13.1轴对称

合集下载

人教版八年级数学上册课件:13.1 轴对称(共25张PPT)

人教版八年级数学上册课件:13.1  轴对称(共25张PPT)

的形式,逆命题就容易写出.鼓励学生找出原命题的条件和
结论. 原命题的条件是“有一个点是线段垂直平分线上的点”, 结论是“这个点与这条线段两个端点的距离相等”.
此时 , 逆命题就很容易写出来.“如果有一个点与线 段两个端点的距离相等,那么这个点在这条线段的垂直平 分线上.” 写出逆命题后,就想到判断它的真假.如果真,那么 需证明它;如果假 ,那么需用反例说明.请同学们自行在 练习册上完成. 学生给出了如下的四种证法.
M A A′
P
B C C′ B′
N
下图是一个轴对称图形,你能发现什么结论?能说明 理由吗?
l
A B
A′ B′
(一)线段的垂直平分线的性质
教师出示教材第61页探究,让学生测量,思考有什
么发现?
如图,直线l垂直平分线段AB,P1,P2,P3…是l上的点, 分别量一量点 P1 , P2 , P3…到点 A 与点 B 的距离,你有什么 发现? 学生回答,教师小结:线段垂直平分线上的点与这条 线段两个端点的距离相等. 性质的证明:
证得PA=PB. 教师要求学生自己写已知 , 求证,证明过程.学 生证明完后教师板书证明过程供学生对照.
已知:MN⊥AB,垂足为点 C , AC = BC ,点 P 是直线 MN 上任 意一点.求证:PA=PB. 证明:在△APC和△BPC中,
∵PC=PC(公共边),∠PCA=∠PCB(垂直的定义),
如果一个平面图形沿一条直线折叠,直线两旁的 部分能够互相重合,这个图形就叫做轴对称图形,这 条直线就是它的对称轴.这时,我们也说这个图形关
于这条直线(成轴)对称.
猜字游戏: 在艺术字中,有些汉字是轴对称的,你能猜一猜下 列是哪些字的一半吗?
问题2 观察下面每对图形(如图),你能类比前面的 内容概括出它们的共同特征吗?

1、 轴对称

1、 轴对称

第十三章轴对称13.1 轴对称(第一课时)一、知识要点1、轴对称图形的概念:如果一个平面图形沿着一条直线折叠,直线两旁的部分能够完全重合,这个图形就叫做轴对称图形,这条直线叫做对称轴.2、两个图形成轴对称:把一个图形沿着某条直线折叠,如果它能够与另一个图形完全重合,那么就说这两个图形关于这条直线成轴对称.3、轴对称图形和两个图形成轴对称的区别和联系:轴对称图形和两个图形成轴对称的本质是一致的,但同时两者也是有区别的,轴对称图形指的是一个图形沿对称轴折叠后这个图形的两部分能完全重合,而两个图形成轴对称是指两个图形之间的位置关系,这两个图形沿对称轴折叠后能够重合.4、线段的垂直平分线(中垂线)概念:。

