运算放大器输入、输出、单电源和轨到轨问题
Rail to Rail 轨对轨运算放大器

Rail to Rail 轨对轨运放传统的模拟集成器件,如运放、A/D、D/A等,其模拟引脚的电压范围一般都达不到电源,以运放为例,电源为+/-15V的运放,为确保性能(首先是不损坏,其次是不反相,最后是足够的共模抑制比),输入范围一般不要超过+/-10V,常温下也不要超过+/-12V;输出范围,负载10kohm时一般只有+/-11V,小负载电阻(600ohm)时只能保证+/-10V。
这对器件的应用带来很多不便。
rail-to-rail的器件,一般都是低压器件(+/-5V 或single +5V),输入输出电压都能达到电源(输入甚至可以超过)。
其原理上的秘诀便在于电流模+NPN/PNP互补输入结构。
rail-to-rail器件的某些设计思想,对我们自己设计电路也可以提供一些有益的思路。
现在rail-to-rail的单电源模拟器件已形成系列(如MAXIM,AD,TI等),在许多对性能(精度)要求不高的场合,我们可以考虑全部采用单+5V甚至+2.7V的模拟器件来构成我们的系统,这样模拟电路和数字电路便可以公用一个电源(不过要注意电源去耦)。
而且这类器件大量采用SOT封装,有利于设计出体积功耗都很小的产品。
rail-to-rail,即“轨至轨”,有时也称为“满摆幅”,是指输出(或输入)电压范围与电源电压相等或近似相等。
从输入方面来讲,其共模输入电压范围可以从负电源电压到正电源电压;从输出方面来讲,其输出电压范围可以从负电源电源到正电源电压。
也可以说,这是一个与供电电压密切相关的特性,对器件的输入或输出无失真动态范围有很大的影响,当ΔV 很小时(10mV--100mV),无失真动态范围最小电压为VSS+ΔV,最大值为VCC-ΔV,具有这样动态范围的运放就叫Rail to Rail运放。
理想状态下,器件的正常工作输入与输出电压范围可同时达到运放正负电源端的电压范围。
实际上,器件很难达到真正的“轨至轨”。
比较常见的“轨至轨”表现方式有,输入rail-to-rail;输入达到或超过Vee;输出比较接近rail-to-rail;在同一器件上的输入/输出实现(或接近)rail-to-rail。
轨至轨运放的介绍

轨至轨(rail to rail)概念(2009-11-25 09:14:28)转载▼分类:电子标签:杂谈从输入来说, 其共模输入电压范围可以从负电源到正电源电压; 从输出来看, 其输出电压范围可以从负电源到正电源电压。
Rail to Rail翻译成汉语即“轨到轨”,指器件的输入输出电压范围可以达到电源电压。
传统的模拟集成器件,如运放、A/D、D/A等,其模拟引脚的电压范围一般都达不到电源电压,以运放为例,电源为+/-15V的运放,为确保性能(首先是不损坏,其次是不反相,最后是足够的共模抑制比),输入范围一般不要超过+/-10V,常温下也不要超过+/-12V;输出范围,负载RL>10kohm时一般只有+/-11V,小负载电阻(600ohm)时只能保证+/-10V。
这对器件的应用带来很多不便。
Rail-to-Rail的器件,一般都是低压器件(+/-5V 或 single +5V),输入输出电压都能达到电源(输入甚至可以超过)。
其原理上的秘诀便在于电流模+NPN/PNP互补输入结构。
rail-to-rail器件的某些设计思想,对我们自己设计电路也可以提供一些有益的思路。
“轨到轨(rail-to-rail)”的特性即:它的输入或输出电压幅度即使达到电源电压的上下限,此时放大器也不会像常规运放那样发生饱和与翻转。
例如,在+5V单电源供电的条件下,即使输入、输出信号的幅值低到接近0V,或高至接近5V,信号也不会发生截止或饱和失真,从而大大增加了放大器的动态范围。
这在低电源供电的电路中尤其具有实际意义。
TLC2274(轨到轨)与OP07(非轨到轨)的输入输出范围如表2(厂家给出)及图2(实际测定)。
可以看到,TLC2274的动态范围可达4.8V,而OP07(及其它非轨到轨特性的运放)的动态范围仅3V左右。
轨至轨(rail to rail) 运放有一类特殊的放大器具有非常低的端边占用电压(headroom)要求,称之谓输出摆幅与供电电压相同(轨至轨rail to rail)放大器。
