2017年秋季新版北师大版九年级数学上学期2.1、认识一元二次方程教案16

合集下载

北师大版九年级数学上册2.1:认识一元二次方程 教学案

北师大版九年级数学上册2.1:认识一元二次方程 教学案

学科讲义·初三数学 上数学课时,必须全神贯注,心无旁骛,专心听讲,一旦走神,就再也融不进数学老师的世界里了1 第二章 一元二次方程第一节 认识一元二次方程学习目标 1.理解一元二次方程及其相关概念,会判断满足一元二次方程的条件.(重点)2.能够利用一元二次方程的定义求字母的值;用一元二次方程的根求代数式的值。

3.体会方程的模型思想。

(难点)知识点1: 一元二次方程的定义 如果一个方程通过移项可以使右边为0,而左边只含有一个未知数的二次多项式,那么这样的方程叫做一元二次方程。

注意:一元二次方程必须同时满足以下三点:①方程是整式方程。

②它只含有一个未知数。

③未知数的最高次数是2. 同时还要注意在判断时,需将方程化成一般形式。

知识点2: 一元二次方程的一般形式一元二次方程的一般形式为02=++c bx ax (a ,b ,c 是已知数,0≠a )。

其中a ,b ,c 分别叫做二次项系数、一次项系数、常数项。

注意:(1)将一元二次方程化为一般形式时要按二次项、一次项、常数项排列,并一般首项为正,化分为整;(2)一元二次方程化为一般形式后,若没有出现一次项bx ,则b =0;若没有出现常数项,则c =0.(3)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。

(4)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。

知识点解析学科讲义·初三数学 数学老师以4G 的速度讲课,学霸以WiFi 的速度听着,学神以3G 的速度记着,而学渣当场掉线,And you? 2 (5)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。

知识点3:一元二次方程的解(1)使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。

一元二次方程的解也叫一元二次方程的根。

北师大版 九年级数学上册 第二章_2.1.1一元二次方程 电子教案

北师大版 九年级数学上册 第二章_2.1.1一元二次方程 电子教案

第二章一元二次方程2.1 认识一元二次方程2.1.1一元二次方程1.要求学生会根据具体问题列出一元二次方程.通过“未铺地毯区域有多宽”,“梯子的底端滑动多少米”等问题的提出,让学生列出方程,体会方程的模型思想,培养学生把文字叙述的问题转换成数学语言的能力.2.通过教师的讲解和引导,使学生抽象出一元二次方程的概念,培养学生归纳分析的能力.一元二次方程的概念.如何把实际问题转化为数学方程.导语:小学五年级学习过简易方程,上初中后学习了一元一次方程,二元一次方程组,可化为一元一次方程的分式方程,运用方程方法可以解决众多代数问题和几何求值问题,是一种常见的数学方法.从这节课开始学习一元二次方程知识,先来学习一元二次方程的有关概念.播放“未铺地毯区域有多宽”的课件幼儿园活动教室矩形地面的长为8 m,宽为5 m,现准备在地面的正中间铺设一块面积为18 m2的地毯(如图2-1-1),四周未铺地毯的条形区域的宽度都相同.你能求出这个宽度吗?教师:根据这一情境,结合已知量你想求哪些量?学生:想求出地毯的长和宽.教师:根据条件,你能列出关于这个量的什么关系式?学生:地毯的长×地毯的宽=18.教师:如果设所求的宽度为x m,那么你能列出怎样的方程?学生:地毯的长为(8-2x)m,地毯的宽为(5-2x)m,根据题意,可列方程为(8-2x)(5-2x)=18.板书等式102+112+122=132+142,提出问题观察下面等式:102+112+122=132+142,你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?教师:如果将这五个连续整数中的第一个数设为x,那么怎样用含x的代数式表示其余四个数?学生:第二个数是x+1,第三个数是x+2,第四个数是x+3,第五个数是x+4.教师:根据题意,你能列出怎样的方程?学生:x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.播放“梯子的底端滑动多少米”的课件如图2-1-2,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m,那么梯子的底端滑动多少米?教师:你能计算出滑动前梯子底端距墙的距离吗?学生:根据勾股定理,可以知道滑动前梯子底端距墙的距离为6 m.教师:如果设梯子底端滑动x m.那么你能列出怎样的方程?学生:(x+6)2+72=102.·议一议由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18.x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2.(x+6)2+72=102.教师:这三个方程有什么共同特点?学生:这三个方程都只含有一个未知数,未知数的最高次数是2.教师:还有没有其他的共性?比如:从整式和分式的角度,展开、整理后的形式的角度.学生:它们都是整式.由此得到一元二次方程的概念:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫作一元二次方程.一元二次方程的一般形式:我们把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数.例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0),因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得3x2-3x=5x+10.移项、合并同类项,得一元二次方程的一般形式为3x2-8x-10=0.其中二次项系数为3,一次项系数为-8,常数项为-10.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2 (学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数,一次项、一次项系数,常数项.分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.解:去括号,得x2+2x+1+x2-4=1.移项、合并同类项,得一元二次方程的一般形式为x2+x-2=0.其中二次项为x2,二次项系数为1,一次项为x,一次项系数为1,常数项为-2.一元二次方程的根的概念:(1)类比一元一次方程的根的概念获得一元二次方程的根的概念.(2)下面哪些数是方程x2+5x+6=0的根?-4,-3,-2,-1,0,1,2,3,4.【巩固练习】教材第4页练习第1,2题.补充练习:1.判断下列方程是否为一元二次方程.(1)3x+2=5y-3;(2)x2=4;=0;(4)x2-4=(x+2)2;(3)3x2-5x(5)ax2+bx+c=0.解:(1)(3)(4)(5)不是一元二次方程.(2)是一元二次方程.2.以-2为根的一元二次方程是( D ).A.x2+2x-1=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=03.已知方程5x2+mx-6=0的一个根是x=3,则m的值为-13 .例3 求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值该方程都是一元二次方程.分析:要证明不论m取何值该方程都是一元二次方程,只要证明m2-8m+17≠0即可.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,∴(m-4)2+1≠0,即m2-8m+17≠0.∴不论m取何值,该方程都是一元二次方程.【巩固练习】补充练习:1.下列方程哪些是一元二次方程?(1)7x2-6x=0;(2)2x2-5xy+6y=0;(3)2x2-13x-1=0;(4)y22=0;(5)x2+2x-3=1+x2.2.关于x的方程(k-3)x2+2x-1=0,当k时,该方程是一元二次方程.3.关于x的方程(k2-1)x2+2(k-1)x+2k+2=0,当k时,该方程是一元二次方程,当k时,该方程是一元一次方程.本节课要掌握:1.一元二次方程的概念:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫作一元二次方程.2.一元二次方程的一般形式:我们把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2,bx,c分别称为二次项、一次项和常数项,a,b分别称为二次项系数和一次项系数.课本习题2.1。