5、如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6、轴对称图形的对称轴是任何一对对应点所年线段的垂直平分.(1)在字母“ABCDEF”中,是轴对称图形的是_____.(2)正方形有______条对称轴.(3)成轴对称的两个图形_______(填“全等”或“不一定全等”);两个全等的图形成轴对称(填“一定”或“不一定”)(4)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的______.注意:(1)常见的轴对称图形:线段、角、矩形、等腰三角形、圆等.(2)轴对称图形的对称轴是直线.二、例题分析1.如图所示的每个图形都是轴对称图形吗?如果是,指出它的对称轴.(1)(2)(3)(4)(5)【思路点拨】判断一个平面图形是不是轴对称图形,关键看这个图形沿着某条直线折叠后能否完全重合.2.如图所示的每幅图形中的两个图形是轴对称的吗?如果是,指出它们的对称轴.【思路点拨】判断两个图形是不是成轴对称,关键看其中一个图形沿着某条直线折叠后能否与另一个图形完全重合.此外,对称轴的确定,要先找到一对对应点,然后画这条对应点连线段的垂直平分线.3.下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个4.下列交通标识中,不是轴对称图形的是()A.B.C.D.5.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条6.下列图形是由我们熟悉的一些基本数学图形组成的,其中是轴对称图形的是(填序号)7.图1中的三角形4与三角形 成轴对称(填编号),整个图形 轴对称图形(填“是”或“不是”),它有 条对称轴.8. 如下书写的四个汉字,其中为轴对称图形的是( ).A .B .C .D .9.如图,直线l 是五边形ABCDE 的对称轴,∠A =130°,∠B =90°,则∠BCD = .10白球撞击后沿箭头方向运动.经桌边反弹最后进入球洞的序号是( ).A .②B .①C .⑥D .⑤11.如图,在44 的正方形网格中,已将图中的四个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形成轴对称图形.那么符合条件的小正方形共有( )A .1个 B .2个 C .3个 D .4个4图1EDCBAl12.如图,在Rt△ABC中,∠ACB=90°,∠A=28°,D是AB上一点,将RT△ABC沿CD∠的度数.折叠,使B点落在AC边上的B'处,求ADB'三、过关检测1.下列学习用具中,不是轴对称图形的是()A. B. C. D.2.下列图形中,是轴对称图形的是()A. B. C. D.3.已知以下四个汽车标志图案:其中不是轴对称图形的图案是(只需填入图案代号).4.在图形:正方形、等边三角形、等腰三角形、线段中,对称轴最多的是.5. 如图,△ABC中,∠ACB=90°,沿CD折叠△CBD,使点B恰好落在AC边上的点E处,若∠A=26°,求∠CDB的度数。

人教版初中数学第十三章知识点总结

人教版初中数学第十三章知识点总结

第十三章轴对称13.1轴对称13.1.1轴对称1.轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;这条直线就是它的对称轴。

2.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称;这条直线叫做对称轴;折叠后的点是对应点,叫做对称点。

3.轴对称图形与轴对称的区别:(1)轴对称是对两个图形而言,而轴对称图形是一个图形;(2)轴对称是指形状相同,大小相等,并且具有一定特殊位置的两个图形,轴对称图形是指一个具有特殊形状的图形;(3)轴对称只有一条对称轴,而轴对称图形的对称轴可能不只一条。

4.轴对称图形与轴对称的联系:(1)都是沿着某条直线折叠,折叠后都能够重合;(2)把成轴对称的两个图形看成一个整体,它就是一个轴对称图形,把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条直线轴对称。

5.线段的垂直平分线:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

6.轴对称的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;(2)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

13.1.2线段的垂直平分线的性质1.线段垂直平分线的性质定理:线段垂直平分线上的点与这条线段的两个端点的距离相等。

2.线段垂直平分线的判定定理:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.线段的垂直平分线可以看成是到线段两个端点距离相等的所有点的集合。

4.尺规作图4:作已知线段的垂直平分线已知:线段AB求作:线段AB的垂直平分线CD作法:(1)分别以A,B为圆心,大于12AB长为半径画弧,两弧交于点C、D;(2)作直线CD.则直线CD为所求5.尺规作图5:经过已知直线外一点作这条直线的垂线已知:直线AB和AB外一点C求作:AB的垂线,使它经过点C作法:(1)任意取一点K,使点K和点C在AB的两旁;(2)以点C为圆心,CK长为半径作弧,交AB于点D和E;(3)分别以D,E为圆心,大于12DE长为半径画弧,两弧交于点F;作直线CF.则直线CF为所求的垂线。

课件3:13.1.1 轴对称

课件3:13.1.1 轴对称

通过今天的学习,你有什么收获与体会?
通过这节课的学习,你有什么收获?
第 十 二 章






• 你能举出日常生活中常见的轴对称图形的例 子吗?
如果想不出,不要紧,可以先 看看我们的周围有没有?再想 一想外面有没有?









组 •请你认真观察哟!
图 形
•每一组里,左边的图形沿直线对折后与右边的图形 重合吗?
结论 把一个图形沿着某一条直线折叠,如果它能 够与另一个图形重合,那么就说这两个图形关 于这条直线对称.

