D.【点睛】本题考查了元素与集合之间的关系、不等式的解法,考查了推理能力与计算能力,属于基础题.2.命题“,”的否定是A. ,B. ,C. ,D. ,【答案】A【解析】【分析】直接利用全称命题的否定是特称命题,写出结果即可.【详解】解:因为全称命题的否定是特称命题,所以命题p:,,则为,.故选:A.【点睛】本题考查全称命题与特称命题的否定关系的应用,考查基本知识.3.下列结论成立的是A. 若,则B. 若,则C. 若,,则D. 若,,则【答案】D【解析】【分析】对赋值来排除。
【详解】当,时,A结论不成立。
当时,B结论不成立。
当时,C结论不成立。
故选:D【点睛】本题主要利用赋值法来排除,也可以利用不等式的性质来判断。
4.在单位圆中,的圆心角所对的弧长为A. B. C. D.【答案】B【解析】【分析】根据弧长公式,,代入计算即可.【详解】解:,故选:B.【点睛】本题主要考查了弧长公式,属于基础题.5.函数的零点所在区间是A. B. C. D.【答案】C【解析】【分析】根据题意,分析可得函数为减函数,依次计算、、、的值,由函数零点判定定理分析可得答案.【详解】解:根据题意,函数,分析易得函数为减函数,且,,,,则函数的零点所在区间是;故选:C.【点睛】本题考查函数的零点判断定理,关键是熟悉函数的零点判定定理.6.,,的大小关系是A. B.C. D.【答案】D【解析】【分析】利用诱导公式化简后,根据单调性即可判断.【详解】解:由,,,在第一象限为增函数,.故得故选:D.【点睛】本题考查了诱导公式和正弦函数的单调性的运用,比较基础.7.设,则“”是“”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】B【解析】【分析】求出不等式的等价条件,结合充分条件和必要条件的定义进行判断即可.【详解】解:由得,由得,得.则“”是“”的必要不充分条件,故选:B.【点睛】本小题主要考查充要条件的判断.如果,则是的充分条件,是的必要条件;否则,不是的充分条件,不是的必要条件.在判断具体问题时,可以采用互推的方法,进行和各一次,判断是否能被推出,由此判断是什么条件.还可以采用集合的观点来判断:小范围是大范围的充分不必要条件,大范围是小范围的充要不充分条件.如果两个范围相等,则为充要条件.如果没有包含关系,则为既不充分也不必要条件.8.若实数x,y满足,则的最大值为A. 1B.C.D.【答案】C【解析】【分析】根据,即可求出最大值.【详解】解:实数x,y满足,,,当,时取等号,故选:C.【点睛】本题考查了二次函数的性质,考查了运算和转化能力,属于基础题.9.已知函数的定义域为R,当时,,当时,,当时,,则A. B. C. 1 D. 2【答案】A【解析】【分析】根据题意,由函数的解析式可得的值,进而分析可得,分析可得函数为周期为1的周期函数,则,类比奇函数的性质分析可得答案.【详解】解:根据题意,函数的定义域为R,且当时,,则,当时,,即,即,则函数为周期为1的周期函数;则,当时,,则有,又由,则;故选:A.【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题.形如,或的条件,说明的都是函数图像关于对称.形如,或,或者的条件,说明的是函数是周期为的周期函数.10.已知非空集合A,B满足以下两个条件2,3,4,5,,;若,则.则有序集合对的个数为A. 12B. 13C. 14D. 15【答案】A【解析】【分析】对集合A的元素个数分类讨论,利用条件即可得出.【详解】解:由题意分类讨论可得:若,则3,4,5,;若,则3,4,5,;若,则3,4,5,;若,则2,4,5,;若,则2,3,5,;若,则3,4,1,;若,则3,4,5,;若,则4,5,;若,则3,5,;若,则3,4,;若,则3,5,;若,则3,4,;若,则2,4,;若3,,则4,.综上可得:有序集合对的个数为12.故选:A.【点睛】本题考查了元素与集合之间的关系、集合运算、分类讨论方法,考查了推理能力与计算能力,属于中档题.二、填空题(本大题共5小题,共20.0分)11.______.【答案】【解析】【分析】利用诱导公式,将所求三角函数值转化为求的值即可. 【详解】解:故答案为【点睛】本题考察了正弦函数诱导公式的应用,准确的选择公式,运用公式是解决本题的关键.12.函数的定义域为______.【答案】【解析】【分析】且解不等式即可。
北京市西城区2014年7月高一数学期末试卷

北京市西城区(北区)2013— 2014学年度第二学期学业测试高一数学 2014.7试卷满分:150分 考试时间:120分钟题号 一 二三本卷总分1718 19 20 21 22 分数一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1. 不等式3)2(<+x x 的解集是( ) (A ){13<<-x x }(B ){31<<-x x } (C ){,3-<x x 或1>x }(D ){,1-<x x 或3>x }2. 在等比数列{n a }中,若=321a a a —8,则2a 等于( ) (A )—38 (B )—2(C )38±(D )2±3. 总体由编号为01,02,…,29,30的30个个体组成。
利用下面的随机数表选取4个个体。
选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出的第4个个体的编号为( )7806 6572 0802 6314 2947 1821 9800 3204 9234 4935 3623 4869 6938 7481(A )02(B )14(C )18(D )294. 执行如图所示的程序框图,输出的S 值为( )(A )1 (B )5(C )14(D )305. 在△ABC 中,若C B A 222sin sin sin <+,则△ABC 的形状是( ) (A )锐角三角形 (B )钝角三角形 (C )直角三角形 (D )无法确定6. 已知不等式015<+-x x 的解集为P 。
若P x ∈0,则“10<x ”的概率为( ) (A )41 (B )31 (C )21 (D )327. 设0,0>>b a ,则下列不等式中不.恒成立的是( ) (A )aa 1+≥2 (B )22b a +≥2(1-+b a ) (C )b a -≥b a -(D )33b a +≥22ab8. 已知数列A :1a ,2a ,…,n a (<<≤210a a …3,≥<n a n )具有性质P :对任意)1(,n j i j i ≤≤≤,i j i j a a a a -+与两数中至少有一个是该数列中的一项。
北京市西城区2018-2019学年高一第一学期期末考试历史试卷(含答案)

北京市西城区2018 — 2019学年度第一学期期末试卷高一历史试卷试卷满分:120分 考试时间:100分钟A 卷〔必修 模块1〕 满分100分一、选择题(下列各题的四个选项中,只有一项符合题意。
每小题1分,共50分)1.约公元前2070年,禹建立了我国历史上第一个王朝——夏。
这一年属于公元前A .19世纪前期B .20世纪后期C .21世纪前期D .21世纪后期2.“西周的统治者把统治的权力、权威和责任委任给属国,属国反过来效忠中央政府并向中央政府纳贡,提供军事支持。
”这描述的是A.禅让制B.分封制C.宗法制D.礼乐制3.“不行黜陟..(官职的升迁或降黜)而藩国自析”。
这评价的是汉武帝实行的哪项措施 A.颁布“推恩令” B.平定“七国之乱”C.实行郡国并行D.用察举制选官4.三省六部制经过长期发展,到隋唐时期才得以确立并完善。
其中尚书省下设六部,负责A .决策B .审议C .执行D .司法5.唐朝时盛行“宁为百夫长,胜作一书生”,宋代民间则流传“做人莫做军,做铁莫做针”的俗语。
