第9讲多元微分学在几何中的应用
高等数学 第九章多元函数微分法及其应用

2 x y 4
2 2
2 x y
所求定义域为
D {( x, y ) | 2 x y 4, x y }.
2 2 2
(6) 二元函数 z f ( x , y )的图形
D ,对于任意 设函数 z f ( x , y ) 的定义域为 取定的 P ( x , y ) D ,对应的函数值为 y 为纵坐 x 为横坐标、 z f ( x , y ) ,这样,以 标、 z 为竖坐标在空间就确定一点M ( x , y , z ) , 当 x 取遍D 上一切点时,得一个空间点集 {( x , y , z ) | z f ( x , y ), ( x , y ) D },这个点集称 为二元函数的图形.
邻域: U ( P0 , ) P | PP0 | , P R n
内点、边界点、区域、聚点等概念也可定义.
(5)二元函数的定义 设D 是平面上的一个点集,如果对于每个点 P ( x , y ) D ,变量z 按照一定的法则总有确定的值 和它对应,则称z 是变量x , y 的二元函数,记为 z f ( x , y ) (或记为 z f ( P ) ).
确定极限不存在的方法:
(1)令 P ( x , y ) 沿 y kx 趋向于P0 ( x 0 , y0 ) ,若
k 有关,则可断言极限不存在; 极限值与
(2) 找两种不同趋近方式,使 lim f ( x , y ) 存在,
x x0 y y0
但两者不相等,此时也可断言 f ( x , y ) 在点
(2)介值定理 在有界闭区域D上的多元连续函数,如 果在D上取得两个不同的函数值,则它在D上 取得介于这两值之间的任何值至少一次. 多元初等函数:由多元多项式及基本初等函数 经过有限次的四则运算和复合步骤所构成的可 用一个式子所表示的多元函数叫多元初等函数 一切多元初等函数在其定义区域内是连续的. 定义区域是指包含在定义域内的区域或闭区域.
高等数学多元函数微分在几何中的应用

由于曲线 的任意性 , 表明这些切线都在以 为法向量
的平面上 , 从而切平面存在 .
曲面 在点 M 的法向量:
n ( Fx (x0 , y0 , z0 ), Fy (x0 , y0 , z0 ), Fz (x0 , y0 , z0 ))
切平面方程
Fx (x0, y0, z0 ) (x x0 ) Fy (x0 , y0 , z0 ) ( y y0 ) Fz (x0, y0, z0 )(z z0 ) 0
z (x)
即
x 2y 3z 6
切向量 T (1, , )
2. 曲线为一般式的情况
光滑曲线
:
F ( x, G(x,
y, z) y, z)
0 0
当 J (F,G) 0 时, 可表示为
(y, z)
dy 1 (F,G) , dz 1 (F,G) , dx J (z, x) dx J (x, y) 曲线上一点 M (x0 , y0 , z0 ) 处的切向量为
xz 0
解法2 方程组两边对 x 求导, 得
x z
y x
解得 dy dx
1 1
yz
zx, yz
dz dx
1 1 yz
xy yz
11
11
曲线在点 M(1,–2, 1) 处有:
切向量
T
1xx,2ddyxyy2
Mz,z
2dz 0dx
6
M
(1, 0, 1)
点 M (1,–2, 1) 处的切向量
M
切线方程为 x x0 y y0 z z0
(t0 ) (t0 ) (t0 )
下面证明: 上过点 M 的任何曲线在该点的切线都
在同一平面上. 此平面称为 在该点的切平面.
多元函数微分法及其应用总结

多元函数微分法及其应用总结多元函数微分法及其应用是高等数学中一个重要的内容。
多元函数是指自变量有两个或者多个的函数,如z=f(x,y)。
而微分法是研究函数的变化率的一种方法。
本文将对多元函数微分法及其应用进行总结。
1. 多元函数微分法的基本概念多元函数的微分可以分为偏导数和全微分两种形式。
对于多元函数z=f(x,y),其偏导数表示函数在某一自变量上的变化率,可以记作∂z/∂x,∂z/∂y。
全微分表示函数在所有自变量上的变化率,可以记作dz。
多元函数的微分法有很多性质和定理,如链式法则、高阶偏导数、隐函数定理等。
2. 多元函数的极值与最值利用多元函数微分法,我们可以求多元函数的极值与最值。
对于多元函数z=f(x,y),其极值、最值的求解步骤大致如下:(1)求函数的偏导数,得到所有的偏导数;(2)令所有的偏导数等于零,求解出关于x和y的方程;(3)求解方程组,得到x和y的解;(4)将解代回原函数,求得z的值;(5)比较求得的z值,得到最大值或最小值。
3. 多元函数的泰勒展开多元函数的泰勒展开是利用多元函数在某一点附近进行近似求解的一种方法。
对于多元函数z=f(x,y),其泰勒展开公式为:f(x+Δx,y+Δy) = f(x,y) + (∂f/∂x)Δx + (∂f/∂y)Δy + 1/2(∂²f/∂x²)(Δx)² + 1/2(∂²f/∂y²)(Δy)² + (∂²f/∂x∂y)ΔxΔy + O(Δx²,Δy²)这里的O(Δx²,Δy²)表示高阶无穷小,Δx和Δy表示自变量的增量。
4. 多元函数微分法的应用多元函数微分法广泛应用于物理学、工程学和经济学等领域。
具体应用如下:(1)在物理学中,多元函数微分法可以用于描述粒子在空间中的运动轨迹,求解最优路径等问题。
(2)在工程学中,多元函数微分法可以用于建模和优化设计,如求解最优结构、最优控制等问题。
多元函数微分学在几何上的应用

x(0) 1,y(0) 2, z(0) 3, x 0 y 1 z 2 , 故所求切线方程为 1 2 3 法平面方程为 x 2( y 1) 3( z 2) 0,
即 x 2 y 3z 8 0 .
y y( x ) 特别地,如果空间曲线方程为 , z z( x ) 则曲线上点 M ( x0 , y0 , z0 ) 处的切线方程为
是曲面在点 M 的法向量. 曲面在点 M 的法线方程为: x x0 y y0 z z0 . Fx ( x0 , y0 , z0 ) Fy ( x0 , y0 , z0 ) Fz ( x0 , y0 , z0 )
Fz ( x0 , y0 , z0 )( z z0 ) 0 .
第六节
多元函数微分学在几何上的应用
一、空间曲线的切线与法平面
设空间曲线 的参数方程为 x x(t ) 其中的 x(t), y(t), z(t) 均可导, y y( t ) 且其导数不同时为零. z z(t ) 点 M ( x0 , y0 , z0 ) 是曲线上对应于参数t t0 的点, 点 M ( x0 x, y0 y, z0 z ) 是
2. 曲面的切平面与法线的求法
设曲面方程为 F ( x , y , z ) 0, n T 点 M ( x0 , y0 , z0 ) 是曲面上一点, M 在曲面上任取一条通过点 M 的曲线 , x x( t ) 设其方程为 : y y ( t ), z z(t ) 点 M ( x0 , y0 , z0 ) 对应的参数为t0, 则曲线在M 处的切向量 T { x( t0 ), y( t0 ), z( Байду номын сангаас0 )}, 又曲线在曲面上,所以 F x( t ), y( t ), z( t ) 0 (*) 在(*)两端关于t 求导得 Fx x(t ) Fy y(t ) Fz z(t ) 0.