十第 三十
13.1.1 轴对称
章一章
轴三
对称角形
— 1—
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边!
这是一种怎样的美呢? 请你谈谈你的感想?
请你想一想:将上图中的每一个图形沿某条直线对折, 直线两旁的部分能完全重合吗? 重合
定义
如果 一个图形
沿一条直线折叠,直
线两旁的部分能够互相重合,那么这个
图形叫做 轴对称图形(axisymmetric figure)
这条直线就是它的对称轴 (axis of symmetric).
剪纸
试一试 你能找出下有的图形的对称轴这么多哇! 以后找对称轴我可得 好好想想呀!
你能找出下图中各图形的对称轴吗?如果能,请 在图上画出来.
这条直线就是对称轴.
你能举出日常生活中常见的 两个图形成轴对称的例子吗?
如果想不出,不要紧,可以先 看看我们的周围有没有?再想 一想外面有没有?
小组讨论:
想一想:轴对称图形和轴对称是不是一回事?它们 有什么相同点与不同点.

13.1.1 轴对称

13.1.1 轴对称

如图,把一张纸对折,剪出一个图案(折
痕处不要完全剪断),再打开这张对折的纸, 就得到了美丽的窗花. 观察得到的窗花,你能 发现它们有什么共同的特点吗?
如果一个平面图形沿一条直线折叠,直 线两旁的部分能够互相重合,这个图形就叫 做轴对称图形,这条直线就是它的对称轴.
这时,我们也说这个图形关于这条直线 (成轴)对称.
轴对称图形的性质: 轴对称图形的对称轴,是任何一对
对应点所连线段的垂直平分线.
例如图中,l 垂直平分AA′,l 垂直平分BB′ l
A
A′
B
B′
练习2 如图所示的每个图形是轴对称图形 吗?如果是,指出它的对称轴.
练习3 如图所示的每幅图形中的两个图 案是轴对称的吗?如果是,试着找出它们的对
称轴,并找出一对对称点.
第十三章 轴对称
13.1 轴对称 13.1.1 轴对称
新课导入
我们生活在一个充满对称的世界中,许多建 筑都具有对称性,艺术作品的创作往往也从对称 角度考虑,自然界的许多动植物也具有对称性, 中国的方块字中有些具有对称性,对称给我们带 来美的感受!而轴对称是对称中尤为重要的一种, 这节课让我们一起走进轴对称的世界吧!
练习1 下列各图,你能找出它们的 对称轴吗?请一一画出:
(1)
(2)
(3)
(4)
(5)
知识点2 垂直平分线 如图,△ABC 和△A′B′C′关于直线PQ 对称,点 A′,B′,C′分别是点A,B,C 的对称点,线段AA′ ,BB′,CC′与直线PQ 有什么关系?
Q
b. 线段AA′、BB′、CC′之间的位置关系
两者的联系:
把成轴对称的两个图形看成一个整体, 它就是一个轴对称图形.把一个轴对称图形 沿对称轴分成两个图形,这两个图形关于这 条轴对称.

轴对称知识点整理总结

轴对称知识点整理总结

§13.1 轴对称(一)一、轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这个图形就叫轴对称图形,这条直线叫对称轴.二、两个图形成轴对称:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.下列各图,你能找出它们的对称轴吗?(1) (2) (3) (4) (5)§13.1 轴对称(二)一、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线.二、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.三、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.[探究1]线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,… 证明.证法一:利用判定两个三角形全等.如下图,在△APC 和△BPC 中,P C P C P C A P C BR t A C B C =⎧⎪∠=∠=∠⎨⎪=⎩ ⇒ △APC ≌△BPC ⇒PA=PB.证法二:利用轴对称性质.由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因此它们也是相等的.[探究2]1.作线段AB ,取其中点P ,过P 作L ,在L 上取点P 1、P 2,连结AP 1、AP 2、BP 1、BP 2.会有以下两种可能.2.讨论:要使L 与AB 垂直,AP 1、AP 2、BP 1、BP 2应满足什么条件?探究过程:1.如上图甲,若AP 1≠BP 1,那么沿L 将图形折叠后,A 与B 不可能重合,也就是∠APP 1≠∠BPP 1,即L 与AB 不垂直.2.如上图乙,若AP 1=BP 1,那么沿L 将图形折叠后,A 与B 恰好重合,就有∠APP 1=∠BPP 1,即L 与AB 重合.当AP 2=BP 2时,亦然.§12.2作轴对称图形一.如何由一个平面图形得到它的轴对称图形.【探究】四边形ABCD 的四个顶点的坐标分别为A(-5,1)、B(-2,1)、C(-2,5)、D(-5,4),分别作出与四边形ABCD 关于x 轴和y 轴对称的图形.(归纳:与已知点关于y 轴或x 轴对称的点的坐标的规律;)【引申】分别作出△PQR 关于直线x=1(记为m)和直线y=-1(记为n)对称的图形,你能发现它们的对应点的坐标之间分别有什么关系吗?若△P 1Q 1R 1中P 1(x 1,y 1)关于x=1(记为m)轴对称的点的坐标P 2 (x 2,y 2) , 则m x x =+221,y 1= y 2.若△P1Q1R1中P1(x1,y1)关于y=-1(记为n)轴对称的点的坐标P2(x2,y2) ,则x1= x2,221yy=n.13.3. 1等腰三角形等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).例题与练习1.如图2其中△ABC是等腰三角形的是[ ]2.①如图3,已知△ABC中,AB=AC.∠A=36°,则∠C______(根据什么?).②如图4,已知△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③若已知∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④若已知AD=4cm,则BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.13.3.2等边三角形等边三角形定义:在等腰三角形中,有一种特殊的情况,就是底边与腰相等,这时,三角形三边都相等。