由唐至宋的这种变化A .是唐朝设置节度使的直接结果B .与宋朝重文轻武的政策相关C . 源于唐朝开创科举制选拔人才D .导致宰相的职权被严重削弱6. 我国当前实行的省制开端于A.夏商的方国B.秦朝的郡县C.唐朝的藩镇D.元朝的行省7.图1是中国某朝代中央政府的组织图,结合所学可判断其形成于 时期A.秦始皇B.明成祖C.康熙帝D.雍正帝8.推行财产等级制,为雅典民主政治奠定基础的政治家是A.梭伦B.克利斯提尼C.伯利克里D.苏格拉底9.公元前5世纪,罗马的《十二铜表法》规定:“期满,债务人不还债的,债权人得拘捕之,押其到长官前,申请执行。
”这体现了该法图1A .保护财产私有B .限制贵族权力C .维护平民利益D .扩大统治基础10.罗马法体系最终完成的标志是A.习惯法的形成B.《十二铜表法》的制定C.万民法的出现D.《民法大全》的编订11. 标志着英国君主立宪制的确立A .《大宪章》的签署B .“光荣革命”的结束C .《权利法案》的颁布D .沃波尔成为第一位首相12.美国的1787年宪法充分体现了三权分立原则。
2023北京西城区高一(上)期末数学试卷及答案

2023北京西城高一(上)期末数 学2023.1本试卷共6页,共150分。
考试时长120分钟。
考生务必将答案写在答题卡上,在试卷上作答无效。
第一部分(选择题 共40分)一、选择题共10小题,每小题4分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
(1)已知集合≤=−<A x x {|51},≤=B x x {|9}2,则=A B(A )−[5,3] (B )−(3,1](C )−[3,1)(D )−[3,3](2)已知命题p :∃<x 1,≤x 12,则⌝p 为(A )≥∀x 1,>x 12 (B )∃<x 1,>x 12 (C )∀<x 1,>x 12(D )≥∃x 1,>x 12(3)如图,在平行四边形ABCD 中,−=AC AB(A )CB (B )AD (C )BD(D )CD(4)若>a b ,则下列不等式一定成立的是(A )<a b11 (B )>a b 22 (C )<−−a b e e (D )>a b ln ln(5)不等式≤−+x x 2121的解集为 (A )−[3,2] (B )−∞−(,3] (C )−[3,2)(D )−∞−+∞(,3](2,)(6)正方形ABCD 的边长为1,则+=AB AD |2|(A )1(B )3(C(D(7)某物流公司为了提高运输效率,计划在机场附近建造新的仓储中心. 已知仓储中心建造费用C (单位:万元)与仓储中心到机场的距离s (单位:km )之间满足的关系为=++sC s 22000800,则当C 最小时,s 的值为(A )20(B ) (C )40(D )400(8)设=a log 32,则=+a 212(A )8 (B )11(C )12(D )18(9)已知a 为单位向量,则“a b b +−=||||1”是“存在>λ0,使得b =a λ”的(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(10)近年来,踩踏事件时有发生,给人们的生命财产安全造成了巨大损失. 在人员密集区域,人员疏散是控制事故的关键,而能见度x (单位:米)是影响疏散的重要因素. 在特定条件下,疏散的影响程度k 与能见度x 满足函数关系: ,,≤≤⎩>⎪⎪⎨=+⎪⎪<⎧x x k ax x b 10,1 1.4,0.110,0.1,0.2(a b ,是常数). 如图记录了两次实验的数据,根据上述函数模型和实验数据,b 的值是 (参考数据:≈lg 30.48) (A )−0.24 (B )−0.48(C )0.24(D )0.48第二部分(非选择题共110 分)二、填空题共5小题,每小题5分,共25分。
2019北京西城区高一化学第一学期期末试卷带答案Word版

北京市西城区2018 —2019学年度第一学期期末试卷高一化学2019.1本试卷共9页, 共100分。
考试时长90分钟。
考生务必将答案答在答题纸上, 在试卷上作答无效。
可能用到的相对原子质量: H 1 C 12 O 16 Na 23 S 32 Cl 35.5 Fe 56第一部分(选择题共40分)每小题只有一个选项......符合题意(每小题2分)1. 下列试剂中, 标签上应标注的是A.纯碱B.铁粉C.浓硫酸D.酒精B. Na2O2C. Fe2O3D. Fe(OH)32. 下列固体呈淡黄色的是A. Na2OA.Na2OB. NaCl溶液C. NaOH固体D. 乙醇3. 下列物质中, 属于电解质的是A. CuA.CuB. 漂白粉C. 赤铁矿D. 氯水4. 下列物质中, 属于纯净物的是A. 液氨A.液氨高一化学第一学期期末试卷第1页(共16页)B. CO2C. NO2D. NO5. 下列气体过量排放不会导致酸雨的是A. SO2A.SO26. 胶体与其它分散系的本质区别是B. 胶体微粒能通过滤纸A. 能产生丁达尔效应A.能产生丁达尔效应C. 分散质微粒直径在1~100 nm之间D. 胶体在一定条件下能稳定存在7. 合金是一类用途B. 青铜C. 生铁D. 水银广泛的金属材料。
下列物质不属于合金的是A. 不锈钢A.不锈钢B. 浓盐酸C. 硫酸铜溶液D. 稀硫酸8. 下列溶液中, 常温下可以用铁制容器装运的是A. 浓硝酸A.浓硝酸B. 金属钠C. 氯化铁D. 稀硝酸9. 下列物质中, 常用作还原剂的是A. 氯气A.氯气10. 下列四种基本反应类型与氧化还原反应的关系图中, 正确的是A. B., 不正确的是高一化学第一学期期末试卷第2页(共16页)A. 新制氯水需要避光保存B. Na可保存在煤油中C. NaOH固体需要密封保存D. 保存FeCl3溶液时需加入少量Fe粉12.下列各组离子中, 能在水溶液中大量共存的是A. Na+、Ag+、Cl-、CO3B. Na+、Mg2+、Cl-、SO4C. Fe3+、K+、SO4.OH-D. Fe2+、H+、SO4.NO13.配制100 mL 1 mol/L的NaCl溶液时, 下列做法不正确的是A. 选择容积100 mL的容量瓶B. 在容量瓶中溶解NaCl固体C. 转移NaCl溶液时用玻璃棒引流D. 定容时向容量瓶中滴加蒸馏水至液面与刻度线相切14. 下列实验能达到目的的是A. 加热除去Na2CO3固体中的NaHCO3B. 用NaOH溶液除去CO2中的SO2气体C. 用氯水除去Fe2(SO4)3溶液中的少量FeSO4D. 用BaCl2溶液除去NaCl溶液中的K2SO415. 下列有关实验现象与物质性质对应关系的说法中, 错误的是A. Na2CO3溶液遇酚酞变红, 说明Na2CO3溶液呈碱性B. Cl2使湿润的有色布条褪色, 说明Cl2具有漂白性C. NO遇空气变为红棕色, 说明NO具有还原性D.新制的Fe(OH)2遇氧气变为红褐色, 说明Fe(OH)2具有还原性16. 下列离子方程式书写正确的是A. Fe+2H+ === Fe3++H2↑B. Fe2O3+6H+ === 2Fe3++3H2OC. Na+2H2O === Na ++OH-+H2↑D. Cl2+H2O === 2H ++Cl-+ClO-17. 下列说法正确的是A. NaCl的摩尔质量是58.5 gB. 标准状况下, 22.4 L水中约含6.02×1023个H2O分子C. 常温常压下, 22 g CO2中所含氧原子数约为6.02×1023D. 将40 g NaOH固体溶于1 L H2O中, 得到1 mol/L的NaOH溶液18.下图是进行气体性质实验的常用装置, 下列对有关实验现象的描述中, 不正确的是高一化学第一学期期末试卷第3页(共16页)A. 若水槽中盛有水, 试管中盛满SO2, 可看到试管中液面上升B. 若水槽中盛有水, 试管中盛满NO2, 可看到试管中液面上升并充满试管C. 若水槽中盛有水(滴有酚酞), 试管中是NH3, 可看到试管内液面上升并呈红色D.若水槽中盛有NaOH溶液, 试管中是Cl2, 可看到试管内液面上升, 黄绿色褪去高一化学第一学期期末试卷第4页(共16页)20. 将SO2通入BaCl2溶液至饱和的过程中, 始终未观察到溶液中出现浑浊, 若再通入另一种气体A, 则产生白色沉淀。