2017年秋季新版北师大版九年级数学上学期2.1、认识一元二次方程导学案19

2017年秋季新版北师大版九年级数学上学期2.1、认识一元二次方程导学案19

2.1 认识一元二次方程【学习目标】 课标要求:1、结合上一节课的实际问题中所建立的一元二次方程模型,激发学生求解的意识。

2、经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力。

3、进一步提高学生分析问题的能力,培养学生大胆尝试的精神,在尝试的过程中体验到学习数学的乐趣,培养学生的合作学习意识,学会在合作学习中相互交流。

目标达成:1、培养学生提出问题、分析问题、解决问题的能力。

2、培养学生的合作学习意识,学会在合作学习中相互交流。

学习流程: 【课前展示】在上一节课中,我们得到了如下的两个一元二次方程:()()182x 52x 8=--,即:0111322=+-x x ;()2221076x =++,即:01512x x 2=-+。

发现一元二次方程在现实生活中具有同样广泛的应用。

上一节课的两个问题是否已经得以完全解决?你能求出各方程中的x 吗? 【创境激趣】有一根外带有塑料皮长为100m 的电线,不知什么原因中间有一处不通,现给你一只万用表(能测量是否通)进行检查,你怎样快速的找到这一处断裂处?与同伴进行交流。

【自学导航】在前一节课的问题中,我们若设所求的宽度为x(m),得到方程:()()182x 52x 8=--,即:0111322=+-x x ;(1)根据题目的已知条件,你能确定x 的大致范围吗? ?说说你的理由.(2)x 可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.(3)完成下表:(4)你知道所求的宽度x(m)是多少吗? 还有其他求解方法吗?与同伴进行交流. 【合作探究】上节课我们通过设未知数得到满足条件的方程,即梯子底端滑动的距离x(m)满足方程()2221076x =++,把这个方程化为一般形式为01512x x 2=-+(1)你能猜出滑动距离x(m)的大致范围吗?(2)小明认为底端也滑动了1 m ,他的说法正确吗?为什么? (3)底端滑动的距离可能是2 m 吗?可能是3 m 吗?为什么? (4)x 的整数部分是几?十分位是几? 【展示提升】 典例分析 知识迁移五个连续整数,前三个数的平方和等于后两个数的平方。