轨到轨电路结构

轨到轨电路结构一、引言轨到轨电路(rail-to-rail circuit)是一种能够输出信号接近电源轨的电路结构。
在传统的运算放大器中,输出信号范围通常受限于电源电压范围。
而轨到轨电路的出现解决了这一限制,使得输出信号能够接近电源轨,提高了电路的灵活性和适用范围。
二、轨到轨输入电路轨到轨输入电路是轨到轨电路的基础。
它能够接收来自外部的信号,并将其传递给后续的电路部分。
轨到轨输入电路通常由差分放大器和反馈网络组成。
差分放大器能够将输入信号的差异放大,并通过反馈网络将放大后的信号返回给输入端,从而实现对输入信号的放大和处理。
三、轨到轨输出电路轨到轨输出电路是轨到轨电路的另一个重要组成部分。
它能够将经过放大和处理的信号输出给外部设备。
轨到轨输出电路的设计目标是使输出信号能够接近电源轨,即输出信号能够达到电源的最大和最小电压范围。
为了实现这一目标,轨到轨输出电路通常采用了特殊的放大器结构和电源极限设计。
四、轨到轨放大器轨到轨放大器是轨到轨电路的核心部分。
它能够接收输入信号,并将其放大到较大的幅度,然后输出给后续电路。
轨到轨放大器的设计要求能够在整个电源电压范围内提供稳定的放大和处理功能。
为了实现这一目标,轨到轨放大器通常采用了双差分输入结构、共模反馈电路和输出级的极限设计等技术手段。
五、轨到轨运算放大器轨到轨运算放大器是一种特殊的轨到轨放大器。
它能够接收多个输入信号,并将它们进行运算和处理,然后输出结果。
轨到轨运算放大器的设计要求能够在整个电源电压范围内提供稳定的运算和处理功能。
为了实现这一目标,轨到轨运算放大器通常采用了高增益差分输入结构、自动校准电路和输出级的极限设计等技术手段。
六、应用领域轨到轨电路由于其能够输出信号接近电源轨的特性,被广泛应用于许多领域。
例如,音频处理、传感器信号放大、模拟信号处理、数据采集和医疗设备等领域都需要使用轨到轨电路。
轨到轨电路的出现使得这些领域的电路设计更加灵活和高效。
对轨对轨运算放大器的理解

轨对轨(rail-to-rail)1.所谓轨对轨(rail-to-rail)运算放大器,指的是放大器输入和输出电压摆幅非常接近或几乎等于电源电压值。
2.不是所有的rail to rail 运放输入和输出都接近电源,有的只是输入有的只是输出,当然也有的输入输出都是rail to rail 的,该类运放的最大特点就是可以扩展信号的电压范围,但一般输出电流较小,在大电流的情况下并不能保证rail to rail。
3.在低电源电压和单电源电压下可以有宽的输入共模电压范围和输出摆幅。
4.轨至轨输入,有的称之为满电源摆幅(R-R)性能,可以获得零交越失真,适合驱动ADC,而不会造成差动线性衰减,实现高精密度应用,有轨至轨运放和轨至轨比较器。
5.rail-to-rail,只是一个概念,其实就是正负电源(±V)供电运算放大器。
☆运算放大器供电方式:1.±V;2.+V和GND。
这两种供电方式,各有各的特点。
1.±V:用三极管的截止失真来说,这种方式输入,不要加入直流输入成分,它的“静态工作点”电压是0V,所以动态范围非常大,接近电源。
优点:失真小,态范围非常大(振幅接近V);缺点:双电源输入,电路变得复杂。
2.+V和GND:还拿三极管的截止失真来说,这种方式输入,如果在输入端不加入直流成分(1/2V),那么在输入信号电压很大时,信号的负半周期,就是出现截止失真。
(设计方案:在输入端加入直流成分(稍稍大于1/2V),它的“静态工作点”电压是1/2V左右,这样所以动态范围也可以非常大,接近电源1/2V左右。
)优点:单电源输入,电路简单;缺点:不接入直流成分,失真大,如果作为高音质声音放大,会引起左右分离度降低等情况。
综上情况,在高性能运算放大器电路中,采用rail-to-rail设计方案比较好。
轨至轨输入/输出功能扩大了动态范围,最大限度地提高了放大器的整体性能。
例如,CMOS型轨至轨输入/输出放大器就比较适用于具有以下特性的单电源应用:输入和输出轨上的摆幅很小、极低的静态电流以及极低的输入偏置电流。
轨到轨CMOS运算放大器的研究与设计

重废邮虫盍堂亟±论塞簋三童熟到魍£MQS运簋趑太墨的县佳遮让第三章轨到轨CMOS运算放大器的具体设计运放的输入电位通常要求高于负电源某一数值,而低于正电源某一数值。