2019-2020年西城区高一上册期末数学试题(有答案)

北京市西城区高一(上)期末数学试卷A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.tanθ>0 D.以上都不对2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣23.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.199.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= .12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于.15.(4分)已知,则cos(﹣y)= .16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤. 17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁B)= .U21.(4分)已知函数若f(a)=2,则实数a= .22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为.23.(4分)函数的值域为.(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是.二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.北京市西城区高一(上)期末数学试卷参考答案与试题解析A卷[必修模块4]本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.(4分)如果θ是第三象限的角,那么()A.sinθ>0 B.cosθ>0 C.ta nθ>0 D.以上都不对【解答】解:如果θ是第三象限的角,则sinθ<0,cosθ<0,tanθ>0,故选:C.2.(4分)若向量=(1,﹣2),=(,4)满足⊥,则实数等于()A.8 B.﹣8 C.2 D.﹣2【解答】解:根据题意,若向量、满足⊥,必有•=0,又由=(1,﹣2),=(,4),则有•=1×+(﹣2)×4=0,解可得=8;故选:A.3.(4分)若角α的终边经过点(﹣4,3),则tanα=()A.B. C.D.【解答】解:由定义若角α的终边经过点(﹣4,3),∴tanα=﹣,故选:D.4.(4分)函数是()A.奇函数,且在区间上单调递增B.奇函数,且在区间上单调递减C.偶函数,且在区间上单调递增D.偶函数,且在区间上单调递减【解答】解:函数=cos,是偶函数,且在区间上单调递减,故选D.5.(4分)函数f()=sin﹣cos的图象()A.关于直线对称 B.关于直线对称C.关于直线对称 D.关于直线对称【解答】解:函数y=sin﹣cos=sin(﹣),∴﹣=π+,∈,得到=π+,∈,则函数的图象关于直线=﹣对称.故选:B.6.(4分)如图,在△ABC中,点D在线段BC上,且BD=2DC,若,则=()A.B.C.2 D.【解答】解:∵BD=2DC,∴=+=+=+(﹣)=+,∵,∴λ=,μ=,∴=,故选:A7.(4分)定义在R上,且最小正周期为π的函数是()A.y=sin|| B.y=cos|| C.y=|sin| D.y=|cos2|【解答】解:对于A:y=sin||不是周期函数,对于B,y=cos||的最小正周期为2π,对于C,y=|sin|最小正周期为π,对于D,y=|cos2|最小正周期为,故选:C8.(4分)设向量,的模分别为2和3,且夹角为60°,则|+|等于()A.B.13 C.D.19【解答】解:∵向量,的模分别为2和3,且夹角为60°,∴=||•||cos60°=2×3×=3,∴|+|2=||2+||2+2=4+9+2×3=19,∴|+|=,故选:C.9.(4分)函数(其中ω>0,0<φ<π)的图象的一部分如图所示,则()A.B.C.D.【解答】解:如图根据函数的图象可得:函数的周期为(6﹣2)×4=16,又∵ω>0,∴ω==,当=2时取最大值,即2sin(2×+φ)=2,可得:2×+φ=2π+,∈,∴φ=2π+,∈,∵0<φ<π,∴φ=,故选:B.10.(4分)如图,半径为1的圆M,切直线AB于点O,射线OC从OA出发,绕O点顺时针方向旋转到OB,旋转过程中OC交⊙M于P,记∠PMO为,弓形PNO的面积S=f(),那么f ()的图象是()A.B.C.D.【解答】解:由题意得S=f ()=﹣f′()=≥0当=0和=2π时,f′()=0,取得极值.则函数S=f ()在[0,2π]上为增函数,当=0和=2π时,取得极值.结合选项,A正确.故选A.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.(4分)若向量=(﹣1,2)与向量=(,4)平行,则实数= ﹣2 .【解答】解:因为向量=(﹣1,2)与向量=(,4)平行,所以,所以﹣1=λ,2=λ4,解得:λ=,=﹣2.故答案为﹣2.12.(4分)若θ为第四象限的角,且,则cosθ=;sin2θ=﹣.【解答】解:∵θ为第四象限的角,且,∴cosθ==,sin2θ=2sinθcosθ=2×(﹣)×=﹣.故答案为:,﹣.13.(4分)将函数y=cos2的图象向左平移个单位,所得图象对应的函数表达式为y=﹣sin2 .【解答】解:将函数y=cos2的图象向左平移个单位,所得图象对应的解析式为y=cos2(+)=cos(2+)=﹣sin2.故答案为:y=﹣sin2.14.(4分)若,均为单位向量,且与的夹角为120°,则﹣与的夹角等于150°.【解答】解:∵,均为单位向量,且与的夹角为120°,∴(﹣)•=﹣||2=1×1×(﹣)﹣1=﹣,|﹣|2=||2﹣2+||2=1﹣2×1×1×(﹣)+1=3,∴|﹣|=,设﹣与的夹角为θ,则cosθ===﹣,∵0°≤θ≤180°,∴θ=150°,故答案为:150°15.(4分)已知,则cos(﹣y)= ﹣.【解答】解:∵sin+siny=,①cos+cosy=,②①2+②2得:2+2sinsiny+2coscosy=,∴cos(﹣y)=sinsiny+coscosy=﹣,故答案为:﹣.16.(4分)已知函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,给出以下四个结论:①ω=3;②ω≠6,∈N*;③φ可能等于;④符合条件的ω有无数个,且均为整数.其中所有正确的结论序号是①③.【解答】解:函数f()=sin(ω+φ)(ω>0,φ∈(0,π))满足,∴ω()=nπ,∴ω=n(n∈),∴①ω=3正确;②ω≠6,∈N*,不正确;③φ可能等于,正确;④符合条件的ω有无数个,且均为整数,不正确.故答案为①③.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.(12分)已知φ∈(0,π),且.(Ⅰ)求tan2φ的值;(Ⅱ)求的值.【解答】解:(Ⅰ)∵φ∈(0,π),且=,可得:tanφ=﹣2,∴tan2φ==.(Ⅱ)===﹣.18.(12分)已知函数.