第9章多元函数微分法及其应用课本基础知识

本章目录第一节多元函数的基本概念第二节偏导数第三节全微分第四节多元复合函数的求导法则第五节隐函数的求导公式(第五节掌握的不是很好)第六节多元函数微分学的几何应用第七节方向导数与梯度第八节多元函数的极值及其解法第九节二元函数的泰勒公式几道比较好的题第一节多元函数基本概念1、基本了解∈,是在一条数轴上看定义域那么在二元中,一元函数()y f x=的定义域是x R就是在一个平面上看定义域,有(,)=(其中x,y互相没关系。
如果有关z f x y系,那么y就可以被x表示,那么就成了一元函数了),定义为二元函数2x y R∈(,)2、多元函数的邻域二元邻域三元函数邻域3、内点4、外点5、边界点边界点:点的邻域既存在外点又存在内点边界点可以看成内点,也可以看成外点,看你怎么定义了。
6、聚点邻域内存在内点则称为聚点。
可见,边界点一部分也含内点,因此内点,边界点都是聚点。
7、开集不包括边界点的内点;一元函数的开区间就是开集8包含了边界点的内点;一元函数的闭区间就是闭集9一元中有半开半闭的区间二元也是,如10、连通集连通集就是连在一起的区域。
定义是,在定义域内两点可以用折线连起来连通集与非连通集,如:11、开区域:连通的开集;闭区域:连通的闭集12、有界点集这个圆的半径可以有限充分大。
无界点集:找不到一个有限大的圆包含该区域。
如平面第一象限就是无界的点集13、二元函数的定义域图像二元定义域要有x,y的范围。
解出f1(x)<y<f2(x)(很多时候是y与x复合的函数,所以最好是化成y在一边看大于还是小于)14、二元函数的图像:空间曲面即z=f(x,y)15、多元函数极限的定义注意是去心的,去边界的圆域一元需要左极限等于右极限,二元就各个方向的极限 都要相等了。
趋近的方式有时候甚至是有技巧的,一般先用y=kx 趋近,再试试y=kx^2。
16、多元函数的连续性 设在定义域内,若lim (,)(,)00(,)(,)00f x y f x y x y x y =→则称二元函数(,)f x y 在(,)00x y 点处连续。
多元函数微分法在几何中的应用

⇒
dy z − x , = dx y − z dz x − y = , dx y − z
dy = 0, dx (1, −2 , 1)
dz = −1, dx (1, −2 , 1)
由此得切向量
T = {1, 0,−1},
x −1 y + 2 z −1 = = , 所求切线方程 切线方程为 所求切线方程为 1 0 −1
x = t; 例;求曲线 y = t 2 ;在点(1,1,1)处的切线方程和法平面 方程 . z = t 3;
解:对应与点(1,1,1), t = 1, dx dy = 1, = 2t t =1 = 2, dt dt
dz = 3t 2 t 1 = 3, = dt
dx dy dz ∴T = , , = {1,2,3}, dt dt dt t = 1 在点(1,1,1)处的切线方程为: 处的切线方程为:
x −1 y −1 z −1 , = = 1 2 3 法平面方程为: 法平面方程为:
( x − 1) + 2( y − 1) + 3( z − 1) = 0,
即: x + 2 y + 3 z − 6 = 0
例1
x = te t , y = 2 sin t + cos t , z = 1 + e 3 t 求曲Γ :
的任意一条曲线, 由于曲线是曲面上通过 M 的任意一条曲线, 垂直, 它们在 M 的切线都与同一向量 n 垂直,故曲面上 通过 M 的一切曲线在点 M 的切线都在同一平面 切平面. 上,这个平面称为曲面在点 M 的切平面 切平面方程为
′ ′ Fx ( x0 , y0 , z0 )( x − x0 ) + Fy ( x0 , y0 , z0 )( y − y0 ) + Fz′( x0 , y0 , z0 )(z − z0 ) = 0
多元函数微分法及其应用

第九章 多元函数微分法及其应用§8 1 多元函数的基本概念一、平面点集n 维空间1.平面点集二元的序实数组x y 的全体 即R 2RR {x y |x y R }就表示坐标平面坐标平面上具有某种性质P 的点的集合 称为平面点集 记作E {x y | x y 具有性质P } 例如 平面上以原点为中心、r 为半径的圆内所有点的集合是C {x y | x 2y 2r 2} 如果我们以点P 表示x y 以|OP |表示点P 到原点O 的距离 那么集合C 可表成C {P | |OP |r }邻域设P 0x 0 y 0是xOy 平面上的一个点 是某一正数 与点P 0x 0 y 0距离小于的点P x y 的全体 称为点P 0的邻域 记为U P 0 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U 邻域的几何意义 U P 0 表示xOy 平面上以点P 0x 0 y 0为中心、 >0为半径的圆的内部的点P x y 的全体 点P 0的去心邻域 记作) ,(0δP U即}||0 |{) ,(00δδ<<=P P P P U注 如果不需要强调邻域的半径 则用U P 0表示点P 0的某个邻域 点P 0的去心邻域记作)(0P U点与点集之间的关系任意一点P R 2与任意一个点集E R 2之间必有以下三种关系中的一种1内点 如果存在点P 的某一邻域UP 使得UPE 则称P 为E 的内点2外点 如果存在点P 的某个邻域UP 使得UPE 则称P 为E 的外点3边界点 如果点P 的任一邻域内既有属于E 的点 也有不属于E 的点 则称P 点为E 的边点E 的边界点的全体 称为E 的边界 记作EE 的内点必属于E E 的外点必定不属于E 而E 的边界点可能属于E 也可能不属于E 聚点如果对于任意给定的0 点P 的去心邻域),( P U内总有E 中的点 则称P 是E 的聚点由聚点的定义可知 点集E 的聚点P 本身 可以属于E 也可能不属于E例如 设平面点集E {x y |1x 2y 22}满足1x 2y 22的一切点x y 都是E 的内点 满足x 2y 21的一切点x y 都是E 的边界点 它们都不属于E 满足x 2y 22的一切点x y 也是E 的边界点 它们都属于E 点集E 以及它的界边E 上的一切点都是E 的聚点开集 如果点集E 的点都是内点 则称E 为开集闭集 如果点集的余集E c为开集 则称E 为闭集开集的例子 E {x y |1<x 2y 2<2}闭集的例子 E {x y |1x 2y 22}集合{x y |1x 2y 22}既非开集 也非闭集连通性 如果点集E 内任何两点 都可用折线连结起来 且该折线上的点都属于E 则称E 为连通集区域或开区域 连通的开集称为区域或开区域 例如E {x y |1x 2y 22}闭区域 开区域连同它的边界一起所构成的点集称为闭区域 例如E {x y |1x 2y 22}有界集 对于平面点集E 如果存在某一正数r 使得 EUO r其中O 是坐标原点 则称E 为有界点集无界集 一个集合如果不是有界集 就称这集合为无界集例如 集合{x y |1x 2y 22}是有界闭区域 集合{x y | xy 1}是无界开区域集合{x y | xy 1}是无界闭区域 2 n 维空间设n 为取定的一个自然数 我们用R n表示n 元有序数组x 1 x 2 x n 的全体所构成的集合 即R nRRR {x 1 x 2 x n | x i R i 1 2 n } R n中的元素x 1 x 2 x n 有时也用单个字母x 来表示 即x x 1 x 2 x n 当所有的x i i 1 2 n 都为零时 称这样的元素为R n 中的零元 记为0或O 在解析几何中 通过直角坐标 R 2或R 3中的元素分别与平面或空间中的点或向量建立一一对应 因而R n中的元素x x 1 x 2 x n 也称为R n 中的一个点或一个n 维向量 x i称为点x 的第i 个坐标或n 维向量x 的第i 个分量 特别地 Rn中的零元0称为R n中的坐标原点或n 维零向量为了在集合R n 中的元素之间建立联系 在R n中定义线性运算如下 设x x 1 x 2 x n y y 1 y 2 y n 为R n 中任意两个元素 R 规定xy x 1 y 1 x 2 y 2 x n y n x x 1 x 2 x n这样定义了线性运算的集合R n称为n 维空间R n中点x x 1 x 2 x n 和点 y y 1 y 2 y n 间的距离 记作x y 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ显然 n 1 2 3时 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至R n中元素x x 1 x 2 x n 与零元0之间的距离x 0记作||x ||在R 1、R 2、R 3中 通常将||x ||记作|x | 即22221 ||||n x x x ⋅⋅⋅++=x采用这一记号 结合向量的线性运算 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x 在n 维空间R n 中定义了距离以后 就可以定义R n中变元的极限设x x 1 x 2 x n a a 1 a 2 a n R n如果||xa ||0则称变元x 在R n中趋于固定元a 记作xa 显然xa x 1a 1 x 2a 2 x n a n在R n中线性运算和距离的引入 使得前面讨论过的有关平面点集的一系列概念 可以方便地引入到nn 3维空间中来 例如设a a 1 a 2 a n R n是某一正数 则n 维空间内的点集U a {x | x R nx a }就定义为R n中点a 的邻域 以邻域为基础 可以定义点集的内点、外点、边界点和聚点 以及开集、闭集、区域等一系列概念二 