北师大版九年级数学上册:第二章《一元二次方程》教案

北师大版九年级数学上册:第二章《一元二次方程》教案

第二章一元二次方程1认识一元二次方程第1课时一元二次方程的定义1.理解和掌握一元二次方程的定义,会判断一个方程是不是一元二次方程.2.了解一元二次方程的一般形式、二次项、一次项、常数项及二次项系数、一次项系数.3.能根据具体情境,列出一元二次方程.重点理解和掌握一元二次方程的相关概念.难点能根据具体情境,列出一元二次方程.一、情境导入课件出示教材第31页图2-1,提出问题:幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面的正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?教师:你能找到图中的矩形地面、条形区域和地毯区域吗?让学生指出对应的三部分,引导学生分析所提问题满足的条件,列出相应的方程.二、探究新知1.教师:你能找到关于102、112、122、132、142这五个数之间的等式吗?学生独立完成,找出等式.教师:观察等式102+112+122=132+142,你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?学生尝试解决,在难以找到的情况下,归结为方程去解决.2.课件出示教材第31页图2-2,提出问题:如图,一个长为10 m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m.如果梯子的顶端下滑1 m.那么梯子的底端滑动多少米?引导学生设未知数,列出适合条件的方程.3.教师:由上面三个问题,我们可以得到三个方程:(8-2x)(5-2x)=18,x2+(x+1)2+(x+2)2=(x+3)2+(x+4)2,(x+6)2+72=102.教师:这些方程有哪些共同特点?类比一元一次方程的定义,你能总结出一元二次方程的定义吗?学生小组讨论,派代表陈述观点,教师进一步讲解:只含有一个未知数,并且未知数的最高次项的次数为2的整式方程叫一元二次方程.一元二次方程的一般形式为ax2+bx+c=0(a≠0).ax2,bx,c分别称为二次项、一次项、常数项,a为二次项的系数,b为一次项的系数.三、举例分析例1把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.例2从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.学生独立完成,教师点评.四、练习巩固教材第32页“随堂练习”第1题.五、小结1.通过本节课的学习,你学会了什么?还有哪些困惑?2.一元二次方程的定义是什么?六、课外作业教材第32页习题2.1第1,2题.本节课通过丰富的问题情境引入一元二次方程的定义,学习中注意深刻理解定义的内涵:一元二次方程的组成;一元二次方程的成立条件等.在教学中,让学生经历提出问题到解决问题的过程,体会其中的数学思想方法.教学中有意识地提高学生对实际问题和方法的理解,鼓励学生从多角度思考问题,这有利于提高学生的思维能力和解决问题的能力.第2课时用估算法求一元二次方程的近似解1.能根据实际问题求一元二次方程的近似解.2.经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力.3.进一步提高学生分析问题的能力,培养学生大胆尝试的精神,体验学习数学的乐趣,培养学生的合作学习意识.重点经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解.难点探索一元二次方程的近似解.一、情境导入教师:在上一节课中,我们得到了如下的两个一元二次方程:(8-2x)(5-2x)=18,即2x2-13x+11=0;(x+6)2+72=102,即x2+12x-15=0.上一节课的两个问题是否已经得以完全解决?你能求出各方程中x的值吗?这节课我们一起来研究一元二次方程的解.二、探究新知教师:对于前一节课第一个问题,你能设法估计四周末铺地毯部分的宽度x(m)吗?课件出示一元二次方程(8-2x)(5-2x)=18,提出问题:(1)x可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由,并与同伴进行交流.(2)根据题目的已知条件,你能确定x的大致范围吗?(3)(4)你知道所求的宽度x(m)是多少吗?还有其他求解方法吗?与同伴进行交流.分析:因为x表示的是所求的宽度,学生能意识到x不可能小于0;学生大多数能够从实际情况出发,意识到当x大于4或当x大于2.5时,将分别使地毯的长或宽小于0,不符合实际情况;学生在利用计算器对表格中的数据进行计算的过程中发现,当x=1时,代数式2x2-13x+11的值等于0;所求的宽度为1 m.教师:在前一节课的问题中,梯子底端滑动的距离x(m)满足方程(x+6)2+72=102,把这个方程化为一般形式为x2+12x-15=0.引导学生思考以下问题:(1)小明认为底端也滑动了1 m,他的说法正确吗?为什么?(2)底端滑动的距离可能是2 m吗?可能是3 m吗?为什么?(3)你能猜出滑动距离x(m)的大致范围吗?(4)x的整数部分是几?十分位是几?学生思考后指名回答,教师进一步讲解:在此题中,梯子滑动的距离x>0是显而易见的,在下图中,求得BC=6 m,而BD<10 m,因此CD<4 m.所以x的取值范围是0<x<4.学生完成下面的表格:教师:,当x的取值是1和2时,所对应代数式的值是-2和13,而且随着x的取值越大,相应代数式的值也越大.因此若想使代数式的值为0,那么x的取值应在1和2之间.从而确定x的整数部分是1.教师启发引导学生在1和2之间继续找方程的解.学生可能有以下的做法.甲同学的做法:所以1<x<1.5.进一步计算:所以1.1<x<1.2.因此x的整数部分是1,十分位是1.所以1.1<x<1.2.因此x的整数部分是1,十分位是1.注意:对于这两种做法,教师要及时地给与肯定和鼓励,并可将二者加以比较.教师:在解决某些实际问题的时候,可以根据实际情况确定出方程的解的大致范围,进而估算出一元二次方程的近似根.一般采用“夹逼法”.采用“夹逼法”求近似值的一般步骤:(1)将方程变为一元二次方程的一般形式;(2)根据实际情况确定方程的解的大致范围;(3)根据方程的解的大致范围,在这个范围内取一个整数值,然后把这个值代入方程左边的代数式进行验证,看是否能使方程左边代数式的值为0,如果为0,则这个数是方程的解;如果不为0,则再找出一个使方程左边的值最接近于0但小于0的整数,这个数就是方程的解的整数部分;(4)保留整数部分不变,小数部分可参照整数部分的方法进行,以此类推可得出该方程更准确的近似根.三、练习巩固五个连续整数,前三个数的平方和等于后两个数的平方和.你能求出这五个整数分别是多少吗?四、小结1.通过本节课的学习,你有什么收获?2.利用“夹逼法”求近似解的一般步骤是什么?五、课外作业教材第35页习题2.2第1~3题.本节课通过日常生活中丰富有趣的问题情境让学生感受方程是刻画现实世界的有效数学模型,体会“夹逼”数学思想在现实生活中随处可见,让学生真正经历“夹逼”数学思想解题的过程,从而更好地理解“夹逼”思想解一元二次方程的意义和作用,激发学生的学习兴趣.由学生探索交流,分析此种方法的优缺点,从而概括出这种方法的实质及解题步骤,这既给学生提供了一个充分从事数学活动的机会,又体现了学生是数学学习的主人的理念.学生亲身经历了知识的形成过程,不但改变了以往学生死记硬背的学习方式,而且在教学活动中培养了学生自主探索、合作交流等良好的学习习惯.本节课多次组织学生合作交流,通过小组合作,为学生提供展示自己聪明才智的机会,在此过程中,教师发现了学生在分析问题和解决问题时出现的独到见解,以及思维的误区,这样使得老师可以更好地指导今后的教学.2用配方法求解一元二次方程第1课时用配方法求解二次项系数为1的一元二次方程1.理解配方法的意义,会用配方法求解二次项系数为1的一元二次方程.2.通过探索配方法的过程,让学生体会转化的数学思想方法.3.让学生在独立思考与合作探究中感受成功的喜悦,并体验数学的价值,增强学生学习数学的兴趣.重点用配方法求解二次项系数为1的一元二次方程. 难点了解并掌握用配方求解一元二次方程.一、复习导入1.如果一个数的平方等于4,则这个数是________,若一个数的平方等于7,则这个数是________.2.一个正数有几个平方根?它们具有怎样的关系? 3.用字母表示完全平方公式.二、探究新知1.课件出示问题:(1)你能解哪些特殊的一元二次方程?(2)你会解下列一元二次方程吗?你是怎么做的? x 2=5; 2x 2+3=5; x 2+2x +1=5; (x +6)2+72=102.(3)上节课,我们研究梯子底端滑动的距离x(m )满足方程x 2+12x -15=0,你能仿照上面几个方程的解题过程,求出x 的精确解吗?