(1)求函数f()的单调增区间;(2)若直线y=a与函数f()的图象无公共点,求实数a的取值范围.【解答】解:(1)函数=cos(cos+sin)=+sin2=cos(2﹣)+,由2π﹣π≤2﹣≤2π,∈,解得π﹣≤≤π+,∈,即f()的增区间为[π﹣,π+],∈;(2)由(1)可得当2﹣=2π,即=π+,∈时,f()取得最大值;当2﹣=2π+π,即=π+,∈时,f()取得最小值﹣.由直线y=a与函数f()的图象无公共点,可得a的范围是a>或a<﹣.19.(12分)如图,在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),P为线段AD(含端点)上一个动点,设,,则得到函数y=f().(Ⅰ)求f(1)的值;(Ⅱ)对于任意a∈(0,+∞),求函数f()的最大值.【解答】解:(1)如图所示,建立直角坐标系.∵在直角梯形ABCD中,AB∥CD,AB⊥BC,AB=2,CD=1,BC=a(a>0),∴B(0,0),A(﹣2,0),D(﹣1,a),C(0,a).∵=,(0≤≤1).∴=+=(﹣2,0)+(1,a)=(﹣2,a),∴=﹣=(0,a)﹣(﹣2,a)=(2﹣,a﹣a)∴y=f()=•=(2﹣,﹣a)•(2﹣,a﹣a)=(2﹣)2﹣a(a﹣a)=(a2+1)2﹣(4+a2)+4.∴f(1)=a2+1﹣(4+a2)+4=1(Ⅱ)由y=f()=(a2+1)2﹣(4+a2)+4.可知:对称轴=.当0<a≤时,1<,∴函数f()在[0,1]单调递减,因此当=0时,函数f()取得最大值4.当a>时,0<0<1,函数f()在[0,)单调递减,在(,1]上单调递增.又f(0)=4,f(1)=1,∴f()ma=f(0)=4.综上所述函数f()的最大值为4B卷[学期综合]本卷满分:50分.一、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.B)= {|﹣1≤<0} .20.(4分)设全集U=R,集合A={|<0},B={|||>1},则A∩(∁U【解答】解:全集U=R,集合A={|<0},B={|||>1}={|<﹣1或>1},则∁B={|﹣1≤≤1},UB)={|﹣1≤<0}.A∩(∁U故答案为:{|﹣1≤<0}.21.(4分)已知函数若f(a)=2,则实数a= e2.【解答】解:∵函数,f(a)=2,∴当a<0时,f(a)=a﹣2=2,解得a=,不成立;当a>0时,f(a)=lna=2,解得a=e2.∴实数a=e2.故答案为:e2.22.(4分)定义在R上的函数f ()是奇函数,且f()在(0,+∞)是增函数,f(3)=0,则不等式f()>0的解集为(﹣3,0)∪(3,+∞).【解答】解:∵f()在R上是奇函数,且f()在(0,+∞)上是增函数,∴f()在(﹣∞,0)上也是增函数,由f(﹣3)=0,得﹣f(3)=0,即f(3)=0,由f(﹣0)=﹣f(0),得f(0)=0,作出f()的草图,如图所示:∴f()>0的解集为:(﹣3,0)∪(3,+∞),故答案为:(﹣3,0)∪(3,+∞).23.(4分)函数的值域为{0,1} .(其中表示不大于的最大整数,例如[3.15]=3,[0.7]=0.)【解答】解:设m表示整数.①当=2m时,[]=[m+0.5]=m,[]=[m]=m.∴此时恒有y=0.②当=2m+1时,[]=[m+1]=m+1,[]=[m+0.5]=m.∴此时恒有y=1.③当2m<<2m+1时,2m+1<+1<2m+2∴m<<m+0.5m+0.5<<m+1∴[]=m,[]=m∴此时恒有y=0④当2m+1<<2m+2时,2m+2<+1<2m+3∴m+0.5<<m+1m+1<<m+1.5∴此时[]=m,[]=m+1∴此时恒有y=1.综上可知,y∈{0,1}.故答案为{0,1}.24.(4分)在如图所示的三角形空地中,欲建一个面积不小于200m2的内接矩形花园(阴影部分),则其边长(单位:m)的取值范围是[10,20] .【解答】解:设矩形的另一边长为ym,由相似三角形的性质可得:=,解得y=30﹣,(0<<30)∴矩形的面积S=(30﹣),∵矩形花园的面积不小于200m2,∴(30﹣)≥200,化为(﹣10)(﹣20)≤0,解得10≤≤20.满足0<<30.故其边长(单位m)的取值范围是[10,20].故答案为:[10,20].二、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤. 25.(10分)已知函数.(Ⅰ)若,求a的值;(Ⅱ)判断函数f()的奇偶性,并证明你的结论.【解答】解:(Ⅰ)∵函数.,∴=,∴=2,解得:a=﹣3;(Ⅱ)函数f()为奇函数,理由如下:函数f()的定义域(﹣∞,﹣1)∪(1,+∞)关于原点对称,且f(﹣)+f()=+=0,即f(﹣)=﹣f(),故函数f()为奇函数.26.(10分)已知函数f()=3,g()=|+a|﹣3,其中a∈R.(Ⅰ)若函数h()=f[g()]的图象关于直线=2对称,求a的值;(Ⅱ)给出函数y=g[f()]的零点个数,并说明理由.【解答】解:(Ⅰ)函数h()=f[g()]=3|+a|﹣3的图象关于直线=2对称,则h(4﹣)=h()⇒|+a|=|4﹣+a|恒成立⇒a=﹣2;(Ⅱ)函数y=g[f()]=|3+a|﹣3的零点个数,就是函数G()=|3+a|与y=3的交点,①当0≤a<3时,G()=|3+a|=3+a与y=3的交点只有一个,即函数y=g[f()]的零点个数为1个(如图1);②当a≥3时,G()=|3+a|=3+a与y=3没有交点,即函数y=g[f()]的零点个数为0个(如图1);③﹣3≤a<0时,G()=|3+a|与y=3的交点只有1个(如图2);④当a<﹣3时,G()=|3+a|与y=3的交点有2个(如图2);27.(10分)设函数f()的定义域为R,如果存在函数g(),使得f()≥g()对于一切实数都成立,那么称g()为函数f()的一个承托函数.已知函数f()=a2+b+c的图象经过点(﹣1,0).(1)若a=1,b=2.写出函数f()的一个承托函数(结论不要求证明);(2)判断是否存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.【解答】解:(1)函数f()=a2+b+c的图象经过点(﹣1,0),可得a﹣b+c=0,又a=1,b=2,则f()=2+2+1,由新定义可得g()=为函数f()的一个承托函数;(2)假设存在常数a,b,c,使得y=为函数f()的一个承托函数,且f()为函数的一个承托函数.即有≤a2+b+c≤2+恒成立,令=1可得1≤a+b+c≤1,即为a+b+c=1,即1﹣b=a+c,又a2+(b﹣1)+c≥0恒成立,可得a>0,且(b﹣1)2﹣4ac≤0,即为(a+c)2﹣4ac≤0,即有a=c;又(a﹣)2+b+c﹣≤0恒成立,可得a<,且b2﹣4(a﹣)(c﹣)≤0,即有(1﹣2a)2﹣4(a﹣)2≤0恒成立.故存在常数a,b,c,且0<a=c<,b=1﹣2a,可取a=c=,b=.满足题意.。
北京市西城区2012年7月高一数学期末试卷

