2017年中考数学专题复习新情景问题

合集下载

2017年中考数学专题复习新定义问题

2017年中考数学专题复习新定义问题

新定义问题【专题点拨】新定义运算、新概念问题一般是介绍新定义、新概念,然后利用新定义、新概念解题,其解题步骤一般都可分为以下几步:1.阅读定义或概念,并理解;2.总结信息,建立数模;3.解决数模,回顾检查.“新概念”试题,其设计新颖,构思独特,思维容量大,既能考查学生的阅读、分析、推理、概括等能力,又能考查学生知识迁移的能力和数学素养,同时还兼具了区分选拔的功能 .【解题策略】具体分析新颖问题→弄清问题题意→向已知知识点转化→利用相关联知识查验→转化问题思路解决【典例解析】类型一:规律题型中的新定义例题1:(2015•永州,第10题3分)定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()A.[x]=x(x为整数) B.0≤x﹣[x]<1C.[x+y]≤[x]+[y]D.[n+x]=n+[x](n为整数)【解析】:根据“定义[x]为不超过x的最大整数”进行计算【解答】:解:A、∵[x]为不超过x的最大整数,∴当x是整数时,[x]=x,成立;B、∵[x]为不超过x的最大整数,∴0≤x﹣[x]<1,成立;C、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x+y]≤[x]+[y]不成立,D、[n+x]=n+[x](n为整数),成立;故选:C.【点评】本题考查了一元一次不等式组的应用,解决本题的关键是理解新定义.新定义解题是近几年中考常考的题型.变式训练1:(2015•山东潍坊,第12题3分)如图,已知正方形ABCD,顶点A(1,3)、B(1,1)、C(3,1).规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位”为一次变换.如此这样,连续经过2014次变换后,正方形ABCD的对角线交点M的坐标变为( )A.(—2012,2) B.(一2012,一2)C. (—2013,—2)D. (—2013,2)类型二:运算题型中的新定义例题2:(2016·四川宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log n a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000= .【解析】实数的运算.先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.变式训练2:(2016四川省乐山市第16题)在直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y′),给出如下定义:若(0)(0)y x y y x ≥⎧'=⎨-<⎩,则称点Q 为点P 的“可控变点”.例如:点(1,2)的“可控变点”为点(1,2),点(﹣1,3)的“可控变点”为点(﹣1,﹣3).(1)若点(﹣1,﹣2)是一次函数3y x =+图象上点M 的“可控变点”,则点M 的坐标为 ;(2)若点P 在函数216y x =-+(5x a -≤≤)的图象上,其“可控变点”Q 的纵坐标y′的取值范围是1616y '-≤≤,则实数a 的取值范围是 .类型三: 探索题型中的新定义例题3:(2016山西省第10题)宽与长的比是21-5(约为0.618)的矩形叫做黄金矩形.黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD ,分别取AD ,BC 的中点E ,F ,连接EF ;以点F 为圆心,以FD 为半径画弧,交BC 的延长线与点G ;作AD GH ⊥,交AD 的延长线于点H .则图中下列矩形是黄金矩形的是( )A .矩形ABFEB .矩形EFCDC .矩形EFGHD .矩形DCGH【解析】考点:黄金分割的识别【解答】:由作图方法可知DF=5CF ,所以CG=CF )15(-,且GH=CD=2CF ,从而得出黄金矩形CG=CF )15(-,GH=2CF ∴2152)15(-=-=CF CF GH CG ∴矩形DCGH 是黄金矩形。

中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题

中考数学复习:专题2-11 用一元一次不等式(组)解决生活中的实际问题

专题11 用一元一次不等式(组)解决生活中的实际问题【专题综述】一元一次不等式组是在学习了一元一次不等式组的概念和解法之后,进一步探索现实世界数量关系的重要内容,是继学习了一元一次方程和二元一次方程组之后,又一次数学建模思想的学习,也是后续学习二元一次方程等内容的重要基础,有着承前启后的作用。

用一元一次不等式(组)解决生活中的实际问题,其主要步骤为:1、审题,设未知数;2、抓关键词,找不等关系;3、构建不等式(组)4 、解不等式(组);5、根据题意,写出合理答案。

【方法解读】一、打折问题:例1,一双运动鞋的进价是200元,标价400元,商场要获得不低于120元的利润,问:最低可以打几折?【举一反三】(湖南省娄底市)某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打().A、6折B、7折C、8折D、9折二、赛球问题:例2,甲、乙两队进行足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了12场,甲队保持不败,总得分超过26分,问:甲队至少胜了多少场?【举一反三】(江西省崇仁一中)在崇仁一中中学生篮球赛中,小方共打了10场球.他在第6,7,8,9场比赛中分别得了22,15,12和19分,他的前9场比赛的平均得分y比前5场比赛的平均得分x要高.如果他所参加的10场比赛的平均得分超过18分(1)用含x的代数式表示y;(2)小方在前5场比赛中,总分可达到的最大值是多少?(3)小方在第10场比赛中,得分可达到的最小值是多少?三、购买问题:例3,某种肥皂零售价每块2元,凡购买2块以上(包括2块),商场推出两种优惠销售办法。

第一种:一块肥皂按原价,其余按原价的七折销售;第二种:全部按原价的八折销售。

在购买的情况下,要使第一种方法比第二种方法得到的优惠多,最少需要买几块肥皂?【举一反三】某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品一律按商品价格的9.5折优惠.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,她购买商品的价格为多少元时,两个方案所付金额相同?(3)购买商品的价格______元时,采用方案一更合算.四、分苹果问题:例4,把44个苹果分给若干名学生,若每人分苹果7个,则最后1名学生分得的苹果不足3个,求学生人数。