你认为用这种方法解这个方程困难在哪里?(合作交流)学生独立完成,讨论交流后发现第(3)问等号的左端不是完全平方式,不能直接化成(x +m)2=n (n ≥0)的形式,教师引导学生思考如何解决这样的方程问题.2.课件出示:填上适当的数,使下列等式成立:x 2+12x +________=(x +6)2; x 2-6x +________=(x -3)2;x 2+8x +________=(x +________)2; x 2-4x +________=(x -________)2. 学生思考后指名回答.教师:上面等式的左边,常数项和一次项系数有什么关系?对于形如x 2+ax 的式子如何配成完全平方式?学生小组讨论交流,引导学生发现:要把形如x 2+ax 的式子配成完全平方式,只要加上一次项系数一半的平方,即加上⎝⎛⎭⎫a 22.三、举例分析例1 解方程:x 2+8x -9=0.(师生共同解决) 解:可以把常数项移到方程的右边,得 x 2+8x =9.两边都加上42(一次项系数8的一半的平方),得 x 2+8x +42=9+42, 即(x +4)2=25.两边开平方,得x +4=±5,即x+4=5,或x+4=-5.所以x1=1,x2=-9.例2解决梯子底部滑动问题:x2+12x-15=0.(仿照例1,学生独立解决)解:移项,得x2+12x=15.两边同时加上62,得x2+12x+62=15+36,即(x+6)2=51.两边开平方,得x+6=±51.所以x1=51-6,x2=-51-6,但因为x表示梯子底部滑动的距离,所以x2=-51-6 不合题意舍去.所以梯子底部滑动了(51-6)米.教师:用这种方法解一元二次方程的思路是什么?其关键又是什么?小组合作交流,引导学生归纳:我们通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.四、练习巩固解下列方程:(1)x2-10x+25=7;(2)x2-14x=8;(3)x2+3x=1;(4)x2+2x+2=8x+4.五、小结1.通过本节课的学习,你有什么收获?2.什么叫配方法?3.用配方法解二次项系数为1的一元二次方程的一般步骤是什么?(1)移项,使方程左边为二次项和一次项,右边为常数项;(2)配方,方程的两边都加上一次项系数一半的平方,把方程化为(x+h)2=k(k>0)的形式;(3)用直接开平方法解变形后的方程.六、课外作业教材第37~38页习题2.3第1~3题.本节课在教学过程中,采用了由简单到复杂,由特殊到一般的原则,采用了观察对比、合作探究等不同的学习方式,充分发挥学生的主体作用,让学生主动探究并发现结论,教师作为学生学习的引导者、合作者、促进者,要适时鼓励学生,实现师生互动.同时,我认识到教师不仅要教给学生知识,还要在教学中渗透数学中的思想方法,培养学生良好的数学素养和学习能力,让学生学会学习.第2课时用配方法求解二次项系数不为1的一元二次方程1.经历配方法求解一元二次方程的过程,获得解一元二次方程的基本技能.2.经历用配方法求解二次项系数不为1的一元二次方程的过程,体会其中的化归思想.3.能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性,进一步培养分析问题、解决问题的意识和能力.重点会用配方法求解二次项系数不为1的一元二次方程.难点能利用一元二次方程解决有关的实际问题,能根据具体问题的实际意义检验结果的合理性.一、复习导入1.用配方法求解二次项系数为1的一元二次方程的基本步骤是什么? 2.填上适当的数,使下列等式成立: (1)x 2+2x +________=(x +________)2; (2)x 2-4x +________=(x -________)2; (3)x 2+________+36=(x +________)2; (4)x 2+10x +________=(x +________)2; (5) x 2-x +________=(x -________)2.3.比较下列两个一元二次方程的联系与区别.(1)x 2+6x +8=0; (2)3x 2+18x +24=0.教师:同学们可以发现方程(2)的二次项系数为3,不符合上节课解题的基本形式,那么如何解这类方程呢?这节课我们一起来探究.二、探究新知 课件出示:解方程:3x 2+8x -3=0.教师:如何把这个方程转化为符合上节课解题的基本形式?学生:根据等式的性质,将方程两边同除以3就可以把这个方程化为二次项系数为1的一元二次方程.学生尝试解这个方程,教师板书规范解答过程. 解:方程两边都除以3,得x 2+83x -1=0.移项,得 x 2+83x =1,配方,得x 2+83x +⎝⎛⎭⎫432=1+⎝⎛⎭⎫432, 即⎝⎛⎭⎫x +432=259. 两边开平方,得 x +43=±53, 所以x 1=13,x 2=-3.三、举例分析例 一个小球从地面以15 m /s 的初速度竖直向上弹出,它在空中的高度h(m )与时间t(s )满足关系:h =15t -5t 2,小球何时能达到10 m 高?解:根据题意得 15t -5t 2=10.方程两边都除以-5,得 t 2-3t =-2, 配方,得t 2-3t +⎝⎛⎭⎫322=-2+⎝⎛⎭⎫322, ⎝⎛⎭⎫t -322=14.两边开平方,得 t -32=±12. 所以t 1=2,t 2=1.四、练习巩固1.教材第39页“随堂练习”.2.印度古算中有这样一首诗:“一群猴子分两队,高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”大意是说:一群猴子分两队,一队猴子数是猴子总数的八分之一的平方,另一队猴子数是12,那么猴子的总数是多少?请同学们解决这个问题.解:设猴子的总数是x ,由题意可得⎝⎛⎭⎫18x 2+12=x. 解得x 1=16,x 2=48.答:这群猴子可能是16只,也可能是48只. 五、小结1.用配方法解一元二次方程的基本步骤是什么? 2.利用一元二次方程解决实际问题的思路是什么?六、课外作业1.教材第40页习题2.4第1,3题.2.一个人的血压与其年龄及性别有关,对女性来说,正常的收缩压p(毫米汞柱)与年龄x(岁)大致满足关系:p =0.01x 2+0.05x +107.如果一个女性的收缩压为120毫米汞柱,那么她的年龄大概是多少?3.用配方法探究方程ax 2+bx +c =0 (a ≠0)的解法.本节课作为用配方法求解一元二次方程的第二节课,主要是以习题训练为主.所以我依照书上的例题为重点展示了用配方法求解二次项系数不为1的一元二次方程的基本步骤;将书上的“做一做”转化成一个例题,让学生体会利用一元二次方程解决实际问题的意义;另外在作业中配套了一道血压方面的数学问题,学生可以体会到一元二次方程与我们的现实生活息息相关.3 用公式法求解一元二次方程 第1课时 用公式法求解一元二次方程1.能正确地推导出一元二次方程的求根公式,会用公式法解一元二次方程,能利用一元二次方程解决有关的实际问题.2.理解判别式的概念,会用判别式判断方程的根的情况.3.体会一元二次方程是刻画现实世界的一个有效的数学模型,体会从一般到特殊的思维方式,养成严谨、认真的科学态度和学风.重点用公式法解一元二次方程. 难点用配方法推导求根公式的过程.一、复习导入用配方法解下列方程:(1)2x 2+3=7x ;(2)3x 2+2x +1=0. 学生独立完成,指名板演.(1)2x 2+3=7x.解:将方程化成一般形式2x 2-7x +3=0. 两边都除以一次项系数2,得x 2-72x +32=0.配方,得x 2-72x +(74)2-4916+32=0,即(x -74)2-2516=0.移项,得(x -74)2=2516.两边开平方,得x -74=±54,即x =74±54.所以x 1=3,x 2=12.(2)3x 2+2x +1=0.解:两边都除以一次项系数3,得x 2+23x +13=0.配方,得x 2+23x +(13)2-19+13=0,即(x +13)2+29=0.移项,得(x +13)2=-29.因为-29<0,所以原方程无解. 二、探究新知1.一元二次方程的求根公式课件出示:用配方法解方程:ax 2+bx +c =0(a ≠0). 学生独立完成,并针对自己在推导过程中出现的问题在小范围内自由研讨.最后由师生共同归纳、总结,得出一元二次方程的求根公式.解:两边都除以一次项系数a ,得x 2+b a x +ca =0.教师:为什么可以两边都除以二次项系数a?学生:因为a ≠0.配方,得x 2+b a x +(b 2a )2-b 24a 2+ca=0,即(x +b 2a )2-b 2-4ac4a 2=0.移项,得(x +b 2a )2=b 2-4ac4a 2.教师:现在可以两边开平方吗? 学生:不可以,因为不能保证b 2-4ac4a 2≥0.教师:什么情况下可以两边开平方?