人教版八年级下册数学专题复习及练习(含解析):轴对称

人教版八年级下册数学专题复习及练习(含解析):轴对称

专题13.1 轴对称知识点1:轴对称图形1.定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.这条直线就是它的对称轴。

这时我们就说这个图形关于这条直线(或轴)对称.2.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称. 这条直线叫做对称轴,折叠后互相重合的点是对应点,叫做对称点.3.轴对称图形和轴对称的区别:轴对称图形是一个图形,轴对称是两个图形。

4.轴对称和全等的关系:轴对称一定是全等图形,但全等图形不一定是轴对称。

知识点2:轴对称的性质(1)成轴对称的两个图形全等。

(2)对称轴与连结“对应点的线段”垂直。

(3)对应点到对称轴的距离相等。

(4)对应点的连线互相平行。

也就是不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.知识点3:线段的垂直平分线1.定义:经过线段中点并且垂直于这条线段的直线,叫这条线段的垂直平分线.2.线段垂直平分线的性质:(1)线段垂直平分线上的点与这条线段两个端点的距离相等.(2)与一条线段两个端点距离相等的点在这条线段的垂直平分线上.【例题1】若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A B C D【例题2】下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【例题3】如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【例题4】如图,在直角△ABC中,∠C=90°,∠CAB的平分线AD交BC于D,若DE垂直平分AB,求∠B的度数.一、选择题1.下列图形中,是轴对称图形的是()A B C D2.下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形3.下列图案属于轴对称图形的是()A B C D4.下列图形中,是轴对称图形的是()A B C D二、解答题5.如图所示的是一个在19×16的点阵图上画出的“中国结”,点阵的每行及每列之间的距离都是1,请你画出“中国结”的对称轴,并直接写出阴影部分的面积。

人教版八年级数学13.1轴对称(包含答案)

人教版八年级数学13.1轴对称(包含答案)