北京市西城区(北区)2011 — 2012学年度第二学期学业测试高一数学 2012.7试卷满分:150分 考试时间:120分钟一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.已知等差数列5,7,9,11,,则下列哪个数是这个数列中的项 ( ) A. 3B. 6C. 10D. 15 2.在某一项篮球赛事中,甲、乙两名运动员都参加了5场比赛,他们各场比赛得分的情况如茎叶图所示,则甲得分的中位数...和乙得分的平均数...分别为( ) A. 18,14B. 18,12C. 16,14D. 16,123.已知0αβ<<<π,则αβ-的取值范围是 ( ) A. (,)-ππB. (,)-π0C. (,0)2π-D. (0,)π4.若非零实数,,a b c 满足a b c >>,则一定成立的不等式是( ) A. ac bc >B. ab ac >C. a c b c ->-D.111a b c<< 5.由直线10x y +-=,10x y -+=和10y +=所围成的三角形区域(包括边界)用不等式组可表示为( )A. 10,10,1.x y x y y +-≤⎧⎪-+≤⎨⎪≥-⎩B. 10,10,1.x y x y y +-≥⎧⎪-+≤⎨⎪≥-⎩C. 10,10,1.x y x y y +-≤⎧⎪-+≥⎨⎪≥-⎩D. 10,10,1.x y x y y +-≥⎧⎪-+≥⎨⎪≤-⎩6.已知变量b a ,已被赋值,要交换b a ,的值,应采用下面哪种算法( ) A. b a =,a b = B. c a =,a b =,b c = C.c a =,a b =,a c = D.a c =,b a =,c b =7.在ABC ∆中,,a b c 分别是角,,A B C 的对边,若2cos b c A =,则ABC ∆一定是 ( ) A. 等边三角形B. 直角三角形C. 等腰三角形D. 钝角三角形8.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是( ) A. 至少有一个黑球与都是黑球B. 至少有一个黑球与至少有一个红球C. 恰好有一个黑球与恰好有两个黑球D. 至少有一个黑球与都是红球9.若等比数列{}n a 满足116n n n a a +=,则{}n a 的公比为( ) A. 4B. 6C. 8D. 1610. 已知函数2()f x x =,定义数列{}n a 如下:1()n n a f a +=,*n ∈N .若给定1a 的值,使得到的无穷数列{}n a 满足:对任意正整数n ,均有1n n a a +>,则1a 的取值范围是( )A. (,1)(1,)-∞-+∞B. (,0)(1,)-∞+∞C. (1,)+∞D. (1,0)-二、填空题:本大题共6小题,每小题5分,共30分. 把答案填在题中横线上.11. 某单位有职工800人,其中青年职工400人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本. 若样本中青年职工的人数为8,则样本容量为_______. 12. 设n S 是等差数列{}n a 的前n 项和,若562a a +=,则10S =_______.13. 执行右图所示的程序框图,若1M =,则输出的S =______; 若输出的14S =,则整数=M _______. 14. 函数41y x x =+-(1)x >的最小值是________; 此时x =_________. 15. 已知正方形ABCD .(1)在,,,A B C D 四点中任取两点连线,则余下的两点在此直线异侧的概率是______; (2)向正方形ABCD 内任投一点P ,则PAB ∆的面积大于正方形ABCD 面积四分之一的概率是_______.16. 已知当实数,x y 满足12211x y x y x y +≤⎧⎪-⎨⎪-⎩≥-≤时,1ax by +≤恒成立. 给出以下命题:①点(,)P x y 所形成的平面区域的面积等于3; ②22x y +的最大值等于2;③以,a b 为坐标的点(,)Q a b 所形成的平面区域的面积等于4.5; ④a b +的最大值等于2,最小值等于1-. 其中,所有正确命题的序号是 .三、解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分13分)在ABC ∆中,,,a b c 分别为角,,A B C 所对的边,已知C 为锐角,且2sin a c A =. (Ⅰ)求角C 的大小;(Ⅱ)若1c =,且ABC ∆的面积为4,求,a b 的值.18.(本小题满分13分)在参加某次社会实践的学生中随机选取40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;……第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中,(Ⅰ)求a 的值及成绩在区间[80,90)内的学生人数;(Ⅱ)从成绩小于60分的学生中随机选2名学生,求最多有1名学生成绩在区间[50,60)内的概率.19.(本小题满分14分)设等差数列{}n a 的前n 项和为n S ,已知84a =,1314a =. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求n S 的最小值及相应的n 的值;(Ⅲ)在公比为q 的等比数列{}n b 中,28b a =,12313b b b a ++=,求4734n q q q q +++++.20.(本小题满分14分)已知函数2()(1)f x kx k x =++.(Ⅰ)当1k =时,解不等式()0f x <;(Ⅱ)当0k ≠时,二次函数()f x 的对称轴在直线1x =的左侧,求k 的取值范围;(Ⅲ)解关于x 的不等式()0f x <.21.(本小题满分13分)在ABC ∆中,4AB =,3AC =,60A =. (Ⅰ)求ABC ∆的面积;(Ⅱ)设点,D E 分别是AB 、AC 边上的点,记AD x =,DE y =. 若ADE ∆的面积总保持是ABC ∆面积的一半,求y 关于x 的函数解析式及y 的最小值.22.(本小题满分13分)已知数列{}n a 是各项均为正数有穷数列,数列{}n b 满足12k kkb a a a =+++(1,2,,k n =).(Ⅰ)若数列{}n b 的通项公式n b n =,求数列{}n a 的通项公式;(Ⅱ)(ⅰ)若数列{}n a 为递增数列,试判断数列{}n b 是否为递增数列?如果是,请加以证明;如果不是,说明理由.(ⅱ)若数列{}n b 为递增数列,试判断数列{}n a 是否为递增数列?如果是,请加以证明;如果不是,说明理由.(Ⅲ)设数列{}n C 、{}n D 满足:2221122()()()n n n C a b a b a b =-+-++-, 22212()()()n n n n n D a b a b a b =-+-++-,求证:n n C D ≤.ABC D E北京市西城区(北区)2011 — 2012学年度第二学期学业测试高一数学参考答案及评分标准 2012.7一、选择题:本大题共10小题,每小题4分,共40分.1. D2. A3. B4. C5. C6. D7. C8. C9. A 10. A 二、填空题:本大题共6小题,每小题5分,共30分.11. 16 12. 10 13. 2,3 14. 5,3 15.13,1216. ②③④ 注:一题两空的试题,第一空2分,第二空3分;16题选出错误选项即得0分. 漏选正确选项得2分,全部选出正确选项得5分.三、解答题:本大题共3小题,共36分.17. 解:(Ⅰ)由2sin a c A =及正弦定理得,sin 2sin sin A C A =,………………3分因为sin 0A ≠,所以1sin 2C =, 因为C 为锐角,所以30C =o. …………………5分 (Ⅱ)因为1,30.c C ==o由面积公式得1sin 302ab =o …………………7分即ab =…………① …………………8分 由余弦定理得222cos301a b ab +-=o, …………………9分所以221a b +=, 即224a b +=,…………② …………………10分联立①、②得224,a b ab ⎧+=⎪⎨=⎪⎩ …………………11分解得1,a b ==或1a b ==. …………………13分18. 