学生讨论后回答:因为a ≠0,所以4a 2>0.要使b 2-4ac 4a2≥0,只要 b 2-4ac ≥0即可. 所以当b 2-4ac ≥0时,两边开平方,得 x +b2a=±b 2-4ac4a 2. 所以x =-b2a ±b 2-4ac 2a ,x =-b±b 2-4ac2a.归纳:x =-b±b 2-4ac2a 称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.2.一元二次方程的判别式教师:如果b 2-4ac<0时,会出现什么问题?学生:方程无解.教师:如果b 2-4ac =0呢?学生:方程有两个相等的实数根.归纳:对于一元二次方程ax 2+bx +c =0(a ≠0), 当b 2-4ac>0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac<0时,方程没有实数根.教师:由以上可知,一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“Δ”来表示.三、举例分析例1 解方程:(1)x 2-7x -18=0;(2)4x 2+1=4x.引导学生根据以下步骤解方程:①确定a ,b ,c 的值;②判断方程是否有根;③写出方程的根.例2 判断下列方程的根的情况: (1) 2x 2+3=7x ;(2)x 2-7x =20;(3)3x 2+2x +1=0;(4)9x 2+6x +1=0; (5)16x 2+8x =3;(6) 2x 2-9x +8=0.学生迅速演算或口算出b 2-4ac ,从而判断出根的情况.教师:第(3)题的判断,与第一环节中的第(2)题对比,哪种方法更简捷? 教师:上述方程如果有解,请求出方程的解. 学生独立完成,教师板书第(1)题.解方程:2x 2+3=7x.先将方程化成一般形式,得2x 2-7x +3=0. 确定a ,b ,c 的值 a =2, b =-7, c =3.判断方程是否有根 ∵b 2-4ac =(-7)2-4×2×3=25>0, ∴x =-b±b 2-4ac 2a =7±252×2=7±54.写出方程的根 即x 1=3,x 2=12.教师:与第一环节中的第(1)题对比,哪种解法更简捷? 四、练习巩固教材第43页“随堂练习”第1~3题. 五、小结1.一元二次方程ax 2+bx +c =0(a ≠0)的求根公式是什么? 2.如何判断一元二次方程的根的情况? 3.用公式法解方程应注意的问题是什么? 4.你在解方程的过程中有哪些小技巧?六、课外作业1.教材第43页习题2.5第1~4题.2.一张桌子长4 m ,宽2 m ,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽.教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整.本节课教师就根据学生的实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题.本节课不能仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力,帮助学生形成积极主动的求知态度.第2课时 用公式法解决一元二次方程的实际问题1.会用公式法解决一元二次方程的实际问题.2.通过一元二次方程的建模过程,体会方程的根必须符合实际意义,增强应用数学的意识,巩固解一元二次方程的方法.3.通过设计方案培养学生创新思维能力,展示自己驾驭数学去解决实际问题的勇气、才能及个性.重点会用公式法解决一元二次方程的实际问题. 难点能根据具体情境列出一元二次方程,体会方程的根必须符合实际意义.一、复习导入 教师:你能举例说明什么是一元二次方程吗?它有什么特点?怎样用配方法解一元二次方程?怎样用公式法解一元二次方程?帮助学生回忆一元二次方程及其解法,为后面说明设计方案的合理性作铺垫. 二、探究新知课件出示:在一块长16 m 、宽12 m 的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半.你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?学生先自己设计,画出草图,然后到黑板上展示、交流自己的作品.在学生展示作品后,教师提出问题:(1)怎样知道你的设计是符合要求的?请说明理由?(2)以上哪些图形可以直接说明符合题目条件的?剩下的图形怎样通过计算来说明? 引导学生重点分析图⑤,图⑥,图⑦. 教师:如何设未知数?怎样列方程? 学生独立思考,教师板书规范解题过程. 图⑤的解答:解:设小路的宽为x m ,由题意得 (16-2x)(12-2x)=16×12×12.整理,得x 2-14x +24=0. x 2-14x +49=-24+49, (x -7)2=25. x 1=12,x 2=2.教师:你认为小路的宽为12 m 和2 m 都符合实际意义吗? 图⑥的解答:解:设扇形的半径为x m ,由题意得 πx 2=16×12×12πx 2=96.x=±96π≈±5.5.x1≈5.5,x2≈-5.5( 舍去).指名板演图⑦的解题过程,教师点评.三、练习巩固在一幅长90 cm、宽40 cm的风景画的四周外围镶上一条宽度相同的金色纸边,制成一幅挂图,如果要求风景画的面积是整个挂图面积的72%,那么金色纸边的宽应该是多少?出示图②和图③提出问题:你认为哪一幅图是按要求镶上的金色纸边,你将如何设未知数从而列出方程?解:设金边的宽为x m,由题意得(90+2x )(40+2x) ×72%=90 ×40.解得x1=5,x2=-70(舍去).四、小结通过本节课的学习,你有哪些感悟?还有哪些困惑?五、课外作业教材第45页习题2.6第2~4题.本节课的最大特点是提出了具有思考价值的问题,以引导为主,层层深入,以问题串的形式指导学生懂得如何获得自己所需要的知识.在探究新知时,提出了这样的问题:在一块长16 m,宽12 m的矩形荒地上,要建造一个花园,并使花园所占面积为荒地面积的一半.你觉得这个方案能实现吗?若可以实现,你能给出具体的设计方案吗?当学生将自己的设计方案展示在黑板上之后,接着提出问题:你的设计一定符合要求吗?怎样知道你的设计是符合要求的?以上图形哪些可以直接说明符合题目条件的?剩下的图形怎样通过计算来说明?从课堂上学生的活动来看,学生的热情、思维与探究并进.4用因式分解法求解一元二次方程1.了解因式分解法的概念.2.会用因式分解法求解一元二次方程.3.通过因式分解法的学习,培养学生分析问题、解决问题的能力,并体会转化的思想.重点用因式分解法求解一元二次方程.难点理解因式分解法求解一元二次方程的基本思想.一、复习导入1.用配方法求解一元二次方程的关键是什么?2.用公式法求解一元二次方程应先将方程化为什么形式?3.选择合适的方法解下列方程:(1)x2-6x=7;(2)3x2+8x-3=0.二、探究新知1.课件出示:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是几?你是怎样求出来的?学生独自完成,教师巡视指导,选择不同解法的学生板演. 学生A :设这个数为x ,根据题意,可列方程 x 2=3x ,∴x 2-3x =0.∵a =1,b =-3,c =0, ∴ b 2-4ac =9. ∴ x 1=0,x 2=3.∴这个数是0或3.学生B :设这个数为x ,根据题意,可列方程 x 2=3x , ∴ x 2-3x =0. x 2-3x +(32)2=(32)2,(x -32) 2=94,∴ x -32=32或x -32=-32.∴ x 1=3,x 2=0.∴这个数是0或3.学生C :设这个数为x ,根据题意,可列方程 x 2=3x ,∴x 2-3x =0. 即x(x -3)=0.∴x =0或x -3=0. ∴x 1=0,x 2=3.∴这个数是0或3.学生D :设这个数为x ,根据题意,可列方程 x 2=3x ,两边同时约去x ,得 ∴x =3,∴这个数是3. 教师:同学们用了多种方法解决此问题,观察以上四个同学的做法是否存在问题?你认为哪种方法更合适?为什么?学生讨论交流后回答,教师点评,明确学生C 的方法更合适,并进一步讲解: 如果a·b =0,那么a =0或b =0.这就是说:当一个一元二次方程降为两个一元一次方程时,这两个一元一次方程中用的是“或”,而不用“且”.所以由x(x -3)=0得到x =0和x -3=0时,中间应写上“或”字.我们再来看学生C 解方程x 2=3x 的方法,他是把方程的一边变为0,而另一边可以分解成两个因式的乘积,然后利用a·b =0,则a =0或b =0,把一元二次方程变成一元一次方程,从而求出方程的解.我们把这种解一元二次方程的方法称为因式分解法,即当一元二次方程的一边为0,而另一边易于分解成两个一次因式的乘积时,我们就采用因式分解法来解。