经过特殊设计的运放可以允许输入电位在从负电源到正电源的整个区间变化,甚至稍微高于正电源或稍微低于负电源也可以。
这种运放称为轨到轨(Rail—to—Rail)输入运算放大器。
3.1轨到轨运放的输入级设计3.1.1传统的输入级设计通过对差分放大器的直流性质研究我们发现,NMOS差分对管的输入共模电压可以达到电源电压%仃,同时可得PMOS差分对管的共模输入电压可以无限制的接近地电压,上面的直流工作点都可以通过对管子的器件特性的选择来选定。
但是无论如何我们不可能让NMOS差分对管的共模电压接近于地电压,同理,我们也不能让PMOS差分对管的共模电压接近于电源电压%D,这些是因为器件本身的性质决定的。
于是我们不可能通过只选择其中的任何一个类型的管子而实现共模输入电压达到轨到轨的要求。
然而我们通过上面的分析可以发现,假如两种类型的管子配合着相互使用,于是问题则可以迎刃而解。
如此输入级的共模输入电压范围就可达到运放对输入级电路轨到轨的要求。
通过上面的分析我们得到互补式运算放大器的差分输入电路结构如图3.1所示。
从下图中我们得出:当只有N/dOS差分对导通的时候,N/dOS差分对管Ml,M2的输入共模范围为‰一%+‰;当只有PMOS差分对管处于导通状态的时候,M3,M4作为输入级其共模的输入范围为‰一K,。
+‰;通过上面的分析我们知道两种差分对管实现了优缺点的互补,我们就完成了共模输入电压范围扩大的目的,此时为坎。
~%。
,如此一来轨到轨输入级结构的大体思路已经成行,我们同时可以计算出可以使这对差分对管正常工作的最小的电源电压,其电压值大小是:‰nlin=‰+‰+2‰。
上面的式子中‰,%分别是PMOS晶体管和NMos晶体管的栅源电压;‰是16尾电流管的饱和电压,这里尾电流管子是采用电流镜技术。
运算放大器电路的基本注意事项

运算放大器电路的基本注意事项
1.在所有运算放大器电路中,只有当运算放大器处于有效区,即输人和输出没有在其中一个电源下饱和,才服从黄金规则I和Ⅱ(见4.1.3节)。
例如,过度驱动其中一个放大器将使输出箝位在Vo或V附近。
箝位期间,输入不再保持为相同的电压。
运算放大器输出不能在大于电源电压处波动(尽管某些运算放大器设计成可以在一个或另一个电源周围波动,但一般只能在2V以内波动)。
同样,运算放大器电流源的输出跟随有同样的限制。
例如,带未接地负载的电流源能在“正常”方向(电流与电源电压的方向一致)提供最大的Vcc-V通过负载,在反方向为V-VFF(负载可能很奇怪,比如包含电池,需要反向电压来提供前向电流;当感性负载被改变的电流驱动时,也会发生同样的事情)。
2.必须设计成负反馈。
这意味着(包括在其他情况下)一定不能将反相、同相输人端混淆。
3.在运算放大器电路中必须一直有直流反馈,否则运算放大器必定进入饱和状态。
例如,我们可以在同相放大器中从反馈网络到地之间接一个电容(降低直流增益),但不能类似地在输出和反相输入端之间串联一个电容。
4.许多运算放大器的最大差分输入电压受到比较小的限制。
同相输入端和反相输人端之间的最大电压差限制到+5V这么小。
破坏这个规则将导致较大的输入电流溢出,降低或损害运算放大器的性能。
轨到轨输入放大器的使用场合以及需要注意的问题

/ OPA2 8 3 6 )运放为例来具 体说明输 入共模 范 围的重要性 。OPAx 8 3 6 是一 款相 当受欢迎 的非轨 到轨输 入的运放 系 列。它们 实现 了带宽2 0 5 M Hz 和输入 电
压噪声4 . 6 n V / 、 / / Hz N 高 性 能 ,但 每
个通 道的 静态 电 流却 仅为 l m A。极高 的功率效率 ,加上很小的封装 ,这些优 点 使其 非 常适 用 于 便携 式 应 用。 同时 OP Ax 8 3 6 还具 有轨到轨输 出 ( RRO) 功能 ,允 许将 低 电源 电压 工作 的输 出 电压 范 围最大 化 。然 而 ,在输 入端 , OPAx 8 3 6 的输 入 共模 范 围仅 为V 一
图1 电池 系统使 用TH S 4 2 8 1 的典型高侧电流 感测 电路
轨 到 轨输 入的 运 算 放 大 器非 常 适 合在低压单 电源系统中实现单位增 益缓
