高等数学A(二)09-10真题(A卷)
安徽大学 2009--2010 高等数学 A(二)试题与答案

x 2+ y 2AA ⎩S S⎫ 安徽大学 2009--2010 高等数学 A(二)试题与答案一、填空题(2×5=10 分)1. 点(2,1,1) 到平面 x + y - z + 1 = 0⎛ 2. 极限 lim x 2 xy = 0. x →+∞x 2 + y 2 ⎪y →+∞⎝ ⎭ πsin x23. 交换积分次序⎰dx ⎰0 f (x , y )dy⎧ 2, - 1 < x < 04. 设 f (x ) 是周期为 2 的函数, 它在区间(-1,1] 上的定义为f (x ) = ⎨x 3 ,则 0 < x < 1f (x ) 的 Fourier 级数在x=1 5. 函数u=xyz 在点(1,1,1) 处沿方向(2,2,1) 的方向导数为二、选择题(2×5=10 分)6. 二元函数 f (x , y ) = 在点(0,0) 处 ( )A. 连续, 但偏导数不存在;B. 不连续; 且偏导数不存在;C. 不连续; 但偏导数存在;D. 连续, 且偏导数存在.7. 设第二类曲面积分 I 1 =⎰⎰ xyzdzdx , I 2 = ⎰⎰ xy 2 zdzdx ,其中 S 为 x 2 + y 2 + z 2= 1 的上半部分, 方向取上侧, 若S 1 为 S 在第一卦限部分, 且与 S 方向一致, 则( )A. I 1 = I 2 = 0 ;B. I 1 = 0, I 2 = 2⎰⎰Sxy 2 zdzdx ;C. I 1 = 2⎰⎰Sxyzdzdx , I 2 = 2⎰⎰S xy 2zdzdx D. I 1 = 2⎰⎰S xyzdzdx , I 2 = 08. 设Ω 为 R 3 中开区域,且Ω 内任意一条闭曲线总可以张成一片完全属于Ω 的曲面,函数 P,Q,R 在Ω 内连续可导,若曲线积分 ⎰LPdx + Qdy + Rdz 只依赖于曲线 L 的端点,而与积分路径无关,则下述命题不正确的是( D )A . 对Ω 内任意光滑闭曲线 C ,曲线积分 ⎰CPdx + Qdy + Rdz = 0 ;B . 存在Ω 上某个三元函数 u(x,y,z), 使得 du = Pdx + Qdy + Rdz ;∂P ∂Q ∂R ∂P ∂Q ∂RC . 等式 ∂y = ∂x , ∂x = ∂z , ∂z = ∂y在开区域Ω 内恒成立;1111A A yy 0 00 0 yy 0 0 0 0 yy 0 0 0 0 yy 0 0 0 0 解: 设 F (x , y , z ) = x 2 + y 2- z 则曲面 S 在点(1,1,2) 处的法向量为:( F x , F y , F z )(1,1,2) = (2x ,2 y ,-1)( 2,2,1) = (2,2,-1) 由题设可知平面∏通过法线L, 故:∂P ∂Q ∂RD . 等 式 ∂x + ∂y + ∂z= 0 在开区域Ω 内恒成立.9. 设函数 f (x , y ) 在开区域 D 内有二阶连续偏导数, 且 f x (x 0 , y 0 ) = f y (x 0 , y 0 ) =0. 则下列为 f (x , y ) 在点(x 0 , y 0 ) 处取极小值的充分条件的是( )A. f xx (x 0 , y 0 ) >0,B. f xx (x 0 , y 0 ) >0,C. f xx (x 0 , y 0 ) <0,D. f xx (x 0 , y 0 ) <0, f xx (x 0 , y 0 ) f xx (x 0 , y 0 ) f xx (x 0 , y 0 ) f xx (x 0 , y 0 ) f (x , y ) - f 2xy(x , y ) >0;f (x , y ) - f 2 xy (x , y ) <0; f (x , y ) - f 2 xy (x , y ) >0;f (x , y ) - f 2 xy (x , y ) <0. 10. 设函数u = f (x , y , z ) 具有二阶连续偏导数, 则div grad f = ( )A .f xx + f yy + f zz ; B. f x + f y + f z ; C. ( f x , f y , f z );D. ( f xx , f yy , f zz ).三、计算题(10×3+12×2=54 分)11. 设平面∏ : x + ay - z + b = 0 通过曲面 z = x 2 + y 2在点(1,1,2)处的法线 L,求 a , b 的值.12. 