北师大版数学九年级上册2.1 认识一元二次方程 教案

北师大版数学九年级上册2.1 认识一元二次方程  教案

第二章 一元二次方程1 认识一元二次方程●情景导入 根据题意列出方程:如图,现在要将一块矩形绿地扩大,长、宽各增加x m .若扩大后的绿地的面积为936 m 2,求长、宽各增加的长度.【教学与建议】教学:用来源于学生身边的问题,体会数学来源于生活并服务于生活.建议:可以让学生寻找身边的方程实例,以便理解等量关系. ●归纳导入 如图,有一块矩形铁皮,长100 cm ,宽80 cm.在它的四个角各切去一个同样的正方形,然后将四周突出的部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积是4 800 cm 2,那么铁皮各角应切去边长为多少的正方形?分析:设各角应切去边长为x cm 的正方形,则可表示无盖方盒的长是(100-2x )cm ,宽是(80-2x )cm.根据题意可得方程:(100-2x )(80-2x )=4 800.整理,得x 2-90x +800=0.【归纳】只含有__一个未知数x __的__整式__方程,并且都可以化成__ax 2+bx +c =0(a ,b ,c 为常数,a ≠0)__的形式,这样的方程叫做一元二次方程.【教学与建议】教学:通过图形的变化感受等量关系的确定,归纳出一元二次方程的定义.建议:一元二次方程定义三个关键点:①只含有一个未知数;②整式方程;③未知数的最高次数是2次.命题角度1 判断一元二次方程一元二次方程的定义:①只含有一个未知数;②未知数的最高次数是2次;③整式方程.【例1】(1)下列方程中一定是一元二次方程的是(C)A .ax 2+bx +c =0B .y 2-x =1C .x 2-1=0D .1x+x 2=1 (2)下列方程:①3x 2=x -1;②x +x 2=4;③1x 2+2x +1=1;④(2x -1)(x -2)=2x 2-1;⑤3x 2=2x (x -1).其中是一元二次方程的有__①⑤__.(填序号)命题角度2 辨识一元二次方程的各项及其系数先把方程化为一般形式,再确定二次项及其系数、一次项及其系数、常数项.【例2】(1)写出下列方程的二次项、二次项系数、一次项、一次项系数及常数项.①3x 2-2x +1=0;②5x (x -2)=4x 2-3x .解:①依次是3x 2,3,-2x ,-2,1;②依次是x 2,1,-7x ,-7,0.(2)将方程2(t -2)=(t +1)2化成一元二次方程的一般形式,并写出其中的二次项、二次项系数、一次项、一次项系数及常数项.解:一般形式为t 2+5=0,二次项为t 2,二次项系数为1,一次项为0,一次项系数为0,常数项为5. 命题角度3 根据一元二次方程的概念求待定字母的值或取值范围根据一元二次方程中二次项系数不为零,未知数的最高次数是2,求待定字母的值或取值范围.【例3】(1)若关于x 的方程(a -2)xa 2-2-2x -5=0是一元二次方程,则(D)A .a =2B .a =±2C .a =2D .a =-2(2)当实数m 满足条件__m ≠-4__时,(m +4)x 2-mx +1=0是关于x 的一元二次方程.命题角度4 一元二次方程的应用问题找准等量关系,利用一元二次方程来解决实际问题.【例4】(1)今年某市计划扩大城区绿地面积,现有一块长方形绿地,它的短边长为40 m ,若将短边增长到与长边相等(长边不变),使扩大后的绿地的形状是正方形,且面积比原来增加500 m 2.设原来绿地的长边为x m ,则可列方程为(A)A .x 2-40x =500B .x 2+40x =500C.(x-40)2=500 D.x2-1 600=500(2)已知三个连续奇数的平方和是371,设第二个奇数为x,则依题意可得到的方程是__(x-2)2+x2+(x+2)2=371__.命题角度5一元二次方程的根这类题目一般先把方程的根代入方程再求字母或代数式的值.【例5】(1)若关于x的一元二次方程x2+kx-2=0有一个根为2,则k的值为(B)A.-2 B.-1 C.1 D.2(2)若m是方程2x2-3x-5=0的一个根,则6m2-9m+2 023=__2__038__.命题角度6一元二次方程根的估算先把方程化为一般形式,方程的解夹在方程左边的代数式的值大于0和小于0这两个未知数的值中间.【例6】(1)根据下列表格的对应值判断方程2x2-x-2=0的一个解x的范围是(D)x 1.1 1.2 1.3 1.42x2-x-2-0.68-0.320.080.52A.1.1<x<1.2 B.1.3<x<1.4C.1<x<1.2 D.1.2<x<1.3(2)填表并回答问题:x-2-101234x2-5x+6201262002x2-4x+21472-1-2-12①根据上表可知方程x2-5x+6=0的根是__x1=2,x2=3__;②根据上表可知方程x2-4x+2=0的根x的值介于__0与1____3与4__之间.高效课堂教学设计1.使学生了解一元二次方程的概念.2.掌握一元二次方程的一般形式ax2+bx+c=0(a,b,c为常数,a≠0).▲重点理解一元二次方程的概念,认识一元二次方程的一般形式.▲难点在一元二次方程化成一般形式后,如何确定一次项和常数项.◆活动1创设情境导入新课(课件)一个面积为120 m2的矩形苗圃,它的长比宽多2 m,苗圃的长和宽各是多少?解:设苗圃的宽为x m,则长为(x+2)m.根据题意,得x(x+2)=120.所列方程是否为一元一次方程?(这个方程便是即将学习的一元二次方程.)◆活动2实践探究交流新知【探究1】(多媒体出示)幼儿园某教室矩形地面的长为8 m,宽为5 m,现准备在地面正中间铺设一块面积为18 m2的地毯,四周未铺地毯的条形区域的宽度都相同,你能求出这个宽度吗?如果设所求的宽度为x m,那么你能列出怎样的方程?【探究2】(多媒体出示)观察等式102+112+122=132+142.你还能找到五个连续整数,使前三个数的平方和等于后两个数的平方和吗?如果将这五个连续整数中的第一个数设为x,那么怎样用含x的代数式表示其余四个数?根据题意,你能列出怎样的方程?【探究3】(多媒体出示)如图,一个长为10 m 的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8 m .如果梯子的顶端下滑1 m .那么梯子的底端滑动多少米?你能计算出滑动前梯子的底端距墙的距离吗?如果设梯子底端滑动x m ,那么你能列出怎样的方程?【活动总结】由上面三个问题,我们可以得到三个方程: (1)__(8-2x )(5-2x )=18__; (2)__x 2+(x +1)2+(x +2)2=(x +3)2+(x +4)2__;(3)__(x +6)2+72=102__.化简得2x 2-13x +11=0,x 2-8x -20=0,x 2+12x -15=0.归纳:上面的方程都是只含有__一__个未知数x 的__整式__方程,并且都可以化为__ax 2+bx +c =0(a ,b ,c 为常数,a ≠0)__的形式,这样的方程叫做一元二次方程.我们把ax 2+bx +c =0(a ,b ,c 为常数,a ≠0)称为一元二次方程的一般形式,其中ax 2,bx ,c 分别称为__二次项____一次项__和__常数项__,a ,b 分别称为__二次项系数和一次项系数__.◆活动3 开放训练 应用举例例1 下列方程哪些是一元二次方程?为什么?(1)7x 2-6x =0; (2)2x 2-5xy +6y =0;(3)2x 2-13x -1=0; (4)y 22=0; (5)x 2+2x -3=1+x 2.【方法指导】根据一元二次方程的概念进行判定.解:(1)(4)是一元二次方程;(2)含两个未知数;(3)不是整式方程;(5)不含ax 2这一项.例2 关于x 的方程(k 2-1)x 2+2(k -1)x +2k +2=0,当k __≠±1__时,是一元二次方程;当k __=-1__时,是一元一次方程.【方法指导】当k 2-1≠0,即k ≠±1时,方程是一元二次方程.当k 2-1=0时,且2(k -1)≠0时,即k =-1时是一元一次方程.◆活动4 随堂练习1.把方程-5x 2+6x +3=0的二次项系数化为1,方程可变为(C)A .x 2+65 x +35=0 B .x 2-6x -3=0 C .x 2-65 x -35 =0 D .x 2-65 x +35=0 2.一元二次方程(x +1)2-x =3(x 2-2)化成一般形式是__2x 2-x -7=0__.3.把方程(1-3x )(x +3)=2x 2+1化为一元二次方程的一般形式,并写出二次项、二次项系数、一次项、一次项系数及常数项.解:原方程化为一般形式是:5x 2+8x -2=0,其中二次项是5x 2,二次项系数是5,一次项是8x ,一次项系数是8,常数项是-2.◆活动5 课堂小结与作业学生活动:你这节课的主要收获是什么?教学说明:理解一元二次方程的概念及一般形式.作业:1.课本P32中的随堂练习.2.课本P32习题2.1中的T 1、T 2、T 3.本节课通过阅读、分析,找出题中的等量关系,会用一元二次方程解决实际问题,让学生切身感受到自己是学习的主人.为学生今后获取知识、探索发现和创造打下了良好的基础.。