山东省潍坊市2017年中考数学真题试卷和复习资料

山东省潍坊市2017年中考数学真题试卷和复习资料

山东省潍坊市2017年中考数学真题试卷和答案一、选择题(每小题3分,满分36分)。

1.下列算式,正确的是()A.a3×a2=a6B.a3÷a=a3C.a2+a2=a4D.(a2)2=a42.如图所示的几何体,其俯视图是()A.B.C.D.3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源.据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为()A.1×103B.1000×108C.1×1011D.1×10144.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置是()A.(﹣2,1)B.(﹣1,1)C.(1,﹣2)D.(﹣1,﹣2)5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间.A .B及C B.C及D C.E及F D.A及B6.如图,∠BCD=90°,AB∥DE,则∠α及∠β满足()A.∠α+∠β=180°B.∠β﹣∠α=90°C.∠β=3∠αD.∠α+∠β=90°7.甲、乙、丙、丁四名射击运动员在选选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数及方差两个因素分析,应选()甲乙平均数9 8方差 1 1A.甲 B.乙 C.丙 D.丁8.一次函数y=ax+b及反比例函数y=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.9.若代数式有意义,则实数x的取值范围是()A.x≥1 B.x≥2 C.x>1 D.x>210.如图,四边形ABCD为⊙O的内接四边形.延长AB及DC相交于点G,AO⊥CD,垂足为E,连接BD,∠GBC=50°,则∠DBC的度数为()A.50°B.60°C.80°D.90°11.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= x2的解为()#N.A.0或B.0或2 C.1或D.或﹣12.点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2 B.或2 C.或2 D.或2二、填空题(每小题3分,共18分)。