计算第二类曲线积分⎰Lydx - xdyx 2 + y 2, 其中 L 为正方形边界 x + y = 1 ,取顺时针方向.⎰⎰ 222n =013. 计算第一类曲面积分zdS ,其中∑为圆柱面 x 2 + y 2 = R 2 (R > 0) 介于平∑x + y + z面z = 0 与 z= h (h>0) 之间的部分.∞(-1)n14. 将函数 f (x ) = arctan x 展开成 x 的幂级数, 并求级数∑ 2n + 1 的和.15. 设函数 f (u ) 具有二阶连续导数, 且 z = f (e xsin y ) ,解法(一): 设x=Rcosu, y=Rsinu, z=v, 则∑对应于 D: 0 ≤ u ≤ 2π ,0 ≤ v ≤ h .v v v u u u 2x = -R sin u , y = R cos u , z = 0, x = 0, y = 0, z = 1故E = R ,F = 0,G = 1,∂ 2 z ∂ 2 z (1) 求 ∂x 2 , ∂y2 ;(2) 若函数 z = f (e xsin y ) 满足方程 ∂ 2 z ∂x 2 + ∂ 2 z ∂y 2= e 2 xz, 求函数 f (u )四、应用题(10×1+6×1=16 分)16. 将一根长为l 的铁丝分割成两段, 一段围成一个圆, 另一段围成一个长方形. 求使得圆面积与长方形面积之和最大的分割方法.17. 已知一条非均匀金属线 L 放置于平面 Oxy 上, 刚好为抛物线 y = x 2对应于0 ≤ x ≤ 1 的那一段, 且它在点(x,y) 处的线密度 ρ (x , y ) = x ,求该金属丝的质量.五、证明题(6×1+4×1=10 分)18. 证明级数∑(-1)n n =1lnn + 1 n 条件收敛. ∞ 解: 将(1) 中结果代入方程, 得 f ' (u )e2 x= e 2 x z 即: f ' (u ) - f (u ) = 0 这是一个二阶常 2 1特征根为λ = 1, λ = -1 2系数线性齐次微分方程, 相应的特征方程为λ - 1 = 0 1 22 1 故 f (u ) = C e u + C e -u,其中C , C 为任意常数。
09-10高数(二)期终考试A卷答案

上海应用技术学院2009—2010学年第二学期 《高等数学(工)2》期(终)试卷A 答案及评分标准一、单项选择题(本大题共7小题,每小题2分,共14分) 1、D ;2、A ;3、C ;4、A ;5、B ;6、C ;7、B 。
二、填空题(本大题共6小题,每小题2分,共12分)1、0,⎛- ⎝;2、-0.2;3、34π;4、1xe y +;5、43120x y z -+-=;6、0。
三、计算题(本大题共10小题,每小题6分,共60分) 1、求原点)0,0,0(O 在直线L :471352-=-=+z y x 上的投影。
解:过点)0,0,0(O 作垂直于已知直线的平面π:045=++z y x ……………………(2分) 将直线的参数方程25-=t x ,3+=t y ,74+=t z 代入平面方程得0)74(4)3()25(5=++++-t t t ,解得21-=t ,………………………………………(4分)直线与平面的交点⎪⎭⎫⎝⎛-5,25,29即为原点在直线上的投影点,……………………………(6分) 2、设(,)z z x y =是由方程x z xyz =所确定的隐函数,求dz 。
解:设(,,)xF x y z z xyz =-,…………………………….…………………..……….(1分)ln x x F z z yz =-,y F xz =-, 1x z F xz xy -=-,1ln xx z yz z z xxzxy-∂-=∂-,…..………..(3分)1x z xz yxzxy-∂=∂-,…..………..………..………..………..………..………..………..……(5分)11ln xx x yz z z xz dz dx dy xzxyxzxy---=+--…………………………….…………………...……(6分)3、设(,)(,)z f x y g u v =+,22u x y =-,v xy =,其中,f g 具有一阶连续偏导数,求,z zx y∂∂∂∂。
2009-2010学年度第二学期高等数学期末考试试题A卷