初中数学北师大版九年级上册《21认识一元二次方程(2)》教学设计

初中数学北师大版九年级上册《21认识一元二次方程(2)》教学设计

北师大版数学九年级上 2.1 认识一元二次方程(2)教学设计
我们一起来看下面的问题:
问题:幼儿园某教室矩形地面的长为8m,宽为5m,现准
备在地面正中间铺设一块面积为18m2的地毯(如图),
四周未铺地毯的条形区域的宽度都相同,你能求出这个宽
度吗?
解:设所求的宽度为x m,根据题意可列方程:
(8-2x)(5-2x)=18
追问:你能设法估计四周未铺地毯部分的宽度x(m)的
值吗?
(1)x可能小于0吗?可能大于4吗?可能大于2.5吗?说说你的理由.
答案:x不可能小于0,因为当x<0时,不符合题意;
不可能大于4,因为当x>4时,8-2x<0,不符合题意;不可能大于2.5,因为当x>2.5时,5-2x<0不符合题意.(2)你能确定x的大致范围吗?
答案:0<x<2.5
(3)填写下表:
x0.5 1 1.5 2
(8-2x)(5-2x) 28 18 10 4
追问:在0<x<2.5这个范围中,x具体的值是多少?
答案:由此看出,可以使(8-2x)(5-2x)的值为18的x=1.故可知所求的宽为1m.
追问:你还有其它求解方法吗?
答案:将(8-2x)(5-2x)=18看作是6×3=18.
则有8-2x=6,5-2x=3.
从而也可以解得x=1.
做一做:如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m,那么梯子的底端滑动多少米?
解:设梯子底端滑动x m,
则满足方程:
(x+6)2+72=102
即:
x2+12x-15=0。

北师大版九年级上册《认识一元二次方程》教案

北师大版九年级上册《认识一元二次方程》教案

2 .1认识一元二次方程(1)主备人:审核人:教学目标1.经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2.会化简、识别一元二次方程及各部分名称。

教学重点、难点1.通过化简方程判断是否为一元二次方程,并能识别方程的各部分。

2.根据问题能正确列出方程。

教学过程一、温故知新出示问题一:幼儿园活动教室矩形地面的长为8米,宽为5米,现准备在地面的正中间铺设一块面积为18m2的地毯,四周未铺地毯的条形区域的宽度都相同,根据这一情境,结合已知量你想求哪些量?你能根据条件列出关于这个量的什么关系式?二、探究导学问题二:在学生的疑问处提出问题:你能找到关于102112、122132、142这五个数之间的等式吗?得到等式102+112+122=132+142之后你的猜想是什么?根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。

如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子的顶端下滑1m.那么梯子的底端滑动多少米?8三、交流释疑只含有一个未知数x的整式方程,并且都可以化为ax2+bx+c=0的形式,这样的方程叫做一元二次方程.把ax2+bx+c=0(a,b,c为常数,a≠0)称为一元二次方程的一般形式,其中ax2, bx , c分别称为二次项、一次项和常数项,a, b分别称为二次项系数和一次项系数.四、拓展提升从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?五、检测反馈把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。

六、作业布置必做:课本P32 知识技能1、2;选做:课本P33 知识技能3教后反思:2.1认识一元二次方程组(2)主备人: 审核人:教学目标1. 经历探索满足一元二次方程解或近似解的过程,促进学生对方程解的理解,发展学生的估算意识和能力。

北师大初中九年级数学上册《认识一元二次方程》教案

北师大初中九年级数学上册《认识一元二次方程》教案

认识一元二次方程第一课时学习目标1、理解一元二次方程的定义,会判断满足一元二次方程的条件。

2、能力培养:能根据具体情景应用知识。

3、情感与态度:体验与他人合作的重要性及数学活动中的探索和创造性。

学习重点1、一元二次方程的定义;2、一元二次方程的一般形式。

学习过程一、前置准备:1、什么是方程?什么样的方程是一元一次方程?2、多项式2x2-3x+1是几次几项式?每项的系数和次数分别是几?二、自学探究:理解一元二次方程的概念,并会把一元二次方程化为一般形式。

自学教材,回答:(1)如果设未铺地毯区域的宽为xm,那么地毯中央长方形图案的长为m,宽为为m.根据题意,可得方程(2)试再找出(10、11、12、13、14以外)其他的五个连续整数,使前三个数的平方和等后两个数的平方和:;如果设五个连续整数中的第一个数为x,那么后面四个数依次可表示为、、、,根据题意可得方程:(3)根据图2-2,由勾股定理可知,滑动前梯子底端距墙 m,如果设梯子底端滑动xm,那么滑动后梯子底端距墙 m,梯子顶端距地面的垂直距离为 m,根据题意,可得方程:三、合作交流:观察上述三个方程,它们的共同点为:①;②;这样的方程叫做。

其中我们把称为一元二次方程的一般形式,ax2,bx,c分别称为、、,a、b分别称为、。

1、分别把上述三个方程化为ax2+bx+c=0的形式,并说明每个方程的二次项系数、一次项系数和常数项:四、归纳总结:通过本节课的学习,你学到了哪些知识?与同学交流一下。