13.1轴对称知识要点:1.轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.2.线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.3.性质:线段垂直平分线上的点与这条线段两个端点的距离相等.4.判定:与线段两个端点距离相等的点在这条线段的垂直平分线上.书写格式:如图所示,若P A=PB,则点P在线段AB的垂直平分线上.一、单选题1.如图所示,哪一个选项中的左边图形与右边图形成轴对称( )A.B.C.D.【答案】C2.下列图形中,不一定是轴对称图形的是( )A.圆B.正方形C.三角形D.线段【答案】C3.下列选项中的图形均为正多边形,其中恰有4条对称轴的是( )A.B.C.D.【答案】B4.如果一个三角形有三条对称轴,那么它一定是( )A.等边三角形B.等腰三角形C.直角三角形D.锐角三角形【答案】A5.如图,是由四个四条边都相等的四边形组成的商标图案,在图中用虚线画出的6条直线中,是这个图案的对称轴的直线是( )A.①①①①①①B.①①C.①①①D.①①①【答案】B6.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在①A,①B两内角平分线的交点处【答案】C7.如图,已知直角三角形ABC中,①ACB=90°,E为AB上一点,且CE=EB,ED①CB 于D,则下列结论中不一定成立的是()A.AE=BE B.CE=12AB C.①CEB=2①A D.AC=12AB【答案】D8.已知①ABC与①A1B1C1关于直线MN对称,且BC与B1C1交直线MN于点O,则()A.点O是BC的中点B.点O是B1C1的中点C.线段OA与OA1关于直线MN对称D.以上都不对【答案】C9.如图,在3×2的正方形网格中,已有两个小正方形被涂上了阴影,再将图中其余小正方形任意一个涂上阴影,使整个阴影部分构成一个轴对称图形的涂法有()A.1种B.2种C.3种D.4种【答案】C10.下列图形中,轴对称图形的个数是()A.4个B.3个C.2个D.1个【答案】B11.如图,①ABC中,AD①BC于点D,且BD=DC,E是BC延长线上一点,且点C在AE的垂直平分线上.有下列结论:①AB=AC=CE;①AB+BD=DE;①AD=12AE;①BD=DC=CE.其中,正确的结论是()A.只有①B.只有①②C.只有①②③D.只有①④【答案】B12.如图,在①ABC中,AB边上的中垂线DE分别交AB、BC于点E、D,连接AD,若①ADC的周长为7cm,AC=2cm,则BC的长为()cm.A.4B.5C.3D.以上答案都不对【答案】B13.如图,在①ABC中,按以下步骤作图:①分别以A,B为圆心,大于12AB长为半径作弧,两弧相交于M,N两点;①作直线MN交BC于点D,连接AD.若AD=AC,①B=25°,则①C=( )A.70°B.60°C.50°D.40°【答案】C14.如图,在①ABC中,①C=90°,AB的垂直平分线DE交AB于点E,交BC于点D,若AB=13,AC=5,则①ACD的周长为( )A.18B.17C.20D.25【答案】B二、填空题15.如图,在①ABC中,①C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若①CBD : ①DBA =3:1,则①A的度数为________.【答案】18°16.在一次“寻宝”游戏中,“寻宝”人在如图23-6-9所示的藏宝图中找到了两个标志点A(2,3),B(4,1),A,B两点到“宝藏”点的距离相等,则“宝藏”点的可能坐标是________(填一个即可).【答案】如(0,-1)或(1,0)或(2,1)或(3,2)或(4,3)或(5,4)或(6,5)等17.如图所示,不是轴对称图形的有_____(只写序号).【答案】⑥⑥⑥18.如图,①ABC与①DEF关于直线l对称,若①C=40°,①B=80°,则①F=______.【答案】40°19.①ABC与①A′B′C′关于直线l对称,如果①ABC的周长为38cm,①A′B′C′的面积为55 cm2,那么①A′B′C′的周长为__________cm,①ABC的面积为__________cm2.【答案】38 55三、解答题20.如图:AD为①ABC的高,①B=2①C,用轴对称图形说明:CD=AB+BD.证明:在CD上取一点E使DE=BD,连接AE.⑥BD=DE,且⑥AED为⑥AEC的外角,⑥B=2⑥C,⑥⑥B=⑥AED=⑥C+⑥EAC=2⑥C,⑥⑥EAC=⑥C,⑥AE=EC;则CD=DE+EC=AB+BD.21.试画出下列正多边形的所有对称轴,并完成表格:根据上表,猜想正n边形有________条对称轴.解:如图.故表格中依次填3,4,5,6,7;猜想正n边形有n条对称轴.22.如图,在Rt①ABC中,过直角边AC上的一点P作直线交AB于点M,交BC的延长线于点N,且①APM=①A.求证:点M在BN的垂直平分线上.证明:⑥⑥B+⑥A=90°,⑥N+⑥CPN=90°,又⑥⑥CPN=⑥MPA=⑥A,⑥⑥B=⑥N,⑥BM=MN,⑥点M在BN的垂直平分线上.23.如图,在四边形ABCD中,AC①BD于点E,BE=DE,已知AC=10 cm,BD=8 cm,求阴影部分的面积.⑥AC⑥BD ,BE =DE ,⑥点B ,D 关于直线AC 对称,又⑥点E 在AC 上,⑥⑥BEF 与⑥DEF 关于直线AC 对称, ⑥⑥BEF⑥⑥DEF ,⑥S 阴影=S ⑥ABC ,又⑥BD =8,⑥BE =4,⑥S ⑥ABC =12AC·BE =12×10×4=20(cm 2)24.ABC V 在平面直角坐标系中的位置如图所示. ()1在图中画出ABC V 与关于y 轴对称的图形111A B C V ,并写出顶点1A 、1B 、1C 的坐标;()2若将线段11A C 平移后得到线段22A C ,且()()2222A a C b ,,,-,求a b +的值.解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)⑥A1(2,3)、C1(1,1),A2(a,2),C2(-2,b).⑥将线段A1C1向下平移了1个单位,向左平移了3个单位.⑥a=-1,b=0.⑥a+b=-1+0=-1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