北京科技大学2009--2010学年第二学期高 等 数 学A(II) 试卷(A 卷)院(系) 班级 学号 姓名 考场说明: 1、要求正确地写出主要计算或推导过程, 过程有错或只写答案者不得分; 2、考场、学院、班、学号、姓名均需写全, 不写全的试卷为废卷; 3、涂改学号及姓名的试卷为废卷;4、请在试卷上答题,在其它纸张上的解答一律无效.一、填空题(本题共20分,每小题4分)1.设¶||5, ||3, (,)6a b a b = =r r r r , 则以2a b r r 和3a b r r 为边的平行四边形的面积为 .2.设函数(,)f x y 可微, (0,0)0,(0,0),(0,0),()(,(,))x y f f m f n t f t f t t = = , 则(0) =.3.设:||||,||1D y x x , 则22()d Dx y + . 4. 设L 为正向椭圆周22221x y a b + , 则()d (2)d L x y x x y y + + Ñ .5. 设32e x z y =, 则(2,1)grad z = .装 订 线 内 不 得 答 题 自 觉 遵 守 考 试 规 则,诚 信 考 试,绝 不 作 弊二、选择题(本题共20分,每小题4分)6.已知三平面123:5210,:32580,:42390,x y z x y z x y z + + = + 则必有( ).(A) 12// (B) 12 (C) 13 (D) 13//7.设222222221()sin , 0(,)0, 0x y x y x y f x y x y + + += +,则(,)f x y 在(0,0)处( ).(A) 两个一阶偏导数不存在 (B) 两个一阶偏导数存在, 但不可微 (C) 可微, 但两个一阶偏导数不连续 (D) 两个一阶偏导数连续 8.二重积分221d x y x y +( ).(A) 67 (B) 34 (C) 65 (D) 129.设 为球面2221x y z + +的外侧, 则222d d xy z x y z=+Ò( ).(A)221d y z y z +(B)221d y z y z +(C) 0 (D) 4310. 已知ln x y x =是微分方程y y y x x = 的解, 则y x的表达式为( ). (A) 22y x (B) 22y x(C) 22x y (D) 22x y48分,每小题8分)11. 设() 11()()()d 22x atx atu x at x at a + = + + , 其中 与 具有连续的二阶导数, a 是不为零的常数, 求22222u u a t x. 12.设222()()d d ()d d ()d d f t x t y z y t z x z t x y=+ + Ò, 其中积分曲面22:x y 22 (0)z t t + =取外侧, 求()f t .13.设()f x 为连续函数, 1()d ()d t tyF t y f x x =, 求(2)F .14.利用柱坐标计算2222 122()d d x y I x y x z=.15.设函数()f y 具有一阶连续导数, 计算[()e 3]d [()e 3]d x x Lf y y x f y y +, 其中(1)f =(3)0f =, L 为连接(2,3)A , (4,1)B 的任意路线¼AmB , 它在线段AB 的下方且与AB 围成的图形的面积为5.16.计算d S z, 其中 是球面2222x y z a + +被平面(0)z h h a = <所截出的顶部.四、(本题共12分,每小题6分)17.已知曲线()y y x =过原点, 且在原点处的切线垂直于直线210x y + ,()y x 满足微分方程25e cos 2x y y y x +, 求此曲线方程.18.求微分方程21xy ay x + =满足的初始条件(1)1y =的解(,)y x a , 其中a 为参数, 并证明: 0lim (,)a y x a 是方程 21xy x = 的解.。
中国传媒大学-高等数学-2009至2010学年第二学期期末考试试卷A卷(含答案)

1,
ns
n1
s 1 时级数
1 收敛; s 1 时,级数
1 发散。
ns
n1
ns
n1
2、(本小题 8 分)
求级数
x 4n 的和函数 S( x) 。
n1 (4n)!
解:由幂级数的分析性质得微分方程
S (4) (x)
x 4n4
1 S( x)
n1 (4n 4)!