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V r 2h这里 当r 、h 在集合{r h | r >0 h >0}内取定一对值r h 时 V 对应的值就随之确定例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系V RTp =其中R 为常数 这里 当V 、T 在集合{V T | V >0 T >0}内取定一对值V T 时 p 的对应值就随之确定 例3 设R 是电阻R 1、R 2并联后的总电阻 由电学知道 它们之间具有关系2121R R R R R +=这里 当R 1、R 2在集合{ R 1 R 2 | R 1>0 R 2>0}内取定一对值 R 1 R 2时 R 的对应值就随之确定定义1 设D 是R 2的一个非空子集 称映射f D R 为定义在D上的二元函数通常记为zfx y x yD或zfP PD其中点集D称为该函数的定义域x y称为自变量z称为因变量上述定义中与自变量x、y的一对值x y相对应的因变量z的值也称为f在点x y处的函数值记作fx y即zfx y 值域fD{z| zfx y x yD}函数的其它符号zzx y zgx y等类似地可定义三元函数ufx y z x y zD以及三元以上的函数一般地把定义1中的平面点集D换成n维空间R n内的点集D映射f D R就称为定义在D上的n元函数通常记为ufx1x2x n x1x2x n D或简记为uf x x x1x2x n D也可记为ufP Px1x2x n D函数定义域的约定在一般地讨论用算式表达的多元函数uf x时就以使这个算式有意义的变元x的值所组成的点集为这个多元函数的自然定义域因而对这类函数它的定义域不再特别标出例如函数z ln xy的定义域为{x y|xy>0}无界开区域函数z arcsin x2y2的定义域为{x y|x2y21}有界闭区域二元函数的图形点集{x y z|zfx y x yD}称为二元函数zfx y的图形二元函数的图形是一张曲面例如zaxbyc是一张平面而函数z=x2+y2的图形是旋转抛物面三多元函数的极限与一元函数的极限概念类似如果在Px yP0x0y0的过程中对应的函数值fx y无限接近于一个确定的常数A则称A 是函数fx y当x yx0y0时的极限定义2设二元函数fPfx y 的定义域为D P 0x 0 y 0是D 的聚点 如果存在常数A 对于任意给定的正数总存在正数 使得当),(),(0δP U D y x P⋂∈时 都有|fPA ||fx yA |成立 则称常数A 为函数fx y 当x yx 0 y 0时的极限 记为 Ay x f y x y x =→),(lim ),(),(0或fx yA x yx 0 y 0也记作AP f P P =→)(lim 0或fPAPP 0上述定义的极限也称为二重极限例4. 设22221sin)(),(y x y x y x f ++= 求证0),(lim )0,0(),(=→y x f y x证 因为2222222222 |1sin ||| |01sin)(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-可见 >0 取εδ=则当δ<-+-<22)0()0(0y x即),(),(δO U D y x P⋂∈时 总有|fx y 0|因此0),(lim )0,0(),(=→y x f y x 必须注意1二重极限存在 是指P 以任何方式趋于P 0时 函数都无限接近于A2如果当P 以两种不同方式趋于P 0时 函数趋于不同的值 则函数的极限不存在 讨论函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点0 0有无极限 提示 当点Px y 沿x 轴趋于点0 0时0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f 当点Px y 沿y 轴趋于点0 0时0lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f当点P x y 沿直线ykx 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→ 因此 函数fx y 在0 0处无极限极限概念的推广 多元函数的极限多元函数的极限运算法则 与一元函数的情况类似 例5 求x xy y x )sin(lim)2,0(),(→解 y xy xy xxy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim→→⋅=122 四 多元函数的连续性定义3 设二元函数fPf x y 的定义域为D P 0x 0 y 0为D的聚点 且P 0D 如果),(),(lim00),(),(00y x f y x f y x y x =→ 则称函数f x y 在点P 0x 0 y 0连续如果函数f x y 在D 的每一点都连续 那么就称函数f x y 在D 上连续 或者称f x y 是D 上的连续函数二元函数的连续性概念可相应地推广到n 元函数fP 上去例6设fx ,y sin x 证明fx y 是R 2上的连续函数证 设P 0x 0 y 0 R 20 由于sin x 在x 0处连续 故0 当|xx 0|时 有|sin x sin x 0|以上述作P 0的邻域UP 0 则当Px yUP 0 时 显然 |fx yfx 0 y 0||sin x sin x 0|即fx y sin x 在点P 0x 0 y 0 连续 由P 0的任意性知 sin x 作为x y 的二元函数在R 2上连续证 对于任意的P 0x 0 y 0R 2因为),(sin sin lim),(lim 000),(),(),(),(0000y x f x x y x f y x y x y x y x ===→→ 所以函数fx ,y sin x 在点P 0x 0 y 0连续 由P 0的任意性知 sin x作为x y 的二元函数在R 2上连续类似的讨论可知 一元基本初等函数看成二元函数或二元以上的多元函数时 它们在各自的定义域内都是连续的 定义4设函数fx y 的定义域为D P 0x 0 y 0是D 的聚点 如果函数fx y 在点P 0x 0 y 0不连续 则称P 0x 0 y 0为函数fx y 的间断点 例如 函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f其定义域D R 2O 0 0是D 的聚点 fx y 当x y 0 0时的极限不存在 所以点O 0 0是该函数的一个间断点又如 函数11sin22-+=y x z 其定义域为D {x y |x 2y 21} 圆周C {x y |x 2y 21}上的点都是D 的聚点 而fx y 在C 上没有定义 当然fx y 在C 上各点都不连续 所以圆周C 上各点都是该函数的间断点注 间断点可能是孤立点也可能是曲线上的点可以证明 多元连续函数的和、差、积仍为连续函数 连续函数的商在分母不为零处仍连续 多元连续函数的复合函数也是连续函数多元初等函数 与一元初等函数类似 多元初等函数是指可用一个式子所表示的多元函数 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的例如2221y y x x +-+ sin xy 222z y xe ++都是多元初等函数一切多元初等函数在其定义区域内是连续的 所谓定义区域是指包含在定义域内的区域或闭区域由多元连续函数的连续性 如果要求多元连续函数fP 在点P 0处的极限 而该点又在此函数的定义区域内 则 )()(lim 00P f P f p p =→例7 求xy y x y x +→)2,1(),(lim解 函数xy yx y x f +=),(是初等函数 它的定义域为D {x y |x 0 y 0}P 01 2为D 的内点 故存在P 0的某一邻域UP 0D 而任何邻域都是区域 所以UP 0是fx y 的一个定义区域 因此23)2,1(),(lim)2,1(),(==→f y x f y x 一般地 求)(lim 0P f P P →时 如果fP 是初等函数 且P 0是fP 的定义域的内点 则fP 在点P 0处连续 于是)()(lim 00P f P f P P =→例8 求xy xy y x 11lim)0 ,0(),(-+→解)11()11)(11(lim11lim)0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x多元连续函数的性质性质1 有界性与最大值最小值定理在有界闭区域D 上的多元连续函数 必定在D 上有界 且能取得它的最大值和最小值性质1就是说 若fP 在有界闭区域D 上连续 则必定存在常数M 0 使得对一切PD 有|fP |M 且存在P 1、P 2D 使得 fP 1max{fP |PD } fP 2min{fP |PD }性质2 介值定理 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值§8 2 偏导数一、偏导数的定义及其计算法对于二元函数zfx y 如果只有自变量x 变化 而自变量y 固定 这时它就是x 的一元函数 这函数对x 的导数 就称为二元函数zfx y 对于x 的偏导数定义 设函数zfx y 在点x 0 y 0的某一邻域内有定义 当y 固定在y 0而x 在x 0处有增量x 时 相应地函数有增量fx 0x y 0fx 0 y 0如果极限x y x f y x x f x ∆-∆+→∆),(),(lim00000存在 则称此极限为函数zfx y 在点x 0 y 0处对x 的偏导数 记作0y y x x x z==∂∂ 00y y x x x f ==∂∂0y y x x xz == 或),(00y x f