任务一:探索新知
请你想一想:将上图中的每一个图形沿某条 直线对折,直线两旁的部分能完全重合吗?
如果一个图形沿某条直线对折后, 直线两旁的部分能够互相重合,那 么这个图形叫做轴对称图形。 这条直线叫这个图形的对称轴。 注意:对称轴是直线
1. 下面图形是轴对称图形的有 A,B,E,F ( ) A. 角 B. 线段 C. 太极图 D. 香港特别行政区区旗上的紫荆花 E. 等腰三角形 F. 五角星
想一想 观察下图中的每组图案,你发现了什么?
把一个图形沿着某一条直线折叠,如果 它能够与另一个图形完全重合,那么就 说这两个图形关于这条直线成轴对称。 这条直线就是对称轴。 折叠后重合的点是对应点, 叫做对称点。
轴对称图形
两个图形成轴对称
一 两 区别 _个图形 _个图形 联系 1.沿一条直线折叠,直线两旁的部分
把一圆形纸片两次对折后,得到右图,
然后沿虚线剪开,得到两部分,其中
一部分展开后的平面图形是( B )
A
B
C
D
八年级 数学
第十四章 轴对称
想一想:一辆汽车的车牌在水中 的倒影如图所示,你能确定该车车牌的号
码吗?
任务三:探索新知
问题1 如图,△ABC 和△A′B′C′关于直线MN 对称,点A′,B′,C′分别是点A,B,C 的对称点,线 段AA′,BB′,CC′与直线MN 有什么关系? A M P A′
C
D
F
下面的图形是轴对称图形吗?如果是,你能 找出对称轴吗?


不是
不是

你能找出下面五角星的对称轴吗?先想一想, 再动手折一折,然后画一画。
请看,圆有几条对称轴?
你能找出下图中各图形的对称轴吗? 如果能,请在图上画出来。
任务二:成轴对称的图形
•每一组里,左边的图形沿直线对折后 与右边的图形完全重合吗?
第十三章
13.1.1
轴对称
轴对称
“对称是一种思想,通过它,人们毕生 追求,并创造次序、美丽和完善……”
让我们走进轴对称的世界!去感 受对称的奇妙和美丽吧!
一.脸谱艺术
二.剪纸艺术
三.国旗欣赏
面对生活中这些美丽的图片, 你是否强烈地感受到美就在我们身边! 这是一种怎样的美呢? 请你谈谈你的感想?
追问1 你能说明其中 的道理吗?
B
B′ C N C′
追问2 上面的问题 说明“如果△ABC 和 △A′B′C′关于直线MN MM 对称,那么,直线MN 垂 A A′ A' 直线段AA′,BB′和CC′, A P 并且直线MN 还平分线段 B B' AA′,BB′和CC′”.如 D' D B B′ 果将其中的“三角形”改 C C' 为“四边形”“五边 N C′ C N 形”…其他条件不变,上 述结论还成立吗?
B C M A B' D C' N
问题2 下图是一个轴对称图形,你能发现 什么结论?能说明理由吗?
l
追问 你能用数学语言概括 前面的结论吗?
A
A′
B 轴对称图形的性质: 轴对称图形的对称轴,是任何一 对对应点所连线段的垂直平分线.
B′
如图,五边形ABCC′B′是轴对称图形,MN是 它的对称轴,点D是对称点CC′与MN的交点. 如果∠B=120°,∠C=110°,CC′=4 cm, 求∠BAB′的度数和CD的长度.
互相重合 能够____. 对称轴 2.都有____. 3.如果把一个轴对称图形沿对称轴 分成两个图形,那么这两个图形关于 对称 这条直线___;如果把两个成轴对 称的图形看成一个图形,那么这个图 轴对称图形 形就是____.
猜字游戏 在艺术字中,有些汉字是轴对称的,你能 猜一猜下列是哪些字的一半吗?
相关文档
最新文档