(8 分)
且 S(0) S(0) S(0) S(0) 0
1、设 u arcsin x ( y 0) 则 u
x2 y2
y
第1页共6页
x (A)
x2 y2
x (B)
x2 y2
x (C)
x2 y2
x (D)
x2 y2
答( A )
2、设 为球面 x2 y2 z2 a2 在 z h 部分, 0 h a ,则
3、若幂级数 an x n 的收敛半径为 R ,那么 n0
6
得分 评卷人
(3 分) (5 分)
四、解答下列各题(本大题共 3 小题,每小题 7 分,总计 21 分) 1、(本小题 7 分)
改变二重积分
1
2y
dy f ( x, y)dx
3
dy
3 y
f ( x, y)dx的积分次序
0
0
1
0
解:原式
2
dx
0
3 x x
f
( x,
y)dy
。
2
(7 分)
判别级数 a n , (a 0, s 0) 的敛散性。 n1 n s 解: 由比值判别法
l
i
a m
n1
a n n
0910高等数学A(二)答案

0910高等数学A(二)答案第一篇:0910高等数学A(二)答案济南大学2009~2010学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学A(二)任课教师:张苏梅等一、填空题(每小题3分,共18分)1.yzez-xy;2.y=2x3-x2;3.2xdx+2ydy;π∞(-1)n(2x)2n4.0;5.2;6..12(1-n∑=0(2n)!),(-∞,+∞)二、选择题(每小题3分,共18分)C;D;C;B;A;B.三、计算题(每小题8分,共32分)1.解:∂z∂x=1ycosxy;.....4分∂2z1xxx∂x∂y=-y2cosy+y3siny.....8分2.解:⎰⎰xydσ=⎰2dx⎰xxydy.....4分D0=12⎰20x3dx=2.....8分 3.解:dS=+x2x2+y+y2x2+ydxdy=2dxdy.....2分⎰⎰zdS=⎰⎰x2+y22dxdy.....5分∑Dxy=⎰2πdθ⎰2r2dr=π.....8分 4.解:⎰⎰(x2+y2+z2)dxdy=dxdy=πa4...........8分∑D⎰⎰axy四、应用题(每小题8分,共16分)1.解:由椭球的对称性,不妨设(x,y,z)是该椭球面上位于第Ⅰ卦限的任一点,内接长方体的相邻边长为2x,2y,2z(x,y,z>0),其体积为:V=8xyz构造拉格朗日函数F(x,y,z,λ)=8xyz-λ(x2y2a+b+z2c-1)......4分∂F∂x=8yz-λ2xa2=0令∂F2y∂y=8xz-λb2=0........6分∂F∂z=8xy-λ2zc2=0求得(x,y,z)=⎛a,b,c⎫⎪,V=8xyz=8abc......8分⎝33⎪⎭332.解:Iz=⎰⎰⎰(x2+y2)dv.........3分Ω=⎰2π2430dθ⎰0dr⎰r2rdz.........6分=2π⎰2r3(4-r2)dr=03π.........8分五、(8分)解:因为limana=limn=1,所以收敛半径为1.n→∞n+1n→∞n+1又x=±1时,级数均发散,故级数的收敛域为(-1,1).....3分n=1∑nx∞n=x∑nxn=1∞n-1=x(∑xn)'......6分 n=1∞xx=x()'=,x∈(-1,1).........8分 21-x(1-x)六、(8分)解:① 设u=x2+y2,则∂zx=f'(u);∂xu∂2zx21x2=()f''(u)+f'(u)-3f'(u)........2分 2uu∂xuy21y2同理,2=()f''(u)+f'(u)-3f'(u)uu∂yu由∂2z∂2z∂x2+∂2z∂y2=0⇒f''(u)+1f'(u)=0.....4分 u② 设f'(u)=p,f''(u)=dp,du则原方程化为:dp1dpdu+p=0⇒=-duupu积分得:p=CC,即f'(u)=,........6分 uu由f'(1)=1,得C=1.于是f(u)=ln|u|+C1代入f(1)=0得:C1=0.函数f(u)的表达式为:f(u)=ln|u|.......8分第二篇:1112高等数学B(二)答案济南大学2011~2012学年第二学期课程考试试卷评分标准(含参考答案)A卷课程名称:高等数学B(二)任课教师:一、填空题(每小题2分,共10分)1、2dx+dy,2、-5,3、1,4、⎰10dy⎰1yf(x,y)dx5、1二、选择题(每小题2分,共10分)1、A2、B3、C4、C5、D三、计算题(每小题8分,共40分)1、解:令F=x2+y2+z2-2z,则Fx=2x,Fz=2z-2.....2分∴∂zFx∂x=-xF=z.....4分z1-∂2z∂x(1-z)2+x2∴∂x2=∂x(1-z)=(1-z)3.....8分2、解:⎰⎰(x+6y)dxdy=⎰1dx5x76D0⎰x(x+6y)dy=3.....8分π3、解:⎰⎰+x2+y2dxdy=D⎰2dθ⎰1+r2rdr=π(22-1).....8分4、解:ux(2,1,3)=4,uy(2,1,3)=5,uz(2,1,3)=3 方向lϖ=(3,4,12)cosα=313,cosβ=413,cosγ=12 .....6分∂z∂l=uu68xcosα+ycosβ+uzcosγ=13.....8分5、解:收敛域为(0,2).....2分∞∞令S(x)=∑(n+1)(x-1)n=(1)n+1)'.....6分n=0∑(x-n=0S(x)=(x-12-x)'=1(2-x)2x∈(0,2).....8分四、解答题(每小11分,共33分)ϖ1、解:交线的方向向量为nϖiϖjkϖ=1-4=(-4,-3,-1).....8分2-1-5所求直线方程为x+3y-2z-54=3=1.....11分2、解:令f(x)=xx-1,则f'(x)=-1-x2x(x-1)<0x>1 所以un单调递减且limn→∞un=0∞所以级数∑(-1)nnn=2n-1.....6分n∞由于limn→∞=1,且∑1发散n=2nn∑∞(-1)n所以级数n.....11分n=2n-13、解:旋转曲面方程为z=x2+y2.....3分投影区域D:x2+y2≤1.....5分V=⎰⎰(1-x2-y2)dxdy=⎰2πdθ⎰1π(1-r)rdr=D.....11分五、证明题(每小题7分,共7分)ff(x,0)-f(0,0)x(0,0)=lim证:x→0x=0f(0,0)=limf(x,0)-f(0,0)xx→0x=0所以函数f(x,y)在(0,0)处可导.....3分lim∆z-fx(0,0)∆x-fy(0,0)∆yρ→0ρ=limf(∆x,∆y)∆x∆yρ→0∆x2+∆y2=limρ→0∆x2+∆y2取∆y=k∆x,得极限为k1+k,说明极限不存在所以函数f(x,y),在(0,0)点不可微.....7分第三篇:专升本高等数学(二)成人高考(专升本)高等数学二第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念(对极限定义等形式的描述不作要求)。
10级高等数学(A)2期末测试题答案

3.
设 L : 点 (1, 0)到 点 (2010, 2012) 再到点 (3, 0)的折 线段 .求 ( x 2 + y 3 ) dx + 3 xy 2 dy . ∫
L
2 3 2
∂P ∂Q 解:这里P ( x , y ) = x + y , Q(x , y )=3 xy ,由 =3 y = ,故此积分与路径无关.............2 分 ∂y ∂x 从而可选择 (1 , 0 )到(3, 0 )的直线段,方程为: y = 0,1 ≤ x ≤ 3................4 分 3 26 从而 ∫ ( x 2 + y 3 ) dx + 3 xy 2 dy = ∫ x 2 dx = ...........6分 1 3 L
D
】
解:积分区域D关于x轴对称,从而
∫∫ ( y + 3)d σ = ∫∫ yd σ +∫∫ 3d σ...........................2分
D D D
1 = ∫∫ 3d σ =3 ⋅ ⋅1⋅ 2=3........................................6分 2 D
第 2 页共 3 页
解:(1) 联立方程可求得交线为: x 2 + y 2 = 1, z = 1, 从而D xy = {( x, y ) x 2 + y 2 ≤ 1}..........................2分
∫∫ zdxdy = − ∫∫ ( x
∑2 Dxy
2
+ y 2 )dxdy........................4分
).
32π
1. 设 zLeabharlann = 4 x3 y + y 2 e3 x + ln( x + tan x) + sec 2, 求
2009-2010(2)期末考试试卷(A)(高等数学)

9. 计算 zdS ,其中∑是上半球面 z 4 x 2 y 2 介于 z 1, z 2 之间的部分
10. 计算 xzdydz yzdzdx 2zdxdy ,其中∑是 x y z 1与三个坐标面围成区域的整个边界面 的外侧。
11. 已知连续函数 fΒιβλιοθήκη (x) 满足 f (x) e x
ds
=____________.
4.设 D: x2+y2≤1, 则 (4 1 x 2 y 2 )dxdy __________.
D
5. 若 y 1, y x, y x 2 为某个二阶线性非齐次微分方程的三个解,则该方程的通解为 。
二、解答下列各题(1-6 小题每个 6 分,7-13 每题 7 分,总计 85 分)
武汉工业学院 2009 –2010 学年第 2 学期 期末考试试卷(A 卷)
课程名称 高等数学 2
学号:
注:1、考生必须在答题纸的指定位置答题,主观题要有必要的步骤。
2、考生必须在答题纸的密封线内填写姓名、班级、学号。
姓名:
班级:
3、考试结束后只交答题纸。
------------------------------------------------------------------------------------------------------------------------------------一、填空题(每小题 2 分, 共 10 分)
------------------------------------------------- 密 ---------------------------------- 封 ----------------------------- 线 ---------------------------------------------------------
1011高等数学A(二)试题答案 济南大学总结

dz d f Ax By
若函数在域 D 内各点都可微, 则称此函数在D 内可微.