x例如x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0000000类似地 函数zfx y 在点x 0 y 0处对y 的偏导数定义为y y x f y y x f y ∆-∆+→∆),(),(lim00000记作y y x x y z==∂∂y y x x y f==∂∂y y x x yz == 或f y x 0 y 0偏导函数 如果函数zfx y 在区域D 内每一点x y 处对x 的偏导数都存在 那么这个偏导数就是x 、y 的函数 它就称为函数zfx y 对自变量x 的偏导函数 记作x z ∂∂ xf ∂∂ x z 或),(y x f x偏导函数的定义式x y x f y x x f y x f x x ∆-∆+=→∆),(),(lim),(0类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0求xf∂∂时 只要把y 暂时看作常量而对x求导数 求yf∂∂时只要把x 暂时看作常量而对y 求导数讨论 下列求偏导数的方法是否正确),(),(00y y x x x x y x f y x f ===),(),(00y y x x y y y x f y x f ===0]),([),(000x x x y x f dx d y x f == 0]),([),(000y y y y x f dy dy x f ==偏导数的概念还可推广到二元以上的函数例如三元函数ufx y z 在点x y z 处对x 的偏导数定义为x z y x f z y x x f z y x f x x ∆-∆+=→∆),,(),,(lim),,(0其中x y z 是函数ufx y z 的定义域的内点 它们的求法也仍旧是一元函数的微分法问题例1 求zx 23xyy 2在点1 2处的偏导数解 y x x z 32+=∂∂ yx y z 23+=∂∂ 8231221=⋅+⋅=∂∂==y x xz7221321=⋅+⋅=∂∂==y x yz例2 求zx 2sin 2y 的偏导数解 y x x z 2sin 2=∂∂ yx y z 2cos 22=∂∂例3 设)1,0(≠>=x x xz y求证zy z x x z y x 2ln 1=∂∂+∂∂证 1-=∂∂y yx x z xx y z y ln =∂∂zx x x x x yx y x y z x x z y x y y y y 2ln ln 1ln 11=+=+=∂∂+∂∂-例4 求222z y x r ++=的偏导数解 r x z y x x x r =++=∂∂222 r y z y x y y r =++=∂∂222例5 已知理想气体的状态方程为pV =RTR 为常数求证 1-=∂∂⋅∂∂⋅∂∂p T T V V p证 因为V RTp = 2V RT V p-=∂∂p RT V = p RT V =∂∂RpV T =R Vp T =∂∂所以12-=-=⋅⋅-=∂∂⋅∂∂⋅∂∂pV RT R V p R V RT p T T V V p例 5 说明的问题 偏导数的记号是一个整体记号 不能看作分子分母之商二元函数zfx y 在点x 0 y 0的偏导数的几何意义f x x 0 y 0fx y 0x 是截线zfx y 0在点M 0处切线T x 对x 轴的斜率f y x 0 y 0 fx 0 y y 是截线zfx 0 y 在点M 0处切线T y 对y 轴的斜率偏导数与连续性 对于多元函数来说 即使各偏导数在某点都存在 也不能保证函数在该点连续 例如⎪⎩⎪⎨⎧=+≠++=0 00),(222222y x y x y x xy y x f在点0 0有 f x 0 00 f y 0 00 但函数在点0 0并不连续提示0)0 ,(=x f 0) ,0(=y f0)]0 ,([)0 ,0(==x f dx d f x 0)] ,0([)0 ,0(==y f dy df y当点Px y 沿x 轴趋于点0 0时 有0lim )0 ,(lim ),(lim00)0,0(),(===→→→x x y x x f y x f当点Px y 沿直线ykx 趋于点0 0时 有22222022 )0,0(),(1lim lim kk x k x kx y x xy x kx y y x +=+=+→=→因此),(lim )0,0(),(y x f y x →不存在 故函数fx y 在0 0处不连续类似地 可定义函数zfx y 对y 的偏导函数 记为y z ∂∂ yf∂∂ z y 或),(y x f y偏导函数的定义式y y x f y y x f y x f y y ∆-∆+=→∆),(),(lim),(0二 高阶偏导数设函数zfx y 在区域D 内具有偏导数),(y x f x z x =∂∂ ),(y x f y z y=∂∂那么在D 内f x x y 、f y x y 都是x y 的函数 如果这两个函数的偏导数也存在 则称它们是函数zfx y 的二偏导数 按照对变量求导次序的为同有下列四个二阶偏导数如果函数zfx y 在区域D 内的偏导数f x x y 、f y x y 也具有偏导数则它们的偏导数称为函数zfx y 的二阶偏导数 按照对变量求导次序的不同有下列四个二阶偏导数),()(22y x f x z x z x xx =∂∂=∂∂∂∂ ),()(2y x f y x z x z y xy=∂∂∂=∂∂∂∂),()(2y x f x y z y z x yx =∂∂∂=∂∂∂∂ ),()(22y x f y z y z y yy =∂∂=∂∂∂∂其中),()(2y x f y x z x z y xy =∂∂∂=∂∂∂∂ ),()(2y x f x y z y z x yx=∂∂∂=∂∂∂∂称为混合偏导数22)(x z x z x ∂∂=∂∂∂∂ yx z x z y ∂∂∂=∂∂∂∂2)( x y z y z x ∂∂∂=∂∂∂∂2)( 22)(y zy z y ∂∂=∂∂∂∂同样可得三阶、四阶、以及n 阶偏导数二阶及二阶以上的偏导数统称为高阶偏导数例6 设zx 3y 23xy 3xy 1 求22x z ∂∂、33x z∂∂、x y z ∂∂∂2和y x z∂∂∂2解 y y y x x z --=∂∂32233 xxy y x y z --=∂∂23922226xy x z =∂∂ 2336y x z =∂∂196222--=∂∂∂y y x y x z 196222--=∂∂∂y y x x y z由例6观察到的问题 y x zx y z ∂∂∂=∂∂∂22定理 如果函数zfx y 的两个二阶混合偏导数x y z ∂∂∂2及yx z∂∂∂2在区域D 内连续 那么在该区域内这两个二阶混合偏导数必相等类似地可定义二元以上函数的高阶偏导数例7 验证函数22ln y x z +=满足方程02222=∂∂+∂∂y z x z证 因为)ln(21ln 2222y x y x z +=+= 所以22y x xx z +=∂∂22y x y y z +=∂∂222222222222)()(2)(y x x y y x x x y x xz +-=+⋅-+=∂∂222222222222)()(2)(y x y x y x y y y x yz +-=+⋅-+=∂∂因此 0)()(22222222222222=+-++-=∂∂+∂∂y x x y y x y x y z x z例8.证明函数r u 1=满足方程0222222=∂∂+∂∂+∂∂z u y u x u其中222z y x r ++=证 32211r xr x r x r r x u -=⋅-=∂∂⋅-=∂∂52343223131r x r x r r x r x u +-=∂∂⋅+-=∂∂同理5232231r y r y u +-=∂∂ 5232231r z r z u +-=∂∂因此)31()31()31(523523523222222r z r r y r r x r zu y u x u +-++-++-=∂∂+∂∂+∂∂33)(3352352223=+-=+++-=r r r r z y x r提示 6236333223)()(r x rr x r r r x x r rx x x u ∂∂⋅--=∂∂⋅--=-∂∂=∂∂§8 3全微分及其应用 一、全微分的定义根据一元函数微分学中增量与微分的关系有 偏增量与偏微分fxx yfx yf x x yxfxx yfx y 为函数对x 的偏增量 f x x yx 为函数对x 的偏微分fx yyfx yf y x yyfx yyfx y 为函数对y 的偏增量 f y x yy 为函数对y 的偏微分全增量 z fxx yyfx y计算全增量比较复杂 我们希望用x 、y 的线性函数来近似代替之定义 如果函数zfx y 在点x y 的全增量 z fxx yyfx y 可表示为) )()(( )(22y x o y B x A z ∆+∆=+∆+∆=∆ρρ 其中A 、B 不依赖于x 、y 而仅与x 、y 有关 则称函数zfx y 在点x y 可微分 而称AxBy 为函数zfx y 在点x y 的全微分 记作dz 即dzAxBy如果函数在区域D 内各点处都可微分 那么称这函数在D 内可微分可微与连续 可微必连续 但偏导数存在不一定连续 这是因为 如果zfx y 在点x y 可微则 z fxx yyfx yAxByo 于是 0lim 0=∆→z ρ从而),(]),([lim ),(lim)0,0(),(y x f z y x f y y x x f y x =∆+=∆+∆+→→∆∆ρ因此函数zfx y 在点x y 处连续 可微条件定理1必要条件如果函数zfx y 在点x y 可微分 则函数在该点的偏导数x z∂∂、y z ∂∂必定存在 且函数zfx y 在点x y 的全微分为yy z x xz dz ∆∂∂+∆∂∂= 