重庆市2017年中考数学第二部分题型研究题型六新定义题针对演练

重庆市2017年中考数学第二部分题型研究题型六新定义题针对演练

题型六 新定义题针对演练1. (2016郴州)设a ,b 是任意两个实数,规定a 与b 之间的一种运算“⊕”为:a ⊕b =⎩⎪⎨⎪⎧b a (a >0)a -b (a ≤0).例如:1⊕(-3)=-31=-3,(-3)⊕ 2=(-3)-2=-5,(x 2+1)⊕(x -1)=x -1x 2+1.(因为x 2+1>0) 参照上面材料,解答下列问题:(1)2⊕ 4=________,(-2)⊕ 4=________;(2)若x >12,且满足(2x -1)⊕(4x 2-1)=(-4)⊕(1-4x ),求x 的值.2. 对于正整数n ,定义F (n )=⎩⎪⎨⎪⎧n 2,n <10f (n ),n ≥10,其中f (n )表示n 的首位数字、末位数字的平方和.例如:F (6)=62=36,F (123)=f (123)=12+02=1,.规定F 1(n )=F (n ),F k +1(n )=F (F k (n )).例如:F 1(123)=F (123)=10,F 2(123)=F (F 1(123))=F (10)=1.(1)求:F 2(4)和F 2015(4);(2)若F 3m (4)=89,求正整数m 的最小值.3. 如果一个自然数可以表示为两个连续奇数的立方差,那么我们就称这个自然数为“麻辣数”.如:2=13-(-1)3,26=33-13,所以2、26均为“麻辣数”.【立方差公式:a3-b3=(a-b)(a2+ab+b2)】(1)请判断98和169是否为“麻辣数”,并说明理由;(2)求在不超过2016的自然数中,所有的“麻辣数”之和为多少?4. (2015重庆A卷)如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数1232+22=131,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此1232+22=131是一个“和谐数”.再如22,545,3883,345543,…,都是“和谐数”.(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整除?并说明理由;(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为x(1≤x≤4,x为自然数),十位上的数字为y,求y与x的函数关系式.5. (2016重庆一中三模)当一个多位数为偶数位时,在其中间位插入一位数k(0≤k≤9)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足此条件的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.6. (2016重庆外国语学校二诊)定义:如果M个不同的正整数,对其中的任意两个数,这两个数的积能被这两个数的和整除,则称这组数为M个数的祖冲之数组.如(3,6)为两个数的祖冲之数组,因为3×6能被(3+6)整除;又如(15,30,60)为三个数的祖冲之数组,因为(15×30)能被(15+30)整除,(15×60)能被(15+60)整除,(30×60)能被(30+60)整除….(1)我们发现,3和6,4和12,5和20,6和30,…,都是两个数的祖冲之数组;由此猜测n和n(n-1)(n≥2,n为整数)组成的数组是两个数的祖冲之数组,请证明这一猜想;(2)若(4a,5a,6a)是三个数的祖冲之数组,求满足条件的所有三位正整数a.7. (2016重庆南开阶段测试三)进位制是一种记数方式,可以用有限的数字符号代表所有的数值,使用数字符号的数目称为基数,基数为n,即可称n进制.现在最常用的是十进__________ __________ __________ __________ __________ __________ _____ _____ _____ _____ 制,通常使用10个阿拉伯数字0~9进行记数,特点是逢十进一,对于任意一个用n (n ≤10)进制表示的数,通常使用n 个阿拉伯数字0~(n -1)进行记数,特点是逢n 进一.我们可以通过以下方式把它转化为十进制:例如:五进制数(234)5=2×52+3×5+4=69,记作(234)5=69,七进制数(136)7=1×72+3×7+6=76,记作(136)7=76.(1)请将以下两个数转化为十进制:(331)5=________,(46)7=________;(2)若一个正数可以用七进制表示为(abc )7,也可以用五进制表示为(cba )5,请求出这个数并用十进制表示.8. (2016重庆实验外国语学校一诊)有一个n 位自然数abcd …gh 能被x 0整除,依次轮换个位数字得到的新数bcd …gha 能被(x 0+1)整除,再依次轮换个位数字得到的新数cd …ghab能被(x 0+2)整除,按此规律轮换后,d …ghabc 能被(x 0+3)整除,…,habc …g 能被(x 0+n-1)整除,则称这个n 位数abcd …gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:32+22=134能被2整除,243能被3整除,432+22=13能被4整除,则称三位数32+22=134是2的一个“轮换数”.(1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”;(2)若三位自然数abc 是3的一个“轮换数”,其中a =2,求这个三位自然数abc .9. 把一个自然数所有数位上的数字先平方再求和得到一个新数,叫做第一次运算,再把所得新数所有数位上的数字先平方再求和又将得到一个新数,叫做第二次运算,…,如此重复下去,若最终结果为1,我们把具有这种特征的自然数称为“快乐数”.例如:_____ _____ _____ _____ _____ 32+22=13→32+22=13→12+02=1,→12+02=1,72+02=→72+02=42+92=97→42+92=97→92+72=130→12+32+02=10→12+02=1, 所以32+22=13和72+02=都是“快乐数”.(1)写出最小的两位“快乐数”;判断19是不是“快乐数”;请证明任意一个“快乐数”经过若干次运算后都不可能得到4;(2)若一个三位“快乐数”经过两次运算后结果为1,把这个三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,求出这个“快乐数”.10. 定义一种对于三位数abc (a 、b 、c 不完全相同)的“F 运算”:重排abc 的三个数位上的数字,计算所得最大三位数和最小三位数的差(允许百位数字为零).例如abc =213时,则 213――→F 198(32+22=131-123=198)――→F 792(981-189=792).(1)579经过三次“F 运算”得________;(2)假设abc 中a >b >c ,则abc 经过一次“F 运算”得______(用代数式表示);(3)猜想:任意一个三位数经过若干次“F 运算”都会得到一个定值,请证明你的猜想.11. (2016大渡口区诊断性检测)若一个整数能表示成a 2+b 2(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”,因为5=22+12.再如,M =x 2+2xy +2y 2=(x +y )2+y 2(x ,y 是整数),所以M 也是“完美数”.(1)请你再写一个小于10的“完美数”,并判断29是否为“完美数”;(2)已知S =x 2+4y 2+4x -12y +k (x ,y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由;(3)如果数m ,n 都是“完美数”,试说明mn 也是“完美数”.12. (2016重庆西大附中第九次月考)对于实数x ,y 我们定义一种新运算L (x ,y )=ax +by (其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L (x ,y ),其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若L (x ,y )=x +3y ,则L (2,1)=________,L (32,12)=________; (2)已知L (1,-2)=-1,L (13,12)=2. ①a =________,b =________;②若正格线性数L (m ,m -2),求满足50<L (m ,m -2)<100的正格数对有多少个;③若正格线性数L (x ,y )=76,求满足这样的正格数对有多少个;在这些正格数对中,有满足问题②的数对吗?若有,请找出;若没有,请说明理由.13. (2016重庆巴蜀二诊)古希腊的毕达哥拉斯学派由古希腊哲学家毕达哥拉斯所创立,毕达哥拉斯学派认为数是万物的本原,事物的性质是由某种数量关系决定的,如他们研究各种多边形数:记第n 个k 边形数N (n ,k )=k -22n 2+4-k 2n (n ≥1,k ≥3,k 、n 都为整数), 如第1个三角形数N (1,3)=3-22×12+4-32×1=1; 第2个三角形数N (2,3)=3-22×22+4-32×2=3;第3个四边形数N(3,4)=4-22×32+4-42×3=9;第4个四边形数N(4,4)=4-22×42+4-42×4=16.(1)N(5,3)=________,N(6,5)=________;(2)若N(m,6)比N(m+2,4)大10,求m的值;(3)若记y=N(6,t)-N(t,5),试求出y的最大值.题型六 新定义题针对演练1. 解:(1)2,-6.【解法提示】2⊕ 4=42=2,(-2)⊕ 4=-2-4=-6. (2)∵x >12, ∴2x -1>0,∴(2x -1)⊕(4x 2-1)=12142--x x =-4-(1-4x ), 即2x +1=-5+4x ,解得x =3.∴x 的值为3.2. 解:(1)F 2(4)=F (F 1(4))=F (F (4))=F (16)=12+62=37; F 1(4)=F (4)=16,F 2(4)=37,F 3(4)=58,F 4(4)=89,F 5(4)=145,F 6(4)=26,F 7(4)=40,F 8(4)=16,通过观察发现,每进行7步运算是一个循环,2015÷7=287……6,因此F 2015(4)=F 6(4)=26.