目录 上页 下页 返回 结束
当函数可微时 :
lim z lim (Ax By ) o ( ) 0
x0
0
y0
得 lim f (x x, y y) f (x, y)
(2x,
2
y,1)
O
y
x
原式 (x2, y2, z x) (2x,2 y,1)d xd y
( 2x3 2 y3 z x)d xd y
[ 2x3 2 y3 x (x2 y2)]d xd y Dx y
B 充分条件是(
)
(A) (x0, y0 ) 是 f (x, y) 的极值点; (B) (x0, y0 )是 f (x, y) 的驻点; (C) (x0, y0 )在点 f (x, y) 的连续点;
(D) f (x, y) 在点 (x0, y0 ) 处可微分.
目录 上页 下页 返回 结束
全微分的定义
定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y )
处全增量
可表示成
z Ax B y o( ) ,
其中 A , B 不依赖于 x , y , 仅与 x , y 有关,则称函数
f ( x, y ) 在点( x, y) 可微,A Δx B Δ y 称为函数 f (x, y)
(P,Q, R) ( fx, fy,1)dxdy
将在xoy面投影 (P, Q, R) ( fx, f y,1)dxdy.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上海海洋大学试卷
姓名: 学号: 专业班名: 一.填空题(每空3分,共15分)。
1、 设2ln(2)z x y =+,则=)
1,1(dz。
2、如果22:9D x y +≤,则=⎰⎰+dxdy e
D
y
x 2
2。
3、若级数1
1(3cos
)n n n
μ∞
=-∑收敛,则lim n n μ→∞
= 。
4
、以312x x
y C e C e =+为通解(其中12,C C 为任意常数)的微分方程为 。
5、空间曲线22
221
z x y z x y ⎧=++⎨=++⎩在平面xoy 上的投影方程是 。
二.选择题(每小题3分,共15分) 1、二次方程2
2
2
322
y
x z -
+=-表示的曲面为( )。
A )抛物面 B )锥面 C )双叶双曲面 D )单叶双曲面 2、3
2
(,)6125,(
)f x y y x x y =-+-+函数下列命题正确的是。
)(3,2)(,))(3,2)(,))(3,2)(,))(3,2)(,)A f x y B f x y C f x y D f f x y --点是的极小值点;点是的极大值点;点不是的驻点;
不是的极值。
3、2
2
1D x y +=设平面薄片所占区域是由圆所围成,它的面密度 (,)x y ρ=
.2)
;)
;
);
)2.
3
3
A B C D ππππ则该薄片的质量为()
4、下列级数中,绝对收敛的级数为()。
1
1
1
1
1
1
1
11)(1)
;
)(1)
)(1)
;
)(1)
3
n n n n n
n n n n A B C D n
∞
∞
∞
∞
----====----∑∑∑∑
5、如果∑代表球面,1222=++z y x 则dS z y x ⎰⎰
∑
++2
22=( )
A )π2
B )π4
C )π3
4 D )π3 三.计算:(共58分)
1、(6分)设),(y x f z =满足09322
2
2
=--+++z xy z y x ,求2
2
2
2
,
y
z x
z ∂∂∂∂。
2、(6)计算二重积分⎰⎰D
ydxdy ,其中D 为2
22x
a y -=
与a
x
y 2
=
(0)a >所围成的区域。
3、(6分)试求出所有的函数)(x f 使曲线积分[]()6()()C
f x f x ydx f x dy ''++⎰与路径无关。
4、(5分)将x x f ln )(=在10=x 处展开为幂级数。
5、(11分)求幂级数1
2
n n
n x
n ∞
=∑
的收敛区间与和函数并计算1
(1)2
n
n
n n ∞
=-∑
的值。
6、(6分)求方程)1/()1(22/x y y ++=满足1)0(=y 的特解。
7、(6分)求微分方程y
xdy dx e dx +=的通解;
8、 (6分)求微分方程20yy y '''-=的通解;
9、(6分)计算
()(+2)y y
L
e x dx xe x dy ++⎰
,其中L 为上半圆周22
2,0x y x y +=≥上,从
点(2,0)到(0,0)。
三、判断下列级数的敛散性。
(共12分)
1、(6分) 判别级数1
100(1)
!
n n
n n ∞
=+-∑
的敛散性。
2、(6分) 若级数21
n
n a ∞
=∑收敛,试判别级数1
n n a n
∞
=∑
的敛散性。