1.一元二次方程的定义;2、一元二次方程的一般形式。

五、当堂训练:1、判断下列方程是否为一元二次方程,如果是,说明二次项及二次项系数、一次项及一次项系数和常数项:(1)2x2+3x+5 (2)(x+5)(x+2)=x2+3x+1 (3)(2x-1)(3x+5)=-5 (4)(3x+1)(x-2)=-5x2、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

花边有多宽
一、学生知识状况分析
学生的知识技能基础:学生在七年级已学过一元一次方程的概念,经历过由具体问题抽象出一元一次方程的过程;学生在八年级已学过二元一次方程组的概念,经历过由具体问题抽象出二元一次方程组的过程;学生已理解了“元”和“次”的含义,具备了学习一元二次方程的基本技能。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力。

二、教学任务分析
教科书基于学生对方程认识的基础之上,提出了本课的具体学习任务:1、经历抽象一元二次方程概念的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型。

2、会识别一元二次方程及各部分名称。

从数学课堂的远期目标来看,还应该培养学生提出问题、分析问题、解决问题的能力。

三、教学过程分析
本节课设计了七个教学环节:第一环节:自主探究问题一;第二环节:自主探究问题二;第三环节:自主探究问题三;第四环节:总结归纳;第五环节:学以致用;第六环节:反思;第七环节:布置作业。

第一环节:自主探究问题一
活动内容:
出示问题一:一块四周镶有宽度相等的花边的地毯如下图,它的长为8m,宽为5m.地毯中央长方形图案的面积为18m2。

让学生根据这一问题情境提出问题:根据这一情境,结合已知量你
想求哪些量?你能根据条件列出关于这个量的什么关系式?
活动目的:
提出了半开放性的问题:根据这一情境,结合这些已知量,你想求哪些量?旨在培养学生的问题意识;要求学生根据条件列出关系式,旨在提高学生分析问题的能力、提高学生抽象思维能力,同时也为后续归纳一元二次方程提供材料。

教学要求与效果:
教学中,为了帮助学生理解题意,可以首先提出问题:你能找到图中的地毯、花边和中央长方形吗?并让一生指出对应的三部分;接着要求学生从这一实物图中抽象出几何图形,
自己画出所抽象出的几何图形,然后教师呈现第二幅图。

教学中教师可以一次完成下列任务:
(1)罗列学生提的问题;
(2)引导学生分析所提问题满足的条件,提出解答的方式;
(3)引导学生列出相应的方程并整理。

从实际效果来看,学生提出的问题多样有:(1)花边的宽,(2)中央长方形的长、宽等;学生列方程问题不大,所列方程也多样,依据的等量关系不同,得到的方程也不同;但是,整理方程时显得困难,这与课前没有复习整式的运算有直接的关系。

第二环节:自主探究问题二
活动内容:
在学生的疑问处提出问题:你能找到关于102、112、122、132、142这五个数之间的等式吗?
得到等式102+112+122=132+142之后你的猜想是什么?
根据猜想继续找五个连续整数,使前三个数的平方和等于后两个数的平方和。

在难以找到的情况下,归结为方程去解决。

活动目的:
上述问题直接给出方程没有说服力,所以先让学生猜想。

学生得到的猜想是:是否还存在五个连续整数,使前三个数的平方和等于后两个数的平方和。

然后让学生根据猜想继续找这样的五个连续整数,在难以找到的情况下,促使学生想办法归结为方程去解决。

教学要求与效果:
找到等式102+112+122=132+142之后的猜想不同。

再找五个连续整数,使前三个数的平方和等于后两个数的平方和,部分学生有困难,寻找的方式也有不同。

有的同学采取代入特殊值一个一个去试一试,有的同学直接归结为方程去解决。

首先,“我”巡视那些无从下手的学生,问:需要我的帮助吗?然后给予必要的指导。

然后巡视那些已经解决问题的同学,给予适当的鼓励。

关注学生在探索-发现-归纳的过程中的主动参与程度与合作交流意识,及时给予鼓励、指导。

从实际效果来看,学生的学习积极性很高,课上到这儿达到一个小高潮。

第三环节:自主探究问题三
活动内容:
如图,一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m.如果梯子
的顶端下滑1m.那么梯子的底端滑动多少米?
活动目的:
通过前两个环节的学习,直接让学生设未知数,列出适合条件的方程。

活动的实际效果:
先让学生理解题意,然后让一生结合图示分析题意,这样等量关系就会浮出水面。

由于有了前两个环节作铺垫,学生自然地设梯子底端滑动Xm,从而列出方程,问题解决得很顺畅。

第四环节:总结归纳
活动内容:
归纳一元二次方程的概念:结合上面三个问题得到的三个方程,观察它们的共同点,得到一元二次方程的概念及其各部分的名称。

活动目的:
关注学生对概念的理解,通过具体的例子来归纳一元二次方程的概念,加深对概念的理解。

活动的实际效果:学生基本能识别一元二次方程及各个部分。

第五环节:学以致用
活动内容:
1、把方程(3x+2)2=4(x-3)2化成一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.
2.从前有一天,一个醉汉拿着竹竿进屋,横拿竖拿都进不去,横着比门框宽4尺,竖着比门框高2尺,另一个醉汉教他沿着门的两个对角斜着拿竿,这个醉汉一试,不多不少刚好进去了.你知道竹竿有多长吗?请根据这一问题列出方程.
活动目的:
及时巩固一元二次方程的有关概念,巩固学生通过实际问题列出相应方程。

活动的实际效果:
问题(1)中学生对于化成一元二次方程的一般形式感觉困难不大,但写出它的二次项系数、一次项系数和常数项时,部分学生可能容易忽视符号,作为第一次学习,这是难免的。

当然,教学中也可以在第4环节中设计一种反向的问题,如给出各项系数,请写出事故和条件的方程;也可以在第四环节中,直接和学生辨析到底各项系数是什么。

问题(2),实际问题,可能有部分学生不能理解题意,部分学生不能很快列出相应的
方程,教师要鼓励学生自己找到等量关系,然后将直角三角形的各边表示出来。

第六环节:反思
活动内容:
让学生通过本节课的学习,自己归纳本节的知识要点,学会了什么?还有哪些困惑?
活动目的:
让学生学会自己梳理知识要点,提高归纳总结的能力。

活动的实际效果:
绝大多数学生能自己归纳出本节的知识要点,也清楚自己的困惑和存在的问题。

第七环节:布置作业
作业:P45 习题2、1
四、教学反思
我们学校地处城乡结合部,生源成分复杂,针对学生的基础如此设计,但是时间还是很紧。

建议基础薄弱的地区:课前复习整式的乘法、完全平方公式,熟知10-20的平方;在第四环节中,得到一元二次方程的概念及其各部分的名称后,举例反问,以加强对概念的理解及其对各部分名称的认识。

相关文档
最新文档