(2)由(1)可知,每进行7步运算是一个循环,F 4(4)=89=F 11(4)=F 18(4)=F 4+7i (4),其中i =0,1,2,3,…,要求m 的最小值,则(4+7i )为3的最小公倍数,因为3m >4,所以3m =18,所以m =6.3. 解:(1)98是麻辣数,169不是麻辣数,理由如下:设k 为整数,则2k +1,2k -1为两个连续奇数,设M 为麻辣数,则M =(2k +1)3-(2k -1)3=24k 2+2,∵98=53-33,故98是麻辣数;M =24k 2+2为偶数,故169不是麻辣数.(2)同(1)令M ≤2016,则24k 2+2≤2016,解得k 2≤100712<84,故k 2=0,1,4,9,16,25,36,49,64,81,故M 的和为24×(0+1+4+9+16+25+36+49+64+81)+2×10=6860.所以,在不超过2016的自然数中,所有的“麻辣数”之和为6860.4. 解:(1)1331,2442,1001.猜想:任意一个四位“和谐数”能被11整除.理由:设一个四位“和谐数”记为xyyx ,用十进制表示为:1000x +100y +10y +x =1001x +110y =11(91x +10y ),∵x 、y 是0~9之间的整数,∴11(91x +10y )能被11整除.∴任意一个四位“和谐数”能被11整除.(2)设这个三位“和谐数”为xyx ,用十进制表示为:100x +10y +x =101x +10y ,∵它是11的倍数, ∴1110101yx +为整数.将这个式子变形:1110101y x +=11291121199yx y x y x y x -++=-++,∵x 、y 是0~9之间的整数, ∴112yx -应为整数._____ __________ ___ 又∵1≤x ≤4,0≤y ≤9,∴2≤2x ≤8,-9≤-y ≤0,∴-7≤2x -y ≤8,∵要使112y x 是整数,则2x -y 只能是0, ∴2x -y =0,即y =2x ,∴y 与x 的函数关系式是y =2x (1≤x ≤4,x 为自然数).5. (1)解:如:135,225,315,405.【解法提示】设原来的两位数为xy ,插入的数字为k .由题意得:9(10x +y )=100x +10k +y ,化简得:4y -5x =5k ,当k =0时,4y -5x =0,则x =4,y =5;当k =1时,4y -5x =5,则x =3,y =5;当k =2时,4y -5x =10,则x =2时,y =5;当k =3时,4y -5x =15,则x =1,y =5.(2)证明:设一个位数为2n 位的多位数为ab ,中间插入数字m ,得其关联数(0≤m ≤9,且m 为3的倍数)为amb , 由题意得,amb -10ab =a ×10n +1+m ×10n +b -10(a ×10n +b )=m ×10n -9b ,∵m 是3的倍数,∴m ×10n 能被3整除,又∵9b 能被3整除,∴m ×10n -9b 能被3整除,故对于任何一个位数为偶数的多位数,中间插入数字m (0≤m ≤9,且m 为3的倍数),所得的关联数与原数10倍的差一定能被3整除.6. (1)证明:∵n +n (n -1)=n +n 2-n =n 2,∴n ·n (n -1)÷[n +n (n -1)]=n -1,∵n ≥2,n 为整数,∴n -1是整数,∴n 和n (n -1)(n ≥2,n 为整数)组成的数组是两个数的祖冲之数组.(2)解:∵(4a ,5a ,6a )是三个数的祖冲之数组,∴可设⎪⎩⎪⎨⎧+=⋅+=⋅+=⋅pa a a a n a a a a ma a a a )65(65)64(64)54(54,即⎪⎩⎪⎨⎧===pa n a ma 1130512920,∴920m =512n =1130 p ,化简得:22p =25n =27m ;∵m 、n 、p 均为整数,∴m =22×25×i (i 为整数),∴a =920×22×25i =25119i⨯⨯,∵a 是整数,∴i 为偶数,当i =2时,a =495,_____ _____ _____ _____ _____ _____ _____ _____ _____ 当i =4时,a =990,当i =6时,a =1485,不是三位数,舍去,综上所述,满足条件的所有三位正整数a 为495和990.7. 解:(1)(331)5=3×52+3×5+1=91;(46)7=4×7+6=34.(2)∵(abc )7=a ×72+b ×7+c ,(cba)5=c ×52+b ×5+a ,∴25c +5b +a =49a +7b +c ,即24a +b =12c ,∵a 、b 、c 是0~6的整数,∴b =0,c =2a ,当a =1时,c =2,这个十进制的数为51;当a =2时,c =4,这个十进制的数为102;当a =3时,c =6,这个十进制的数为153.8. (1)证明:设此两位数为a 2a ,∵a 2a =10a +2a =12a 为6的倍数,轮换后2aa =20a+a =21a 为7的倍数,∴a 2a 为6的一个轮换数.故这个两位自然数一定是“轮换数”.(2)解:∵此三位数为2bc =200+10b +c =198+9b +(2+b +c ),为3的倍数,∴(2+b +c )为3的倍数,第一次轮换后:bc 2=100b +10c +2=100b +8c +(2c +2),为4的倍数,∴(c +1)为2的倍数,即c 为奇数,第二次轮换后:c 2b =100c +20+b ,为5的倍数,则b 为0或者5.当b =0时,2+b +c =2+c ,为3的倍数且c 为奇数,则c =1,或7,即三位数为201 或207;_____ _____ _____ 当b =5时,2+b +c =7+c 为3的倍数且c 为奇数,则c =5,即三位数为255.综上所述,这个三位自然数abc 为201,207或255.9. 解:(1)最小的两位“快乐数”是10; 19是“快乐数”. 证明:由题意可知,用反证法证明数字4经过若干次运算后都不会出现数字1即可. ∵4→16→37→58→89→145→42→20→4→16…→4出现两次,∴后面将重复出现,永远不会出现1,∴任意一个“快乐数”经过若干次运算后都不可能得到4.(2)设这个三位“快乐数”为abc ,由题意知,经过两次运算后结果为1,所以第一次运算后结果一定是10或100,所以a 2+b 2+c 2=10或100,又因为a 、b 、c 为整数,且a ≠0,所以a 2+b 2+c 2=12+32+02=10或a 2+b 2+c 2=0+62+82=100.(i)当a =1,b =3或0,c =0或3时,这个三位“快乐数”为130,103;(ii)当a =2时,b 、c 无解;(iii)当a =3时,b =1或0,c =0或1时,这个三位“快乐数”为310,301;同理当a 2+b 2+c 2=100时,因为62+82=100, 所以这个三位“快乐数”的所有可能为680,608,806,860.综上所述,一共有130,103,310,301,680,608,806,860八个. 又因为三位“快乐数”与它的各位上的数字相加所得的和被8除余数是2,经计算知只有310和860满足条件.10. 解:(1)495.【解法提示】①975-579=396;②963-369=594;③954-459=495.(2)99(a -c ).【解法提示】(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =99a -99c =99(a -c ).(3)证明:设这个三位数中三个数字为a ,b ,c ,且a ≥b ≥c ,a ≥c +1,则经过“F 运算”有abc -cba =99(a -c )=100(a -c -1)+10×9+(10+c -a ),因此所得的三位数中必有一个9,而另外两个数字之和为9,共有990,981,972,963,954五种情况;以990为例得,990-099=891,981-189=792,972-279=693,963-369=594,954-459=495,…,由此可知最后得到495时就会循环.∴任意一个三位数经过若干次“F 运算”都会得到一个定值,这个定值为495.11. 解:(1)0,1,2,4,8,9均可.∵29=52+22,∴29是“完美数”.(2)根据题意S =x 2+4y 2+4x -12y +k =(x 2+4x )+(4y 2-12y )+k =(x +2)2-4+(2y -3)2-9+k =(x +2)2+(2y -3)2+(k -13).要使S 为“完美数”,则k -13=0,即k =13.(3)设m =a 2+b 2,n =c 2+d 2(a ,b ,c ,d 都是整数),则 mn =(a 2+b 2)(c 2+d 2)=a 2c 2+a 2d 2+b 2c 2+b 2d 2=a 2c 2+2abcd +b 2d 2+b 2c 2-2abcd +a 2d 2=(ac +bd )2+(bc -ad )2,∴mn 也是“完美数”.12. 解:(1)5;3.【解法提示】由新定义得,L(2,1)=2+3×1=2+3=5;L(32,12)=32+3×12=3. (2)①3;2. 【解法提示】由定义得, ⎪⎩⎪⎨⎧=+-=-2213112b a b a ,解得⎩⎨⎧==23b a . ②由新定义,得L (m ,m -2)=3m +2(m -2)=5m -4,∵50<L (m ,m -2)<100,∴⎩⎨⎧<->-100455045m m ,解得545<m <1045, ∵m 和m -2均为正整数,∴经计算可知满足50<L (m ,m -2)<100的正格数对共有10个. ③由L (x ,y )=3x +2y =76,得y =2376x-,∵x >0,y >0,即2376x ->0,解得x <763,又∵x ,y 均为正整数,∴x 为偶数,∴经计算可知共有12个满足条件的正格数对,若x ,y 满足问题②,则x -y =2,即x -2376x-=2,解得x =16,∴y =x -2=14,∴在这些正格数对中,有满足问题②的数对,为⎩⎨⎧==1416y x .13. 解:(1)15;51.【解法提示】根据题意得,N (5,3)=3-22×52+4-32×5=252+52=15;N (6,5)=5-22×62+4-52×6=54-3=51.(2)由题意得,6-22m 2+4-62m =4-22(m +2)2+4-42(m +2)+10,化简得m 2-5m -14=0,解方程得,m =7或m =-2(不合题意,舍去),故m =7.(3)由题意得, y =22-t ×62+24t-×6-5-22t 2-4-52t =-32t 2+312t -24,整理得y =-32(t -316)2+38524,∵a =-32<0,且t 是整数,∴当t =5时,y 有最大值,其最大值为16.。