证 设函数zfx y 在点Px y 可微分 于是 对于点P 的某个邻域内的任意一点P xx yy 有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax y x f y x x f x =∆-∆+→∆),(),(lim从而偏导数x z ∂∂存在 且Ax z =∂∂同理可证偏导数y z ∂∂存在 且B y z =∂∂所以yy z x xz dz ∆∂∂+∆∂∂= 简要证明设函数zfx y 在点x y 可微分 于是有zAxByo 特别当y 0时有f xx yfx yAxo |x |上式两边各除以x 再令x 0而取极限 就得Ax x o A x y x f y x x f x x =∆∆+=∆-∆+→∆→∆]|)(|[lim ),(),(lim00从而x z ∂∂存在 且A x z =∂∂同理y z ∂∂存在 且B y z =∂∂ 所以yy z x xz dz ∆∂∂+∆∂∂= 偏导数x z∂∂、y z ∂∂存在是可微分的必要条件 但不是充分条件例如函数⎪⎩⎪⎨⎧=+≠++=0 00 ),(222222y x y x y x xy y x f 在点00处虽然有f x 0 00及f y 0 00但函数在00不可微分即zf x 0 0xf y 0 0y 不是较高阶的无穷小这是因为当x y 沿直线yx 趋于0 0时ρ])0 ,0()0 ,0([y f x f z y x ∆⋅+∆⋅-∆021)()()()(2222≠=∆+∆∆⋅∆=∆+∆∆⋅∆=x x x x y x y x定理2充分条件 如果函数zfx y 的偏导数x z∂∂、y z ∂∂在点x y 连续 则函数在该点可微分定理1和定理2的结论可推广到三元及三元以上函数 按着习惯x 、y 分别记作dx 、dy 并分别称为自变量的微分则函数zfx y 的全微分可写作dyy z dx x z dz ∂∂+∂∂=二元函数的全微分等于它的两个偏微分之和这件事称为二元函数的微分符合叠加原理 叠加原理也适用于二元以上的函数 例如函数uf x y z 的全微分为dzz u dy y u dx x u du ∂∂+∂∂+∂∂= 例1 计算函数zx 2y y 2的全微分解 因为xy x z 2=∂∂ yx y z 22+=∂∂所以dz 2xydxx 22ydy例2 计算函数ze xy在点2 1处的全微分解 因为xy ye x z =∂∂ xyxe y z =∂∂ 212e x z y x =∂∂== 2122ey z y x =∂∂==所以 dze 2dx 2e 2dy 例3 计算函数yze yx u ++=2sin 的全微分解 因为1=∂∂x u yz ze y y u +=∂∂2cos 21 yzye z u =∂∂ 所以 dzye dy ze ydx du yz yz +++=)2cos 21(二、全微分在近似计算中的应用当二元函数zf x y 在点P x y 的两个偏导数f x x y fyx y 连续 并且|x | |y |都较小时 有近似等式z dz f x x yxf y x yy即 f xx yy fx yf x x yxf y x yy我们可以利用上述近似等式对二元函数作近似计算 例4 有一圆柱体 受压后发生形变 它的半径由20cm 增大到20 05cm 高度由100cu 减少到99cm 求此圆柱体体积变化的近似值解 设圆柱体的半径、高和体积依次为r 、h 和V 则有V r 2h已知r 20 h 100 r 0 05 h 1 根据近似公式 有VdVV r rV h h 2rhrr 2h2201000 052021200 cm 3即此圆柱体在受压后体积约减少了200 cm 3例5 计算1 04202的近似值解 设函数f x yx y显然 要计算的值就是函数在x 104y 202时的函数值f 104 202 取x 1 y 2 x 004 y 002 由于f xx yy fx yf x x yxf y x yyx y yx y 1xx yln x y所以10420212212100412ln1002108例6 利用单摆摆动测定重力加速度g 的公式是224T lg π=现测得单摆摆长l 与振动周期T 分别为l =100±、T =2±.问由于测定l 与T 的误差而引起g 的绝对误差和相对误差各为多少解 如果把测量l 与T 所产生的误差当作|Δl |与|ΔT |,则利用上述计算公式所产生的误差就是二元函数224T lg π=的全增量的绝对值|Δg |.由于|Δl ||ΔT |都很小因此我们可以用dg 来近似地代替Δg 这样就得到g 的误差为||||||T T g l l g dg g ∆∂∂+∆∂∂=≈∆T l T g l g δδ⋅∂∂+⋅∂∂≤||||)21(4322Tl T l T δδπ+=其中l 与T 为l 与T 的绝对误差 把l =100 T =2, l =, δT =代入上式 得g 的绝对误差约为)004.02100221.0(4322⨯⨯+=πδg)/(93.45.022s cm ==π.02225.0210045.0=⨯=ππδg g从上面的例子可以看到对于一般的二元函数z =fx, y , 如果自变量x 、y 的绝对误差分别为x 、y , 即|Δx |x , |Δy |y , 则z 的误差||||||y y z x x z dz z ∆∂∂+∆∂∂=≈∆ ||||||||y y z x x z ∆⋅∂∂+∆⋅∂∂≤ y x y z x z δδ⋅∂∂+⋅∂∂≤||||从而得到z 的绝对误差约为yx z yz xz δδδ⋅∂∂+⋅∂∂=||||z 的相对误差约为yx z z y z z x zz δδδ∂∂+∂∂=||§8 4 多元复合函数的求导法则 设zfu v 而ut vt 如何求dt dz设zfu v 而ux y vx y 如何求x z∂∂和y z ∂∂1 复合函数的中间变量均为一元函数的情形定理1 如果函数ut 及vt 都在点t 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zft t 在点t 可导 且有dt dv v z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明1 因为zfu v 具有连续的偏导数 所以它是可微的 即有dvv z du uz dz ∂∂+∂∂=又因为ut 及vt 都可导 因而可微 即有dt dt du du = dtdt dv dv = 代入上式得dt dtdv v z dt dt du u z dz ⋅∂∂+⋅∂∂=dtdt dv v z dt du u z )(⋅∂∂+⋅∂∂= 从而 dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=简要证明2 当t 取得增量t 时 u 、v 及z 相应地也取得增量u 、v 及z 由zfu v 、ut 及vt 的可微性 有)(ρo v v z u u z z +∆∂∂+∆∂∂=∆)()]([)]([ρo t o t dt dv v z t o t dt du u z +∆+∆∂∂+∆+∆∂∂=)()()()(ρo t o v z u z t dt dv v z dt du u z +∆∂∂+∂∂+∆⋅∂∂+⋅∂∂= t o t t o v z u z dt dv v z dt du u z t z ∆+∆∆∂∂+∂∂+⋅∂∂+⋅∂∂=∆∆)()()(ρ令t 0 上式两边取极限 即得dt dvv z dt du u z dt dz ⋅∂∂+⋅∂∂=注0)()(0)()()(lim )(lim 222200=+⋅=∆∆+∆⋅=∆→∆→∆dt dv dt du t v u o t o t t ρρρ推广 设zf u v w u t vt wt 则zf t t t 对t 的导数为dt dww z dt dv v z dt du u z dt dz ∂∂+∂∂+∂∂=上述dt dz称为全导数2 复合函数的中间变量均为多元函数的情形定理2 如果函数ux y vx y 都在点x y 具有对x 及y 的偏导数 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zf x y x y 在点x y 的两个偏导数存在 且有x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂推广 设zfu v w ux y vx y wx y 则x w w z x v v z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂ y ww z y v v z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂=∂∂讨论 1设zfu v ux y vy 则=∂∂x z =∂∂y z提示 x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂2设zfu x y 且ux y 则=∂∂x z =∂∂y z提示 x f x u u f x z ∂∂+∂∂∂∂=∂∂ y fy u u f y z ∂∂+∂∂∂∂=∂∂ 这里x z∂∂与xf ∂∂是不同的 x z∂∂是把复合函数zfx y x y 中的y 看作不变而对x 的偏导数 xf∂∂是把fu x y 中的u 及y 看作不变而 对x 的偏导数 y z∂∂与yf ∂∂也有类似的区别3.