虽然轨 到轨输 入放大器大都具有多
WWW . e p c . c o r g i c n ・2 0 1 7 1 g 1 &2 月
S pec i a l
特 刊 : ~ m l — m -  ̄ ■
轨到轨输入放大器的使用场合 以及需要注意的问题
德 州仪 器 X i y a o Z h a n g
多年 前 我 刚 刚开 始 读 研究 生 时 做 过一 个项 目,要在薄膜沉积 系统 的监测 电路 中使 用运算放 大器 ( 0 p a mP )实 现一 个单 位增 益 缓 冲 器。 插 入新 模块 后 ,我发现 靠近正电源信号都 发生 了截 波 ( c l i p p i n g )。实验 室的同事说道 : “ 哎 ,要是 用了轨到轨运算放大 器就不 会有这个 问题 了。”这是我第一次 意识 到需要使 用一 种特殊的运算放 大器来避 免输 入信号过大而导致 的截 波现 象。 近 年 来 , 越 来 越 多 的 运 算 放 大 器 ( 尤 其 是 低 速 精 密 类 ) 都 开 始 具 有 包 含 正 负 电 源 轨 的 输 人 共 模 范 围
常见问答-轨到轨输出运算放大器具备哪些优势

12 20103John Ardizzoni Analog Devices Inc.在低电源电压应用中,无论是使用单电源,或是低电压双极性电源,放大器的输入范围和输出摆幅都有一定的限制,有限的输入范围和受限的输出摆幅都会减小放大器的动态范围。
轨到轨放大器不仅有助于扩展这个动态范围,而且还能提高性能。
放大器通常采用射极跟随器(源跟随器)或共发射极(共源极)输出级电路。
射极跟随器可提供较低的失真,但输出摆幅也较小,这是因为输出级晶体管需要在线性区域工作,这样会使输出摆幅减小约1V。
轨到轨输出放大器一般采用共射极或共源极输出电路,虽然这种输出电路无法提供像射极跟随器那么好的性能,但它能提供更宽的摆幅。
轨到轨输出的摆幅能够非常接近电源轨,但由于晶体管上有一定的压降,所以也不能完全达到轨电压,不过两者的差值在几毫伏之内。
场效应管(FET)输入运算放大器能带来什么好处?FET输入的运算放大器具备几个优势。
由于它具有极低的输入偏置电流,通常在pA范围内,因而对输入电路产生的负载也极低,这样就可使用大的源电阻,而不会引入明显的失调电压误差(大小为输入偏置电流与源电阻的乘积)。
由于输入偏轨到轨输出运算放大器具备哪些优势?置电流如此之低,因此将运算放大器用于反相配置时,就没有必要补偿输入失调电压误差。
在这种配置中,补偿放大器的一种常用方法是采用一个电阻将同相输入端连接到地,该电阻的阻值是反馈和增益设置电阻的并联组合,但现在由于电流很低,这里也不再需要此电阻,因此简化了电路。
FET输入运算放大器的一种常见应用就是在光电二极管检测器应用中作为电流-电压转换器(I-V转换器)。
在这些应用中,光电二极管的电流非常小,因此强制要求所用运算放大器必须具备极低的输入偏置电流,这样才能确保所有的光电二极管电流都通过反馈电阻(产生输出电压),而不是进入运算放大器中,否则将会在运算放大器电流-电压转换器的预期输出电压中引入误差。
放大器输出阻抗和输出驱动能力如何影响系统性能?低输出阻抗之所以重要是有多方面的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Page 5 of 12
MT-035
+VS +VS
s OR PMOS
Poor Bias Current Match (Currents May Even Flow in Opposite Directions) Higher Current Noise Not Very Useful at HF Matching source impedances makes offset error due to bias current worse because of additional impedance
Rev.0, 10/08, WK
Page 1 of 12
MT-035
为了保持低电源电压应用的宽动态范围,也需要轨到轨放大器输出级。单电源/轨到轨放 大器的输出电压摆幅应在任一电源轨的至少100 mV范围内(标称负载下)。输出电压摆幅与输 出级拓扑结构和负载电流密切相关。图1列出了单电源运算放大器的设计问题。