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题

中考数学专题复习之二——胡不归问题从前,有一个小伙子在外地学徒。

当他得知老父亲病危的消息后,便立即启程赶回家。

他只考虑了两点之间线段最短的原理,选择了直线路径A→B(XXX所示),而忽视了走折线虽然路程多但速度快的实际情况。

当他气喘吁吁地赶到家时,老人已经去世了。

邻居告诉他,老人在弥留之际不断念叨着“胡不归?XXX不归?…”。

这个古老的传说引起了人们的思索,小伙子是否能提前到家?如果可以,他应该选择哪条路线?这就是风靡千百年的“XXX不归问题”。

例1.(2012崇安模拟)如图,平面直角坐标系中,$\triangle ABC$中,$AB=AC$,$A(0,22)$,$C(1,0)$,$D$为射线$AO$上一点。

一动点$P$从$A$出发,运动路径为$A→D→C$,点$P$在$AD$上的运动速度是在$CD$上的3倍。

为使整个过程运动时间最少,则点$D$的坐标应为(。

2)(。

)(。

)(。

)$A$、$B$、$C$、$D$。

例2.(2016徐州)如图,在平面直角坐标系中,二次函数$y=ax^2+bx+c$的图像经过点$A(-1,2)$,$B(0,-3)$,$C(2,4)$,其中对称轴与$x$轴交于点$D$。