解:(Ⅰ)因为各组的频率之和为1,所以成绩在区间[60,70)的频率为1(0.00520.0100.0150.030)100.35-⨯+++⨯=, …………………3分所以0.035a =. …………………4分 由已知,成绩在区间[80,90)的频率为0.15,所以,40名学生中成绩在区间[80,90)的学生人数为400.156⨯=(人).…………………6分(Ⅱ)设A 表示事件“在成绩小于60分的学生中随机选两名学生,最多有一名学生成绩在区间[50,60)内”,由已知,成绩在区间[50,60)内的学生有4人, 记这四个人分别为,,,a b c d ,成绩在区间[40,50]内的学生有2人, …………………8分 记这两个人分别为,e f , 则选取学生的所有可能结果为:(,),(,),(,),(,),(,),(,),(,),(,),(,),a b a c a d a e a f b c b d b e b f (,),(,),(,)c d c e c f , (,),(,),(,)d e d f e f .基本事件数为15. …………………10分事件“最多一人成绩在区间[50,60)之间”的可能结果为:(,),(,),(,),(,),a e a f b e b f (,),(,),c e c f (,),(,),(,)d e d f e f .基本事件数为9, …………………12分 所以9()0.615P A ==. …………………13分 19. 解:(Ⅰ)设等差数列{}n a 的首项为1a ,公差为d ,由已知可得174a d +=,11214a d +=, …………………2分 解得2d =,110a =-. …………………4分 所以102(1)212n a n n =-+-=-. …………………5分 (Ⅱ)令0n a ≤,即2120n -≤,解得6n ≤, …………………7分所以,当1,2,3,4,5n =时,0n a <;60a =;7,8,n =时0n a >.所以,当5n =或6n =时,n S 最小, …………………8分561555()(102)3022S S a a ==+=⨯--=-. …………………9分 (Ⅲ)依题意,14b q =,211114b b q b q ++=,即14b q =,1410b q +=,消去1b ,得22520q q -+=, 解得2q =或12q =, …………………11分 当1q ≠时,3647343(1)1n n q q q q q qq ++-++++=-. …………………12分 当2q =时,4734362(21)7n n q q q q ++++++=-; …………………13分当12q =时,47343641(1)72n n q q q q ++++++=-. …………………14分 20. 解:(Ⅰ)当1k =时,不等式为220x x +<, …………………2分即(2)0x x +<,解得20x -<<,所以不等式的解集为{20}x x -<<. …………………4分 (Ⅱ)依题意,112k k+-<, …………………6分 整理的2(31)0k k +>, …………………7分解得13k <-或0k >.所以k 的取值范围是1(,)(0,)3-∞-+∞. …………………8分(Ⅲ)当0k =时,不等式的解集为{0}x x <; …………………9分当0k >时,1()0k x x k ++<,解得10k x k +-<<; …………………10分 当0k <时,1()0k x x k++>, 若10k k +=,即1k =-时,0x ≠; …………………11分 若10k k +->,即10k -<<时,0x <或1k x k +>-; …………………13分 若10k k +-<,即1k <-时,1k x k+<-或0x >. …………………14分 综上, 当0k >时,不等式的解集为1{0}k x x k+-<<; 当0k =时,不等式的解集为{0}x x <;当10k -<<时,不等式的解集为1{0,}k x x x k+<>-或; 当1k =-时,不等式的解集为{0}x x ≠; 当1k <-时,不等式的解集为1{,0}k x x x k+<->或.21.解:(Ⅰ)因为1sin 2ABC S bc A ∆=, 所以143sin 60332ABC S ∆=⨯⨯⨯=…………………3分 (Ⅱ)设AE m =,则1sin 602ADE S xm ∆=,所以133sin 602xm =,6xm =,……① ……6分AD Em xy在ABC ∆中,2222cos60y x m xm =+-,即222y x m xm =+-,……② …………………9分 由①②消去m ,得222366y x x =+-,所以y =, …………………10分 依题意[2,4]x ∈, …………………11分y =≥当且仅当2236x x=,即x ==”成立. …………………12分所以y …………………13分22. (Ⅰ)解:设数列{}n a 的前n 项和为n S ,由已知n n nb S =,即2n S n =,当1n =时,111a S ==; …………………1分当2n ≥时,221(121n n n a S S n n n =-=-=---).综上,21n a n =-. …………………3分(Ⅱ)解:(ⅰ)由已知,1211211k kk k a a a a a a b b k k++++++++-=-+12112()(1)()(1)k k k a a a k a a a k k ++++-++++=+112()(1)k k ka a a a k k +-+++=+. …………………5分因为数列{}n a 为单调递增数列,所以121k k a a a a +>>>>,所以112()0k k ka a a a +-+++>,所以10k k b b +->,即1k k b b +>,1,2,3,,1k n =-.即数列{}n b 是单调递增数列. …………………6分 (ⅱ)当{}n b 为1,5,6时,{}n a 中的三项为1,9,8.所以,若数列{}n b 为单调递增数列,数列{}n a 不一定为单调递增数列.…………………8分(Ⅲ)证明:n n D C -221()()n n n a b a b =-++-2211()()n n a b a b -----2211()()n n n a b a b -=-++-221111()()n n a b a b -------. 由12k k kb a a a =+++,可知11(1)k k k a k b kb ++=+-,11a b =, ……………10分利用上式,将n n D C -表达式展开,将i a 用n b {}中的项替换,得n nD C -2222212311223135(23)(1)242(1)n n n n b b b n b n b bb b b n b b --=++++-+------22212231()2()(1)()0n n b b b b n b b -=-+-++--≥.所以n n C D . …………………13分。
北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷

北京市西城区2017 - 2018学年度第二学期期末考试高一数学试卷北京市西城区2017-2018学年度第二学期期末试卷高一数学2018.7 A卷 [立体几何初步与解析几何初步] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合要求的。
1.已知点 M(-1,2),N(3,0),则点 M 到点 N 的距离为()。