Page 4 of 12
MT-035
FET具有高输入阻抗、低偏置电流和良好的高频性能(在运算放大器应用中,FET器件的较 低gm支持更高的尾电流,从而提高最大压摆率)。FET的电流噪声也低得多。 另一方面,FET长尾对的输入失调电压不如BJT那么好,而且用于降低失调电压的调整功 能不能同时降低漂移,漂移需要单独进行调整。因此,虽然JFET运算放大器具有良好的失 调和漂移特性,但比不上最佳BJT器件。 可以将JFET运算放大器的电压噪声降到非常低的程度,但涉及的器件非常大,并且具有相 当高的输入电容,它随输入电压而变化,因此需要权衡电压噪声与输入电容。 FET运算放大器的偏置电流是栅极扩散层的漏电流(或栅极保护二极管的漏电流,其特性与 MOSFET相似)。芯片温度每升高10°C,该漏电流就会提高一倍。因此,FET运算放大器在 125°C时的偏置电流比25°C时高1000倍。显然,在双极性和FET输入运算放大器之间进行选 择时,这是一个重要考虑因素,特别是在高温应用中,双极性运算放大器的输入偏置电流 实际上会降低。 到 目 前 为 止 , 我 们 从 一 般 意 义 上 谈 到 了 所 有 类 型 的 FET , 包 括 结 型 (JFET) 和 MOS 型 (MOSFET) 。实践中,双极性 /JFET 组合技术运算放大器(即 BiFET )的性能优于仅使用 MOSFET或CMOS技术的运算放大器。虽然ADI和其它公司采用MOS或CMOS输入级制造 高性能运算放大器,但一般而言,这些运算放大器的失调和漂移、电压噪声、高频性能不 如精密双极性器件。功耗通常略低于性能相当甚至更好的双极性运算放大器。 JFET器件需要的裕量高于BJT器件,因为JFET的夹断电压通常大于BJT基极-射极电压。相 应地,JFET器件更难于采用非常低的电源电压(1-2 V)工作。在这方面,CMOS具有优势, 所需的裕量低于JFET。 轨到轨输入级 如今,要求运算放大器的输入共模电压包括两个电源轨,即轨到轨共模工作,已变得非常 普遍。虽然这种特性在某些应用中无疑很有用,但工程师应认识到,在为数很少的应用 中,这种特性是绝对不可缺少的。应将这些应用与许多其它应用区别开来,后者例如:共 模范围接近电源的应用,或者包括一个电源是必需的,但并不需要真正的输入轨到鬼。 许多单电源应用要求输入共模电压范围扩展到一个电源轨(通常为地)。高端或低端电流检 测应用就是这样的例子。许多放大器可以处理0 V共模输入,这可以利用PNP(或PMOS)差 分对(或N沟道JFET对)轻松实现,如图4所示。这种运算放大器的输入共模范围一般是从负 电源轨(–VS或地)以下约200 mV到正电源轨(+VS)的大约1-2 V范围内。
图3:偏置电流补偿双极性输入级
简单的双极性输入级(例如图2所示)会表现出高偏置电流,因为外部看到的电流事实上是两 个输入晶体管的基极电流。如果通过内部电流源提供该必要的偏置电流,如图3所示,那么 基极电流与电流源之间的差分电流将是流入输入端的唯一“外部”电流,它可能相当小。
Page 3 of 12
MT-035
Single Supply Offers: Lower Power Battery Operated Portable Equipment Requires Only One Voltage Design Tradeoffs: Reduced Signal Swing Increases Sensitivity to Errors Caused by Offset Voltage, Bias Current, Finite OpenLoop Gain, Noise, etc. Must Usually Share Noisy Digital Supply Rail-to-Rail Input and Output Needed to Increase Signal Swing Precision Less than the best Dual Supply Op Amps but not Required for All Applications Many Op Amps Specified for Single Supply, but do not have Rail-to-Rail Inputs or Outputs