1)求二次函数的表达式及其顶点坐标;2)若$P$为$y$轴上的一个动点,连接$PD$,则$PB+PD$的最小值为()。

3)$M(s,t)$为抛物线对称轴上的一个动点。

①若平面内存在点$N$,使得$A$、$B$、$M$、$N$为顶点的四边形为菱形,则这样的点$N$共有()个;②连接$MA$、$MB$,若$\angle AMB$不小于$60^\circ$,求$t$的取值范围。

练巩固:1.(2015无锡二模)如图,菱形$ABCD$的对角线$AC$上有一动点$P$,$BC=6$,$\angle ABC=150^\circ$,则$PA+PB+PD$的最小值为()。

2.(2019长沙中考)在$\triangle ABC$中,$AB=AC=10$,$\tan A=2$,$BE\perp AC$于点$E$,$D$是线段$BE$上的一个动点,则$CD+5$的最小值为()。

最新2017年中考数学菱形综合复习试题及答案

最新2017年中考数学菱形综合复习试题及答案

2017年中考数学一轮复习专题1菱形综合复习23一选择题:41.菱形具有而一般平行四边形不具有的性质是()5A.对边相等 B.对角相等 C.对角线互相平分 D.对角线互相垂直62.如图为菱形ABCD与△ABE的重叠情形,其中D在BE上.若AB=17,BD=16,AE=25,则DE7的长度为何?()89A.8 B.9 C.11 D.12103.如图,在□ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于11点F,连接AE,CF.则四边形AECF是( )12A.梯形 B.长方形 C.菱形D.正方形13144.如图,四边形ABCD的四边相等,且面积为120cm2,对角线AC=24cm,则四边形ABCD的周长15为()1617A.52cm B.40cm C.39cm D.26cm185.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线19(虚线)剪下,再打开,得到的菱形的面积为()2021A.10cm2 B.20cm2 C.40cm2 D.80cm2226.如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则23线段OE的长等于()2425A.3cm B.4cm C.2.5cm D.2cm267.如图,在菱形ABCD中,对角线AC与BD相交于点O,若AB=2,∠ABC=60°,则BD的长为27()2829A.2 B.3 C. D.2308.如图所示,在菱形ABCD中,BE⊥AD,BF⊥CD,E ,F 为垂足,AE=ED,则∠EBF 等于()3132A.75°B.60°C.50° D.45°339.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()3435A. B. C.5 D.43610.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,37反比例函数y=(x<0)的图象经过点C,则k的值为()3839A.﹣12 B.﹣6 C.6 D.12404111.如图,在菱形ABCD中,AB的垂直平分线EF交对角线AC于点F,垂足为点E,连接DF,42且∠CDF=24°,则∠DAB等于( )43A.100°= B.104°C.105°44D.110°45464712.某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部48分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分49种上草坪,则扩建后菱形区域的周长为()5051A.20m B.25m C.30m D.35m5213.如图,菱形ABCD中,∠B=60°,AB=2cm,E、F分别是BC、CD的中点,连接AE、EF、AF,53则△AEF的周长为()5455A.2cm B.3cm C.4cm D.3cm5614.如图,菱形ABCD的对角线相交于坐标原点,点A的坐标为(a,2),点B的坐标为(﹣1,57﹣),点C的坐标为(2,c),那么a,c的值分别是()5859A.a=﹣1,c=﹣ B.a=﹣2,c=﹣2 C.a=1,c= D.a=2,60c=26115.如图,菱形ABCD的对角线AC、BD相交于点O,AC=8,BD=6,过点O作OH⊥AB,垂足为H,62则点O到边AB的距离OH等于()6364A.2 B.1.8 C.3 D.6516.如图,以正方形ABCD的对角线AC为一边作菱形AEFC,则∠FAB=()6667A.30° B.45° C.22.5° D.135°6869707117.如图,已知四边形OABC是菱形,CD⊥x轴,垂足为D,函数的图象经过点C,且与72AB交于点E.若OD=2,则△OCE的面积为()73A.2 B.4 C.;D.;7418.已知:如图在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交75于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,则点E的坐标76为()7778A.(5,8) B.(5,10) C.(4,8) D.(3,7910)8019.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC 81上.若四边形EGFH是菱形,则AE的长是()8283A.2 B.3 C.5 D.68420.如图,在菱形ABCD中,∠A=60°,E、F分别是AB,AD的中点,DE、BF相交于点G,连接85BD,CG.有下列结论:①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD =AB2其中正确的86结论有()8788A.1个 B.2个 C.3个 D.4个8990919293949596二填空题:9721.如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使98其成为菱形(只填一个即可).9910022.如图,在菱形ABCD中,AB=4,线段AD的垂直平分线交AC于点N,△CND的周长是10,则101AC的长为.10210323.如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长104是.10510610724.如图,在RtΔABC中,∠ACB=90°,AC=4,BC=3,D为斜边AB上一点,以CD、CB为边作108平行四边形CDEB,当AD= 时,平行四边形CDEB为菱形。