复合函数的中间变量既有一元函数 又有多元函数的情形定理3 如果函数ux y 在点x y 具有对x 及对y 的偏导数 函数vy 在点y 可导 函数zfu v 在对应点u v 具有连续偏导数 则复合函数zfx y y 在点x y 的两个偏导数存在 且有x u u z x z ∂∂⋅∂∂=∂∂ dy dvv z y u u z y z ⋅∂∂+∂∂⋅∂∂=∂∂例1 设ze u sin v uxy vxy 求x z∂∂和y z ∂∂解 x vv z x u u z x z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vye ucos v 1 e x yy sin xy cos xyy vv z y u u z y z ∂∂⋅∂∂+∂∂⋅∂∂=∂∂e u sin vxe ucos v 1 e xyx sin xy cos xy 例2 设222),,(z y x ez y x f u ++== 而y x z sin 2= 求x u∂∂和y u ∂∂解 x zz f x f x u ∂∂⋅∂∂+∂∂=∂∂y x ze xez y xz y xsin 222222222⋅+=++++yx y xey x x 2422sin 22)sin 21(2++++=y zz f y f y u ∂∂⋅∂∂+∂∂=∂∂y x ze yez y xz y xcos 222222222⋅+=++++yx y xey y x y 2422sin 4)cos sin (2+++=例3 设zuv sin t 而uetv cos t 求全导数dt dz解 t zdt dv v z dt du u z dt dz ∂∂+⋅∂∂+⋅∂∂=ve tu sin t cos t e tcos te tsin t cos t e t cos t sin t cos t 例4 设wfxyz xyz f具有二阶连续偏导数 求x w∂∂及z x w ∂∂∂2解 令uxyz vxyz 则wfu v 引入记号u v u f f ∂∂='),(1 v u v u f f ∂∂∂='),(12同理有2f '11f ''22f ''等 21f yz f x v v f x u u f x w '+'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂z f yz f y z f f yz f z z x w ∂'∂+'+∂'∂='+'∂∂=∂∂∂221212)(2222121211f z xy f yz f y f xy f ''+''+'+''+''= 22221211)(f z xy f y f z x y f ''+'+''++''= 注 1211111f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂ 2221222f xy f z v v f z u u f z f ''+''=∂∂⋅∂'∂+∂∂⋅∂'∂=∂'∂例5 设ufx y 的所有二阶偏导数连续 把下列表达式转换成极坐标系中的形式122)()(y u xu ∂∂+∂∂ 22222y u x u ∂∂+∂∂ 解 由直角坐标与极坐标间的关系式得 ufx yf cos θ sin θF θ 其中x cos θ y sin θ 22yx +=ρx yarctan=θ应用复合函数求导法则 得x u x u x u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρy u x u ∂∂-∂∂=ρθθθρsin cos y u u ∂∂-∂∂=y u y u y u ∂∂∂∂+∂∂∂∂=∂∂θθρρ2ρθρρx u y u ∂∂+∂∂=ρθθθρcos sin ∂∂+∂∂=u u两式平方后相加 得22222)(1)()()(θρρ∂∂+∂∂=∂∂+∂∂u u yu x u 再求二阶偏导数 得x x u x x u x u ∂∂⋅∂∂∂∂+∂∂⋅∂∂∂∂=∂∂θθρρ)()(22θρθθθρρcos )sin cos (⋅∂∂-∂∂∂∂=u u ρθρθθθρθsin )sin cos (⋅∂∂-∂∂∂∂-u u 22222222sin cos sin 2cos ρθθρθθθρθρ∂∂+∂∂∂-∂∂=u u u ρθρρθθθ22sin cos sin 2∂∂+∂∂+u u同理可得2222222222cos cos sin 2sin ρθθρθθθρθρ∂∂+∂∂∂+∂∂=∂∂u u u y u ρθρρθθθ22cos cos sin 2∂∂+∂∂-u u两式相加 得22222222211θρρρρ∂∂++∂∂=∂∂+∂∂u u y u x u])([1222θρρρρρ∂∂+∂∂∂∂=u u全微分形式不变性 设zfu v 具有连续偏导数 则有全微分dvv z du uz dz ∂∂+∂∂= 如果zfu v 具有连续偏导数 而ux y vx y 也具有连续偏导数 则dyy z dx x z dz ∂∂+∂∂=dyy v v z y u u z dx x v v z x u u z )()(∂∂∂∂+∂∂∂∂+∂∂∂∂+∂∂∂∂=)()(dy y v dx x v v z dy y u dx x u u z ∂∂+∂∂∂∂+∂∂+∂∂∂∂= dv v z du uz ∂∂+∂∂= 由此可见 无论z 是自变量u 、v 的函数或中间变量u 、v 的函数 它的全微分形式是一样的 这个性质叫做全微分形式不变性例6 设ze usin v ux y vxy 利用全微分形式不变性求全微分解 dv v z du uz dz ∂∂+∂∂= e u sin vdu e ucos v dv e u sin vy dxx dy e u cos vdxdy ye u sin v e u cos vdxxe u sin v e ucos v dye xy y sin xy cos xydx e xyx sin xy cos xydy§8 5 隐函数的求导法则一、一个方程的情形 隐函数存在定理1设函数Fx y 在点Px 0 y 0的某一邻域内具有连续偏导数Fx 0 y 00 F y x 0 y 00 则方程Fx y 0在点x 0 y 0的某一邻域内恒能唯一确定一个连续且具有连续导数的函数yfx 它满足条件y 0fx 0 并有yx F F dx dy-= 求导公式证明 将yfx 代入Fx y 0 得恒等式 Fx fx 0 等式两边对x 求导得=⋅∂∂+∂∂dx dy y F x F由于F y 连续 且F y x 0 y 00 所以存在x 0 y 0的一个邻域 在这个邻域同F y 0 于是得yx F F dx dy-=例1 验证方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx 并求这函数的一阶与二阶导数在x 0的值解 设Fx yx 2y 21 则F x 2x F y 2y F 0 10 F y 0 120 因此由定理1可知 方程x 2y 210在点0 1的某一邻域内能唯一确定一个有连续导数、当x 0时y 1的隐函数yfx yx F F dx dyy x -=-= 00==x dx dy332222221)(y y x y y y x x y y y x y dx y d -=+-=---='--=1022-==x dx yd隐函数存在定理还可以推广到多元函数 一个二元方程Fx y 0可以确定一个一元隐函数 一个三元方程Fx y z 0可以确定一个二元隐函数 隐函数存在定理2设函数Fx y z 在点Px 0 y 0 z 0的某一邻域内具有连续的偏导数 且Fx 0 y 0 z 00 F z x 0 y 0 z 00 则方程Fx y z 0在点x 0 y 0z 0的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数zfx y 它满足条件z 0fx 0 y 0 并有zxF F x z -=∂∂ zyF F y z -=∂∂公式的证明 将zfx y 代入Fx y z 0 得Fx y fx y 0 将上式两端分别对x 和y 求导 得0=∂∂⋅+x z F F z x 0=∂∂⋅+y zF F z y因为F z 连续且F z x 0 y 0 z 00 所以存在点x 0 y 0 z 0的一个邻域 使F z 0 于是得zx F F x z -=∂∂ zy F F y z -=∂∂例2. 设x 2y 2z 24z 0 求22x z∂∂解 设Fx y z x 2y 2z 24z 则F x 2x F y 2z 4 z x z x F F x z z x -=--=-=∂∂24223222222)2()2()2()2()2()2()2(z x x z z x x x z x z x x x z -+-=--+-=-∂∂+-=∂∂二、方程组的情形在一定条件下 由个方程组Fx y u v 0 Gx y u v 0可以确定一对二元函数uux y vvx y 例如方程xuyv 0和yuxv 1可以确定两个二元函数22y x y u +=22y x x v +=事实上 xuyv 0 u yx v =1=⋅+u y x x yu 22y x yu += 2222yx x y x yy x v +=+⋅=如何根据原方程组求u v 的偏导数 隐函数存在定理3 隐函数存在定理3设Fx y u v 、Gx y u v 在点Px 0 y 0 u 0 v 0的某一邻域内具有对各个变量的连续偏导数 又Fx 0 y 0 u 0 v 00 Gx 0 y 0 u 0 v 00 且偏导数所组成的函数行列式v G u Gv Fu Fv u G F J ∂∂∂∂∂∂∂∂=∂∂=),(),(在点Px 0 y 0 u 0 v 0不等于零 则方程组Fx y u v 0 Gx y u v 0在点Px 0 y 0 u 0 v 0的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数uux y vvx y 它们满足条件u 0ux 0 y 0 v 0vx 0y 0 并有v uv uv x v xG G F F G G F F v x G F J