Page 2 of 12
MT-035
VIN
Low Offset: As low as 10µV Low Offset Drift: As low as 0.1µV/ºC Temperature Stable IB Well-Matched Bias Currents Low Voltage Noise: As low as 1nV/√Hz
图1:单电源运算放大器设计问题
运算放大器输入级 为了正确设计所需的接口,了解运算放大器的输入和输出结构非常重要。为便于讨论,可 以将输入级和输出级分别加以研究,因为目前还没有必要考虑二者的关系。 双极性输入级 图 2所示为常见的基本双极性输入级,它包括一个 “长尾 ”双极性晶体管对。它有许多优 势:结构简单,失调电压非常低,反相和同相输入端的偏置电流匹配良好且不随温度而发 生较大变化。此外,通过激光调整降低双极性运放的初始失调电压也能使其温漂最小化。 这种架构曾用于非常早期的单芯片运算放大器,如μA709等。它也运用于现代高速运算放 大器。图中显示为NPN双极性晶体管,但其原理同样适用于PNP双极性晶体管。
High Bias Currents: 50nA - 10µA (Except Super-Beta: 50pA - 5nA, More Complex and Slower) Medium Current Noise: 1pA/√Hz Matching source impedances minimize offset error due to bias current
MT-035 指南
运算放大器输入、输出、单电源和轨到轨问题
单电源运算放大器问题 由于市场需求,单电源供电已成为一项日益重要的要求。汽车、机顶盒、照相机 /摄像 机、PC和笔记本电脑应用要求IC供应商提供各种采用单电源轨供电,而性能则与双电源 器件相同的线性器件。功耗现已成为线路或电池供电系统的关键参数,某些情况下甚至比 成本还重要。因此,器件以低电压/低电源电流工作至关重要。与此同时,精度和精密性 要求则迫使IC制造商要在放大器设计中做到“事半功倍”。 在单电源应用中,对放大器性能的最直接影响是输入和输出信号范围缩小。由于输入和输 出信号的偏移度更小,放大器电路对内部和外部误差源变得更敏感。在12位、10 V满量程 系统中,精密放大器的0.1 mV失调电压引起的误差小于0.04 LSB。但在单电源系统中,“轨 到轨”精密放大器的1 mV失调电压则代表5 V满量程系统中的0.8 LSB误差(或2.5 V满量程系 统中的1.6 LSB误差)。 在某些低压单电源器件中,增益精度也会降低,因此需要仔细考虑器件选型。许多具有 120 dB左右开环增益的放大器通常都采用双电源供电,如OP07型等。然而,许多用于精密 应用的单电源/轨到轨放大器在轻负载(>10 kΩ)下通常具有25,000至30,000的开环增益。某些器 件,比如OP113/OP213/OP413系列,确实具有高开环增益(>120 dB),适用于要求苛刻的应 用。另一个例子是AD855x系列斩波稳定运算放大器。 除了这些限制以外,还有许多其它在双电源放大器中不是大问题的设计考虑,现在却变得 很重要。例如,信噪比(SNR)性能由于信号摆幅缩小而降低。“接地基准”不再是一个简单 的选择,因为一个基准电压可能只适用于某些器件,而不适用于其它器件。放大器电压噪 声随着工作电流的降低而提高,带宽降低。在单电源、低功耗应用中,要利用选择相对有 限的放大器实现足够的带宽和所需的精度,对系统设计来说是一个巨大的挑战。 大多数电路设计人员视“地”基准为理所当然。许多模拟电路以地基准为中心缩放输入和输 出范围。在双电源应用中,将电源电压一分为二的基准电压(0 V)是非常方便的,这样将使 各个方向上的电源裕量相等,而且0 V一般是低阻抗接地层的电压。然而,在单电源/轨到 轨电路中,由于没有标准可依,接地基准可以在电路的电源范围内任意选择。接地基准的 选择取决于待处理信号的类型和放大器特性。例如,选择负电源轨作为接地基准,可以优 化输出要摆动到0 V的运算放大器动态范围。另一方面,信号可能需要进行电平转换,以便 兼容其它不是采用0 V输入工作的器件(如ADC等)的输入。