北京市第四中2017年中考数学总复习专题训练概率初概率的计算

北京市第四中2017年中考数学总复习专题训练概率初概率的计算

概率的计算•复习回顾——概率初步1.随机事件;2.概率:一般地,对于一个随机事件A,我们把刻画其发生可能性大小的数值,称为随机事件A发生的概率,记为P(A).3.计算事件发生的概率:古典概型;运用列举法计算事件发生的概率;利用频率估计概率 .一、概念题1、图中每一个标有数字的方块均是可以翻动的木牌,其中只有两块木牌的背面贴有中奖标志,则随机翻动一块木牌中奖的概率为________.2、下列说法正确的是( ).A.抛掷一枚硬币5次,5次都出现正面,所以投掷一枚硬币出现正面的概率为1B.“从我们班上查找一名未完成作业的学生的概率为0”表示我们班上所有的学生都完成了作业C.一个口袋里装有99个白球和一个红球,从中任取一个球,得到红球的概率为1%,所以从袋中取至少100次后必定可以取到红球(每次取后放回,并搅匀) D.抛一枚硬币,出现正面向上的概率为50%,所以投掷硬币两次,那么一次出现正面,一次出现反面二、面积法3、如图是地板格的一部分,一只蟋蟀在该地板格上跳来跳去,如果它随意停留在某一个地方,则它停留在阴影部分的概率是_____.4、矩形OABC的顶点坐标分别是(0,0),(4,0),(4,1),(0,1),在矩形OABC的内部任取一点(x,y),则x<y的概率是_________.三、树形图法5、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12.(1)试求袋中蓝球的个数.(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图法,求两次摸到的都是白球的概率.6、如图,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上.(1)从中随机抽取一张,抽到的卡片是眼睛的概率是多少?(2)从四张卡片中随机抽取一张贴在如右图所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树形图法求贴法正确的概率.7、从1、2、3……9中任取两个不同的数。