x u -=∂∂-=∂∂),(),(1vuv ux u x uG G F F G G F F x u G F J x v -=∂∂-=∂∂),(),(1vu vu vy v y G G F F G G F F v y G F J y u -=∂∂-=∂∂),(),(1vu vu yu y u G G F F G G F F y u G F J y v -=∂∂-=∂∂),(),(1隐函数的偏导数:设方程组Fx y u v 0 Gx y u v 0确定一对具有连续偏导数的二元函数uux y vvx y 则偏导数x u ∂∂ x v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0x v G x u G G x v F x u F F v u x v u x 确定偏导数y u ∂∂ y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y v G y u G G y v F y u F F v u y v u y 确定例3 设xuyv 0 yuxv 1 求x u ∂∂ x v ∂∂ y u∂∂和y v ∂∂解 两个方程两边分别对x 求偏导 得x u ∂∂和x v∂∂的方程组⎪⎩⎪⎨⎧=∂∂++∂∂=∂∂-∂∂+00x v x v x u y x v y x u x u当x 2y 2时 解之得22y x yv xu x u ++-=∂∂ 22y x xvyu x v +-=∂∂两个方程两边分别对x 求偏导 得y u∂∂和y v∂∂的方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂--∂∂00y v x y u y u y v y v y u x 当x 2y 2时 解之得22y x yu xv y u +-=∂∂ 22y x yvxu y v ++-=∂∂另解 将两个方程的两边微分得⎩⎨⎧=+++=--+00xdv vdx ydu udy ydv vdy xdu udx 即⎩⎨⎧--=+-=-vdx udy xdv ydu udxvdy ydv xdu解之得dy y x yuxv dx y x yv xu du 2222+-+++-=dy y x yvxu dx y x xv yu dv 2222++-+-=于是 22y x yv xu x u ++-=∂∂ 22yx yu xv y u +-=∂∂22y x xv yu x v +-=∂∂ 22y x yv xu y v ++-=∂∂例 设函数xxu v yyu v 在点u v 的某一领域内连续且有连续偏导数 又0),(),(≠∂∂v u y x1证明方程组⎩⎨⎧==),(),(v u y y v u x x在点x y u v 的某一领域内唯一确定一组单值连续且有连续偏导数的反函数uux y vvx y2求反函数uux y vvx y 对x y 的偏导数 解 1将方程组改写成下面的形式⎩⎨⎧=-≡=-≡0),(),,,(0),(),,,(v u y y v u y x G v u x x v u y x F则按假设.0),(),(),(),(≠∂∂=∂∂=v u y x v u G F J由隐函数存在定理3 即得所要证的结论2将方程组7所确定的反函数uux yvvx y 代入7 即得⎩⎨⎧≡≡)],(),,([)],(),,([y x v y x u y y y x v y x u x x将上述恒等式两边分别对x 求偏导数得⎪⎩⎪⎨⎧∂∂⋅∂∂+∂∂⋅∂∂=∂∂⋅∂∂+∂∂⋅∂∂=x v v y x u u y x vv x x u u x 01由于J 0 故可解得v y J x u ∂∂=∂∂1 u yJ x v ∂∂-=∂∂1同理 可得v x J y u ∂∂-=∂∂1 u xJ y v ∂∂=∂∂1§8 6多元函数微分学的几何应用一 空间曲线的切线与法平面 设空间曲线的参数方程为 xt yt zt 这里假定t t t 都在 上可导在曲线上取对应于tt 0的一点M 0x 0 y 0 z 0及对应于tt 0t 的邻近一点Mx 0+x y 0+y z 0+z 作曲线的割线MM 0 其方程为z z z y y y x x x ∆-=∆-=∆-000当点M 沿着趋于点M 0时割线MM 0的极限位置就是曲线在点M 0处的切线 考虑t z z z ty y y t x x x ∆∆-=∆∆-=∆∆-000 当MM 0 即t 0时 得曲线在点M 0处的切线方程为)()()(000000t z z t y y t x x ωψϕ'-='-='- 曲线的切向量 切线的方向向量称为曲线的切向量 向量T t 0 t 0 t 0就是曲线在点M 0处的一个切向量法平面 通过点M 0而与切线垂直的平面称为曲线在点M 0 处的法平面 其法平面方程为 t 0xx 0t 0yy 0t 0zz 00例1 求曲线xt yt 2zt 3在点1 1 1处的切线及法平面方程解 因为x t 1 y t 2t z t 3t 2而点1 1 1所对应的参数t 1 所以T 1 2 3 于是 切线方程为 312111-=-=-z y x法平面方程为x 12y 13z 10 即x 2y 3z 6讨论1 若曲线的方程为 yx zx问其切线和法平面方程是什么形式提示 曲线方程可看作参数方程 xx yx zx 切向量为T 1 x x2 若曲线的方程为Fx y z 0 Gx y z 0 问其切线和法平面方程又是什么形式提示 两方程确定了两个隐函数 yx zx 曲线的参数方程为xx yx zx由方程组⎪⎩⎪⎨⎧=++=++00dx dz G dx dy G G dxdz F dx dy F F z y x z y x 可解得dx dy 和dx dz 切向量为) ,,1(dx dz dx dy =T例2 求曲线x 2y 2z 26 xyz 0在点1 2 1处的切线及法平面方程解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydxdz z dx dy y x解方程组得z y xz dx dy --= z y yx dx dz --=在点1 2 1处 0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0解 为求切向量 将所给方程的两边对x 求导数 得⎪⎩⎪⎨⎧=++=++010222dx dz dx dydx dz z dx dy y x方程组在点1 2 1处化为⎪⎩⎪⎨⎧-=+=-112dx dz dx dydx dz dx dy 解方程组得0=dx dy 1-=dx dz从而T 1 0 1 所求切线方程为 110211--=+=-z y x法平面方程为x 10y 2z 10 即xz 0。
多元函数微分学及其应用归纳总结

多元函数微分学及其应用归纳总结一、多元函数的微分与偏导数1. 多元函数的微分定义为函数在其中一点上的线性逼近。
对于二元函数,微分为 dz=f_x*dx+f_y*dy,其中 f_x 和 f_y 分别为函数的偏导数。
对于一般的 n 元函数也可类似定义。
2.多元函数的偏导数表示函数沿着其中一个变量的变化率。
对于二元函数f(x,y),其偏导数f_x表示x方向上的变化率,f_y表示y方向上的变化率。
一般而言,当存在偏导数且连续时,函数在该点可微分。
3.偏导数的计算方法与一元函数相似,利用极限的定义求出偏导数表达式,对于高阶偏导数,可以反复求导。
4.混合偏导数表示函数在二个或二个以上变量上求偏导数后再对另外一个或另外几个变量求偏导数,其次序不影响结果。
二、多元函数的求导法则1. 多元函数的和、差、常数倍法则:设函数 f 和 g 在其中一点连续可导,则(f±g)'=f'±g',(kf)'=kf'。
2.多元函数的乘积法则:设函数f和g在其中一点连续可导,则(f·g)'=f'·g+g'·f。
3.多元函数的商法则:设函数f和g在其中一点连续可导且g不为零,则(f/g)'=(f'·g-g'·f)/g^24. 复合函数求导法则:设函数 y=f(u) 和 u=g(x) 在其中一点可导,则复合函数 y=f(g(x)) 的导数为dy/dx=f'(u)·g'(x),其中 x 和 u 为中间变量。
三、多元函数的极值与梯度1.多元函数的极值包括极大值和极小值。
在二元函数中,极值的必要条件为偏导数为零,充分条件为偏导数存在且满足一定条件。
2.多元函数的梯度是一个向量,其方向与函数在其中一点上变化最快的方向一致,大小表示变化率的大小。
梯度为零的点可能为极值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
螺旋线上任意一点
z
P( x(t0 ), y(t0 ), z(t0 )) 处的
切线方程为
x x0 z z0 y y0 a sin t0 a cost0 b
在 t0 = 0 时, 切线方程为
O
a
xa y z a b 0
x
t
y
例 解
求圆柱螺旋线 x a cos t ,
此时有
F ( x(t ), y(t ), z (t )) 0
切线方程为
x x0 y y0 z z0 m 1 1 y0 2 z0
F ( x, y, z ) 0 , 设曲线的一般方程为 G( x, y, z ) 0
F ( x, y, z ) 0 满足条件: 设曲线 G( x, y, z ) 0
( F , G) F ( x, y , z ) , G ( x, y , z ) C , 0, ( y, z )
Q t0 t : Q( x(t0 t ), y(t0 t ), z(t0 t ))
Q( x0 x, y0 y, z0 z)
设曲线 L 的参数方程为
x x(t ) y y (t ) z z (t )
t
Q
y a sin t , z b t
在任意一点处的切线及在 t = 0 处的切线.