A) 2 (B) 4 (C) 5 (D) 2√52.直线 x-y-3=0 的倾斜角为()。
A) 45 (B) 60 (C) 120 (D) 1353.直线 y=2x-2 与直线 l 关于 y 轴对称,则直线 l 的方程为()。
A) y=-2x+2 (B) y=-2x-2 (C) y=2x+2 (D) y=1/x-14.已知圆 M: x^2+y^2=1 与圆 N: (x-2)^2+y^2=9,则两圆的位置关系是()。
A) 相交 (B) 相离 (C) 内切 (D) 外切5.设m,n 为两条不重合的直线,α,β 为两个不重合的平面,m,n 既不在α 内,也不在β 内。
则下列结论正确的是()。
A) 若m//α,n//α,则 m//n。
B) 若 m//n,n//α,则m//α。
C) 若 m⊥α,n⊥α,则 m⊥n。
D) 若 m⊥α,m⊥β,则α⊥β。
6.若方程 x^2+y^2-4x+2y+5k=0 表示圆,则实数 k 的取值范围是()。
A) (-∞,1) (B) (-∞,1] (C) [1,+∞) (D) R7.圆柱的侧面展开图是一个边长为 2 的正方形,那么这个圆柱的体积是()。
A) π (B) π/2 (C) 2π (D) π/28.方程 x=1-y^2 表示的图形是()。
A) 两个半圆 (B) 两个圆 (C) 圆 (D) 半圆9.如图,四棱锥 P-ABCD 的底面 ABCD 是梯形,XXX。
若平面 PAD 平面 PBC∥l,则()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京市西城区2018 — 2019学年度第一学期期末试卷高一数学试卷满分:150分考试时间:120分钟A卷 [三角函数与平面向量] 本卷满分:100分一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.的值是A. B. C. D.【答案】D【解析】【分析】由题意结合诱导公式求解三角函数值即可.【详解】由题意可得:.本题选择D选项.【点睛】本题主要考查三角函数的诱导公式,特殊角的三角函数值等知识,属于基础题目.2.函数的最小正周期为A. B. C. D.【答案】C【解析】【分析】由题意结合最小正周期公式求解函数的最小正周期即可.【详解】由最小正周期公式可得函数的最小正周期为.本题选择C选项.【点睛】本题主要考查三角函数的周期公式,属于基础题.3.如果向量,,那么()A. B. C. D.【答案】B【解析】【分析】首先求得的坐标表示,然后求解其模长即可.【详解】由题意可得,则.本题选择B选项.【点睛】本题主要考查平面向量的坐标运算,向量的模的求解等知识,意在考查学生的转化能力和计算求解能力.4.()A. B. C. 1 D.【答案】C【解析】【分析】由题意结合诱导公式化简三角函数式即可.【详解】由题意结合诱导公式可得:.本题选择C选项.【点睛】本题主要考查诱导公式的应用,,三角函数式的化简等知识,意在考查学生的转化能力和计算求解能力.5.已知函数和在区间I上都是减函数,那么区间I可以是A. B. C. D.【答案】B【解析】【分析】逐一考查函数在所给区间的单调性确定满足题意的区间即可.【详解】逐一考查所给的区间:A.,函数在区间上单调递增,函数在区间上单调递减,不合题意;B.,函数在区间上单调递减,函数在区间上单调递减,符合题意;C.,函数在区间上单调递减,函数在区间上单调递增,不合题意;D.,函数在区间上单调递增,函数在区间上单调递增,不合题意;本题选择B选项.【点睛】本题主要考查三角函数的单调性及其应用等知识,意在考查学生的转化能力和计算求解能力.6.如图,在中,D是BC上一点,则()A. B. C. D.【答案】D【解析】【分析】由题意结合向量的运算整理计算即可求得最终结果.【详解】由题意可得:.本题选择D选项.【点睛】本题主要考查平面向量的加法公式、减法公式等知识,意在考查学生的转化能力和计算求解能力.7.已知为单位向量,且,那么向量的夹角是()A. B. C. D.【答案】D【解析】【分析】由题意结合向量的夹角公式求解向量的夹角即可.【详解】设向量的夹角是,由题意可得:,则,即向量的夹角是.本题选择D选项.【点睛】本题主要考查平面向量夹角的计算,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.8.设,则使成立的的取值范围是A. B. C. D.【答案】B【解析】【分析】由题意结合三角函数的图像确定不等式的解集即可.【详解】绘制函数在区间上的图像如图所示,且易知,观察可得,使成立的的取值范围是.本题选择B选项.【点睛】本题主要考查三角不等式的解法,三角函数图像的应用等知识,意在考查学生的转化能力和计算求解能力.9.已知函数,,其图象如图所示为得到函数的图象,只需先将函数图象上各点的横坐标缩短到原来的倍纵坐标不变,再A. 向右平移个单位B. 向右平移个单位C. 向左平移个单位D. 向左平移个单位【答案】A【解析】【分析】首先确定函数的解析式,然后确定函数的变换即可.【详解】由图1可知,函数的周期为,则,当时,,则,令可得,则,同理可得.将函数图象上各点的横坐标缩短到原来的倍纵坐标不变,据此可得函数的解析式为:,而,则图象上各点的横坐标缩短到原来的倍纵坐标不变,再将函数图像向右平移个单位即可得到函数的图象.【点睛】已知f(x)=Asin(ωx+φ)(A>0,ω>0)的部分图象求其解析式时,A比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法:(1)由ω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x0,则令ωx0+φ=0(或ωx0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.10.在中,,,是BC边上的动点,则的取值范围是A. B. C. D.【答案】A【解析】【分析】由题意结合平面向量的加减法和向量的数量积运算法则确定的取值范围即可.【详解】设,则:,,由于,故:,由于,故,结合一次函数的性质可知.本题选择A选项.【点睛】求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.二、填空题:本大题共6小题,每小题4分,共24分.把答案填在题中横线上.11.若,且为第三象限的角,则______.【答案】【解析】【分析】由题意结合同角三角函数基本关系求解的值即可.【详解】由题意结合同角三角函数基本关系可得:,则.【点睛】本题主要考查同角三角函数基本关系及其应用,意在考查学生的转化能力和计算求解能力.12.已知向量与向量共线的一个非零向量的坐标可以是______.【答案】【解析】【分析】由题意结合向量共线的充分必要条件确定一个非零向量的坐标即可.【详解】由向量共线的充分必要条件可知满足题意的向量为:,取可得:与向量共线的一个非零向量的坐标可以是.【点睛】本题主要考查向量共线的定义及其应用,属于基础题.13.如果,那么x的最小值是______.【答案】【解析】【分析】由题意求解三角方程确定x的最小值即可.【详解】解三角方程可得:,则,由于,故取可得的最小值为.【点睛】本题主要考查三角方程的解法,正切函数的性质等知识,意在考查学生的转化能力和计算求解能力.14.如图,已知正方形.若,其中,,则______.【答案】【解析】【分析】由题意首先确定的值,然后求解其比值即可.【详解】由题意可得:,则,即.【点睛】(1)应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.15.在直角坐标系中,已知点,,,是坐标平面内的一点.① 若四边形是平行四边形,则点的坐标为______;② 若,则点的坐标为______.