新疆地区2017版中考数学总复习重难题型补充题库特殊三角形问题

新疆地区2017版中考数学总复习重难题型补充题库特殊三角形问题

特殊三角形问题1.如图,已知直线33y x =-分别交x 轴,y 轴于A 、B 两点,抛物线2y x bx c =++经过A 、B 两点,点C 是抛物线与x 轴的另一个交点(与A 点不重合).(1)求抛物线的解析式;(2)求△ABC 的面积;(3)在抛物线的对称轴上,是否存在点M ,使得△ABM 为等腰三角形?若不存在,请说明理由;若存在,求出点M 的坐标.第1题图解:(1)∵直线33y x =-分别交x 轴,y 轴于A 、B 两点,∴(1,0),(0,3)A B -,把A 、B 两点的坐标分别代入2y x bx c =++得10,3b c c ++=⎧⎨=-⎩解得23b c =⎧⎨=-⎩,∴抛物线解析式为223y x x =+-;(2)令0y =,得2023x x =+-,解得121,3x x ==-,则C 点坐标为(3,0)-,4AC =,故可得1143622ABC S AC OB =⋅=⨯⨯=Δ;(3)抛物线的对称轴为1x =-,AB =,假设存在点(1,)M m -满足题意,分情况讨论:①当MA BA =时,解得12m m ==,∴12((1,M M --;②当MB BA =时,解得340,6m m ==-,∴34(1,0),(1,6)M M ---(不合题意,舍去);③当MB =MA 时,解得51m =-,∴5(1,1)M --.综上所述,共存在4个点1(M -,2(1,M -,3(1,0)M -,5(1,1)M --使得△ABM 为等腰三角形.2.如图,已知直线6y kx =-与抛物线2y ax bx c =++相交于A 、B 两点,且点A (1,-4)为抛物线的顶点,点B 在x 轴上.(1)求抛物线的解析式;(2)在(1)中抛物线的第二象限图象上是否存在一点P ,使△POB 与△POC 全等?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若在y 轴上存在点Q ,使△ABQ 为直角三角形,请求出点Q 的坐标.第2题图解:(1)∵点A (1,-4)在直线6y kx =-上,∴46k -=-,解得2k =,∴直线的解析式为26y x =-,当0y =时,260x -=,解得3x =,∴B (3,0),∵A 为顶点,∴设抛物线的解析式为2(1)4(0)y a x a =--≠,又∵点B 在抛物线上,∴20(31)4a =--,解得1a =,∴抛物线的解析式为2(1)4y x =--,即223y x x =--.(2)存在.如解图,过点P 作PF ⊥x 轴于F .∵3OB OC ==,OP OP =,∴当POB POC =∠∠时,△POB ≌△POC ,此时OP 平分第二象限的角,∴45POF ∠=︒,∴PF OF =.第2题解图设PF OF m ==,则点P 的坐标为(P m m -,),其中0m >.∵点P 在抛物线223y x x =--上,∴223m m m =+-,解得1211,22m m -+-==(不合题意,舍去),∴11(22P --,).(3)①当190Q AB ︒∠=时,190Q AD BOD ︒∠=∠=,∵1ADQ BDO ∠=∠,∴△1ADQ ∽△DBO ,∴1DQ ADOD DB =,即56=,∴152DQ =,∴172OQ =,即17(0,)2Q -;②当290Q BA ∠=︒时,ΔΔ2BOQ DOB ∽,∴2OQ OB OD OB =,即23,63OQ =∴232OQ =即23(0,2Q ;③当390AQ B ∠=︒时,作AE ⊥y 轴于E ,则ΔΔ33BOQ Q EA ∽,∴33OQ OB Q E AE =,即33341OQ OQ =-,∴33430,OQ OQ -+=∴3=1OQ 或3,即()-34(01)03Q Q -,,,,∴Q 点坐标为72(0,-,302(,),(0,1)-,03(,-).3.如图,在平面直角坐标系中,抛物线与x 轴交于点A (-1,0)和点B (1,0),直线21y x =-与y 轴交于点C ,与抛物线交于点C ,D .(1)求抛物线的解析式;(2)求点A 到直线CD 的距离;(3)平移抛物线,使抛物线的顶点P 在直线CD 上,抛物线与直线CD 的另一个交点为Q ,点G 在y 轴正半轴上,当以G 、P 、Q 三点为顶点的三角形为等腰直角三角形时,求出所有符合条件的G 点的坐标.第3题图解:(1)直线21y x =-,当0x =时,1y =-,则点C 的坐标为(0,-1).设抛物线解析式为2y ax bx c =++,∵点A (-1,0)、B (1,0)、C (0,-1)在抛物线上,∴001a -b+c =a b c c ⎧⎪++=⎨⎪=-⎩,解得1.01a =b c ⎧⎪=⎨⎪=-⎩∴抛物线的解析式为21y x =-.(2)如解图①所示,直线21y x =-,当y =0时,12x =,设直线CD 交x 轴于点E ,则1,02E ⎛⎫ ⎪⎝⎭,在Rt △OCE 中,1OC =,12OE =,由勾股定理得:2CE ==,设OEC θ∠=,则=sin 5θ,=cos 5θ,过点A 作AF ⊥CD 于点F ,第3题解图①则()1sin sin =1+=255AF AE OA OE θθ⎛⎫=⋅=+⋅⨯⎪⎝⎭,∴点A 到直线CD 的距离为355.(3)∵平移后抛物线的顶点P 在直线21y x =-上,∴设(),21P t t -.则平移后抛物线的解析式为2()21y =x t t -+-,联立2()2121y =x t t y x ⎧-+-⎨=-⎩,化简得:22(22)20x t x t t -+++=,解得:1x t =,22x t =+,即点P 、点Q 的横坐标相差2,∴2cos 55PQ θ===△GPQ 为等腰直角三角形,可能有以下情形:①若点P 为直角顶点,如解图②所示,则PG PQ ==.∴10sin cos 5PG PG CG OCE θ===∠,∴1019OG CG OC =-=-=,∴()0,9G;第3题解图②第3题解图③②若点Q为直角顶点,如解图③所示,则==.QG PQ同理可得:()G;0,9③若点G为直角顶点,如解图④所示,此时PQ=,==.GP GQ分别过点P、Q作y轴的垂线,垂足分别为点M、N.易证Rt△PMG≌Rt△GNQ,∴GN PM=,.=GM QN在Rt△GNQ中,由勾股定理得222+=,GN QN GQ即2210+=①.PM QN∵点P、Q横坐标相差2,∴2=+,NQ PM代入①式得:22++=,(2)10PM PM解得1PM=,∴3NQ=,∵直线21=-,y x∴当1y=,第3题解图④x=时,1∴(1,1)P,即1OM=.∴+1+34=+===.OG OM GM OM NQ∴(0,4)G.综上所述,符合条件的点G有两个,其坐标为(0,4)或(0,9).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选中小学试题、试卷、教案资料
新情景问题
【专题点拨】
新情境应用问题有以下特点:
(1)问题的背景材料新而不陌生,提出的问题新而不怪;(2)注重考查阅读理解能力,许多这类的
试题所涉及的数学知识不多也不难,但能读、读懂题目是问题解答的关键;(3)注重考查问题的转化能力.解
答这类应用性问题的难点是能否将实际问题抽象转化为数学问题,在问题转化中的关键是对题目进行认真
的阅读,冷静的思考,针对性的分析.
【解题策略】
从阅读情景入手→理解情景内容和要求→针对问题进行转化→将实际问题转化为数学问题→借助数
学知识解答
【典例解析】
类型一:几何型新情景问题
例题1:(2016·江西·10分)如图,将正n边形绕点A顺时针旋转60°后,发现旋转前后两图形有
另一交点O,连接AO,我们称AO为“叠弦”;再将“叠弦”AO所在的直线绕点A逆时针旋转60°后,交
旋转前的图形于点P,连接PO,我们称∠OAB为“叠弦角”,△AOP为“叠弦三角形”.
【探究证明】
(1)请在图1和图2中选择其中一个证明:“叠弦三角形”(△AOP)是等边三角形;
(2)如图2,求证:∠OAB=∠OAE′.
【归纳猜想】
(3)图1、图2中的“叠弦角”的度数分别为 15° , 24° ;
(4)图n中,“叠弦三角形” 是 等边三角形(填“是”或“不是”)
(5)图n中,“叠弦角”的度数为(用含n的式子表示)
精选中小学试题、试卷、教案资料
【解析】几何变换综合题.(1)先由旋转的性质,再判断出△APD≌△AOD',最后用旋转角计算即可;
(2)先判断出Rt△AEM≌Rt△ABN,在判断出Rt△APM≌Rt△AON 即可;
(3)先判断出△AD′O≌△ABO,再利用正方形,正五边形的性质和旋转的性质,计算即可;
(4)先判断出△APF≌△AE′F′,再用旋转角为60°,从而得出△PAO是等边三角形;
(5)用(3)的方法求出正n边形的,“叠弦角”的度数.
【解答】解:(1)如图1,

∵四ABCD是正方形,
由旋转知:AD=AD',∠D=∠D'=90°,∠DAD'=∠OAP=60°,
∴∠DAP=∠D'AO,
∴△APD≌△AOD'(ASA)
∴AP=AO,
∵∠OAP=60°,
∴△AOP是等边三角形,
(2)如图2,

相关文档
最新文档