螺旋线上任意一点
z
P( x(t0 ), y(t0 ), z(t0 )) 处的
切线方程为
x x0 z z0 y y0 a sin t0 a cost0 b
在 t0 = 0 时, 切线方程为
பைடு நூலகம்
O
( F , G) F ( x, y , z ) , G ( x, y , z ) C , 0, ( y, z )
1
则曲线在点 P( x0 , y0 , z0 ) 处的切线方程为
x x0 (F , G) ( y, z )
P
y y0 (F , G) ( z, x)
P
z z0 ( F , G) ( x, y )
x x0 y y0 z z0 y( x0 ) z ( x0 ) 1
其方向向量 l (1, y( x0 ), z( x0 )) .
例
例 解
求圆柱螺旋线 x a cos t ,
y a sin t , z b t
在任意一点处的切线及在 t = 0 处的切线.
( F , G ) Fy G ( y, z ) y
Fz 2 y 0 4 yz , Gz 0 2z
0 2x ( F , G) 4 xz , 2z 2x ( z, x)
( F , G) 4 xy , ( x, y )
代入切线方程
x x0 (F , G) ( y, z )
P
求两个圆柱面 x 2 y 2 a 2 , x 2 z 2 a 2 ,
例 解
则
a a a 的交线在点 , , 处的切线方程. 2 2 2
令 F ( x, y, z) x 2 y 2 a 2 , G( x, y, z) x 2 z 2 a 2 ,
0
2a
例
例
求曲线 y 2 2mx, z 2 m x在点( x0 , y0 , z0 )处的
切线方程。
xx 2 y 2m x z 2 m x
解
dy m dx y
dz 1 dx 2z
m 1 曲线在点( x0 , y0 , z0 )处的切向量为 1, y , 2 z 0 0
当 x2 (t0 ) y2 (t0 ) z2 (t0 ) 0 时, 切线存在.
此处为零,则曲线在点P 处无切线。
奇点
设曲线 L 的参数方程为
y y ( x) z z ( x)
xI
Q
.
T
其中, y( x) , z( x)可导 .
L
P
.
曲线 L 在点P 处的切线方程为
2 2
故 所求切线方程和法平面方程分别为
切线方程 2 x 1 2y 3 z 3 6 6
法平面方程 2x 12 y 24z 91 0
例
例
x2 y 2 z 2 6 求曲线 在点 P(1,2 ,1) 处的 x y z 0
切线方程和法平面方程. 解 令 F ( x, y, z) x y z 6 , G( x, y, z) x y z,
多元微分学在几何中的应用
一. 空间曲线的切线 二. 空间曲线的法平面 三. 空间曲面的切平面与法线
本节关键概念和理论
曲线的切线、法平面
曲面的切平面、法线
一.空间曲线的切线
Q
曲线 L 在点 P 处点切线为 点 Q 沿曲线 L 趋向点 P 时 割线 PQ 的极限位置 PT
T
P L
( x(t0 ), y(t0 ), z(t0 ))
线 方 y y ( x) 程
z z ( x)
(1, y(t0 ), z(t0 ))
切 线 的 方 向 向 量
F ( x, y, z ) 0 , G( x, y, z ) 0
( F , G) ( F , G) ( F , G) ( y , z ) , ( z , x ) , ( x, y )
t
Q
.
T
其中,x(t ) , y(t ) , z(t )可导。
L
P
.
曲线 L 在点P 处的切线方程为
x x0 y y0 z z0 x(t0 ) y(t0 ) z(t0 ) 其方向向量 l ( x(t0 ), y(t0 ), z (t0 )) .
故所求的
切线方程为
法平面方程为
x 1 y 2 z 1 1 0 1
xz 0
三.空间曲面的切平面与法线
一个钢球放在一块平整光滑的钢板上
平面
球面
相切
设曲面的方程为 F ( x, y, z ) 0, 在曲面上
任取一条过点 P 的曲线 L,设其方程为
x x(t ) , y y(t ) , z z (t ) ,
( x x0 ) y( x0 )( y y0 ) z( x0 )( z z0 ) 0
在曲线 L 上点P 处,切线 PT 的方向向量就
是相应的法平面的法向量,故上述三种曲线方程 在点P 处对应的法平面方程分别为
F F ( x, y , z ) G G ( x, y, z )
例
求两个抛物柱面y 6 x 2 , z 12 x 2 的交线 L 在
1 x 时的切线方程和法平面 方程。 2
解
1 3 当 x 时,y ,z 3,此时 2 2
y( x) x 1 12x x 1 6 ,
2 2
z( x) x 1 24x x 1 12
P
y y0 (F , G) ( z, x)
P
z z0 ( F , G) ( x, y )
P
中, 得所求切线方程为
a a y z a 2 2 x 1 1 2
小结
x x(t ) y y (t ) 曲 z z (t )
x x0 y y0 z z 0 切线方程 m n p
y( x) x 1 12x x 1 6 ,
2 2
z( x) x 1 24x x 1 12
2 2
故 所求切线方程和法平面方程分别为
y y0 z z 0 x x0 y( x0 ) z ( x0 )
( x x0 ) y( x0 )( y y0 ) z( x0 )( z z0 ) 0
( F , G) ( F , G) ( F , G) ( x x0 ) ( y y0 ) ( z z0 ) 0 ( y, z ) p ( z , x) p ( x, y ) p
例 求两个抛物柱面y 6 x , z 12 x 的交线 L 在
2 2
1 x 时的切线方程和法平面 方程。 2
.
T
其中, x(t ) , y(t ) , z(t )可导。 割线 PQ 的方程为
t 0时
L
P
.
引入 t
x x0 y y 0 z z 0 z x y t t t
x(t0 ) y (t0 ) z (t0 )
设曲线 L 的参数方程为
x x(t ) y y (t ) z z (t )
p
二.空间曲线的法平面
过曲线 L 上点P ,且 垂直于曲线在该点的切线 PT 的平面称为曲线在点 P 的法平面。
L T
n
切点
.
P
n
切线PT
在曲线 L 上点P 处,切线 PT 的方向向量就
是相应的法平面的法向量,故上述三种曲线方程 在点P 处对应的法平面方程分别为
x x(t ) y y (t ) z z (t )
a
xa y z a b 0
x
t
y
是直线方向向量的分量
在点 P( x0 , y0 , z0 ) 处,切线的方向余弦中有
cos
b a b
2 2
(常数)
这说明在螺旋线上每一点处的切线与 z 轴正向的夹角 均相同,故展开后螺旋线为直线.
z z0 y y0 x x0 b a cos t a sin t0 0