【答案】(1). (2).【解析】【分析】由题意结合平面向量的坐标运算求解点的坐标即可.【详解】①.设点的坐标为,四边形是平行四边形,则:,,据此可得:,点的坐标为.②.由题意可得:,,故,设,由题意可得:,据此可得:,解得:,点的坐标为.【点睛】本题主要考查平面向量的坐标运算,向量在几何中的应用等知识,意在考查学生的转化能力和计算求解能力.16.设函数若的图象关于直线对称,则的取值集合是___.【答案】【解析】【分析】由题意结合三角函数的性质确定的取值集合即可.【详解】由题意可知,函数的对称轴方程为:,即,结合题意有:,整理可得的取值集合是.【点睛】本题主要考查三角函数的性质及其应用,三角函数的对称轴等知识,意在考查学生的转化能力和计算求解能力.三、解答题:本大题共3小题,共36分.解答应写出文字说明,证明过程或演算步骤.17.,且.Ⅰ求的值;Ⅱ求的值.【答案】(Ⅰ);(Ⅱ).【解析】【分析】(Ⅰ)首先求得的值,然后利用两角和差正切公式求解三角函数式的值即可;(Ⅱ)由题意结合降幂公式和两角和的正切公式求解三角函数式的值即可.【详解】(Ⅰ)因为,,所以.所以.(Ⅱ)因为,,所以.所以.【点睛】本题主要考查同角三角函数基本关系的应用,三角函数公式的应用等知识,意在考查学生的转化能力和计算求解能力.18.函数的部分图象如图所示,其中,,.Ⅰ求的解析式;Ⅱ求在区间上的最大值和最小值;Ⅲ写出的单调递增区间.【答案】(Ⅰ);(Ⅱ)最大值;最小值.(Ⅲ)().【解析】【分析】(Ⅰ)结合函数图像分别确定的值即可确定函数的解析式;(Ⅱ)由函数的解析式结合正弦函数的性质确定函数的最值即可;(Ⅲ)结合函数的解析式写成函数的单调增区间即可.【详解】(Ⅰ)由图象可知.因为的最小正周期为,所以.令,解得,适合.所以.(Ⅱ)因为,所以.所以,当,即时,取得最大值;当,即时,取得最小值.(Ⅲ)的单调递增区间满足:,求解不等式组可得其在区间为:().【点睛】本题主要考查三角函数解析式的求解,函数最值的求解,函数单调区间的求解等知识,意在考查学生的转化能力和计算求解能力.19.在直角坐标系xOy中,已知点,,,其中.Ⅰ求的最大值;Ⅱ是否存在,使得为钝角三角形?若存在,求出的取值范围;若不存在,说明理由.【答案】(Ⅰ).(Ⅱ)答案见解析.【解析】【分析】(Ⅰ)首先求得向量的坐标表示,然后求解其数量积,结合三角函数的性质确定其最大值即可;(Ⅱ)首先确定最大的角,然后结合(Ⅰ)中的结论求解三角不等式确定的取值范围即可.【详解】(Ⅰ),.所以.因为,所以.所以当,即时,取得最大值.(Ⅱ)因为,,.又,所以,,所以,.所以若△为钝角三角形,则角是钝角,从而.由(Ⅰ)得,解得.所以,即.反之,当时,,又三点不共线,所以△为钝角三角形.综上,当且仅当时,△为钝角三角形.【点睛】本题主要考查平面向量数量积的坐标运算,向量在几何中的应用等知识,意在考查学生的转化能力和计算求解能力.B卷 [学期综合]本卷满分:50分四、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中横线上.20.若集合,,则____.【答案】【解析】【分析】结合题意由并集的定义求解即可.【详解】由题意结合并集的定义可得:.【点睛】本题主要考查并集的定义,属于基础题.21.函数的定义域是____.【答案】,或【解析】【分析】由题意结合函数的解析式求解函数的定义域即可.【详解】函数有意义,则:,求解不等式组可得函数的定义域为,或.【点睛】求函数的定义域,其实质就是以函数解析式有意义为准则,列出不等式或不等式组,然后求出它们的解集即可.22.已知三个实数,,将a,b,c按从小到大排列为___.【答案】【解析】【分析】由题意结合函数的单调性和所给的数与1的大小关系比较其大小即可.【详解】由题意可得:,,则a,b,c按从小到大排列为.【点睛】对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.当底数与指数都不相同时,选取适当的“媒介”数(通常以“0”或“1”为媒介),分别与要比较的数比较,从而可间接地比较出要比较的数的大小.23.里氏震级M的计算公式为:,其中是标准地震的振幅,A是测震仪记录的地震曲线的最大振幅在一次地震中,测震仪记录的地震曲线的最大振幅是500,则此次地震的里氏震级为__级;8级地震的最大振幅是5级地震最大振幅的___倍【答案】(1). (2).【解析】【分析】由题意结合定义的知识和对数的运算法则整理计算即可求得最终结果.【详解】由题意可得,地震曲线的最大振幅是500时,地震的里氏震级为级,设8级地震的最大振幅为,则:,解得:,据此可知:8级地震的最大振幅是5级地震最大振幅的倍.【点睛】本题主要考查新定义的应用,对数的运算法则及其应用等知识,意在考查学生的转化能力和计算求解能力.24.已知函数若,则的值域是____;若的值域是,则实数的取值范围是____.【答案】(1). (2).【解析】若,由二次函数的性质,可得,的值域为,若值域为,时,且时,,要使的值域为,则,得,实数的取值范围是,故答案为.五、解答题:本大题共3小题,共30分.解答应写出文字说明,证明过程或演算步骤.25.已知函数.Ⅰ证明:是奇函数;Ⅱ判断函数在区间上的单调性,并用函数单调性的定义加以证明.【答案】(Ⅰ)证明见解析;(Ⅱ)答案见解析.【解析】【分析】(Ⅰ)首先确定函数的定义域,然后考查与的关系即可证得函数为奇函数;(Ⅱ)由题意结合函数的单调性的定义确定并证明函数的单调性即可.【详解】(Ⅰ)函数的定义域为.对于任意,因为,所以是奇函数.(Ⅱ)函数在区间上是减函数.证明:在上任取,,且,则.由,得,,,,所以,即.所以函数在区间上是减函数.【点睛】本题主要考查奇函数的判定,函数的单调性的判定等知识,意在考查学生的转化能力和计算求解能力.26.已知函数定义在区间上,其中.Ⅰ若,求的最小值;Ⅱ求的最大值.【答案】(Ⅰ)-2;(Ⅱ)当时,的最大值为;当时,的最大值为.【解析】【分析】(Ⅰ)由题意结合函数的解析式确定函数的单调性,然后确定函数的最值即可;(Ⅱ)由题意分类讨论,,和三中情况确定函数的最大值即可.【详解】(Ⅰ)当时,.所以在区间上单调递增,在上单调递减.因为,,所以的最小值为.(Ⅱ)①当时,.所以在区间上单调递增,所以的最大值为.当时,函数图像的对称轴方程是.②当,即时,的最大值为.③当时,在区间上单调递增,所以的最大值为.综上,当时,的最大值为;当时,的最大值为.【点睛】二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,有关二次函数的问题,数形结合,密切联系图象是探求解题思路的有效方法.一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.27.已知函数的定义域为若对于任意,,且,都有,则称函数为“凸函数”.Ⅰ判断函数与是否为“凸函数”,并说明理由;Ⅱ若函数b为常数是“凸函数”,求a的取值范围;Ⅲ写出一个定义在上的“凸函数”,满足只需写出结论【答案】(Ⅰ)答案见解析;(Ⅱ);(Ⅲ)【解析】【分析】(Ⅰ)由题意结合“凸函数”的定义判断所给的函数是否是“凸函数”即可;(Ⅱ)由题意得到关于a的不等式,讨论确定实数a的取值范围即可;(Ⅲ)按照“凸函数”的定义给出一个满足题意的函数即可.【详解】(Ⅰ)对于函数,其定义域为.取,有,,所以,所以不是“凸函数”.对于函数,其定义域为.对于任意,且,由,所以.因为,,所以,所以是“凸函数”.(Ⅱ)函数的定义域为.对于任意,且,.依题意,有.因为,所以.(Ⅲ).【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.。