算法设计与分析课程设计-三次捡苹果

合集下载

《高等计算机算法-博士研究生》课程教学大纲

《高等计算机算法-博士研究生》课程教学大纲
1.算法研究引论(2学时):课程的学习心、分治、动态规划)。
3.NP完全理论(6学时):NP完全理论及其在实际问题中的应用。
4.算法专题研究(10学时):3—5个小的前沿领域的算法专题研讨,包括每个领域的基本问题、算法及变型。
5.课程设计(2学时):设计并分析一个难度适当的算法。
2.3计算复杂性导论,堵丁柱、葛可一、王洁,高等教育出版社,2002
预修课程:离散数学,数据结构,算法分析
学科点意见:
学科点负责人签名:
年月日
注:1、类别指公共课、专业课。2、教学内容要强调理论性与应用性课程的有机结合,突出案例分析和实践研究;教学过程要重视运用团队学习、案例分析、现场研究、模拟训练等方法;要注重培养学生研究实践问题的意识和能力。3、编制者一般为该课程主讲教师。
研究生课程教学大纲
课程名称
中文
高等计算机算法
课程编号
0006100038
英文
AdvancedComputerAlgorithms
开课单位
网络空间先进技术研究院
考核方式
考查
学时
32
学分
2
类别
专业课
编制者
课程简介:
高级算法设计与分析是计算机科学与技术及相关专业一门重要的专业基础课。本课程是本科和硕士的算法课程的延续和提升。主要介绍算法的基本设计技巧及高级算法理论在前沿问题和实际问题中的应用。加深学生的算法研究能力,提高学生设计算法来解决实际问题的能力。
教学目标与基本要求:
本课程的目标是使学生通过对高等计算机算法基础的进阶学习以及前沿算法的专题研究,提升学生独立设计算法解决现实问题的能力。其基本要求为:
1.能够使用基本技巧设计算法。
2.理解NP完全理论,并能够应用于解决实际问题。

c语言排序课程设计

c语言排序课程设计

c语言排序课程设计一、课程目标知识目标:1. 学生能够掌握C语言中的排序算法原理,包括冒泡排序、选择排序和插入排序。

2. 学生能够理解排序算法的时间复杂度和空间复杂度,并能够进行比较和分析。

3. 学生能够运用C语言编写并调试排序算法程序,实现对整数数组的排序操作。

技能目标:1. 学生能够运用所学知识独立设计并实现至少两种排序算法。

2. 学生能够通过分析问题,选择合适的排序算法解决实际问题。

3. 学生能够运用调试工具对排序算法进行测试和优化,提高程序的执行效率。

情感态度价值观目标:1. 学生通过学习排序算法,培养解决问题的逻辑思维能力和程序设计能力。

2. 学生在合作交流中,学会倾听他人意见,提高团队协作能力。

3. 学生在探索排序算法的过程中,培养对编程的兴趣和热情,树立正确的计算机科学价值观。

分析课程性质、学生特点和教学要求:1. 课程性质:本课程为C语言程序设计中的算法部分,旨在让学生掌握排序算法的基本原理和实现方法。

2. 学生特点:学生已具备C语言基础知识,有一定的编程能力,但对算法的理解和应用尚需加强。

3. 教学要求:教师应注重启发式教学,引导学生通过实例分析、动手实践和小组讨论,掌握排序算法的核心知识,提高编程技能。

同时,关注学生的情感态度价值观的培养,激发学生的学习兴趣和动力。

通过分解课程目标为具体学习成果,为教学设计和评估提供依据。

二、教学内容1. 排序算法原理:- 冒泡排序:介绍冒泡排序的基本思想和步骤,分析其时间复杂度和空间复杂度。

- 选择排序:讲解选择排序的原理和过程,分析其时间复杂度和空间复杂度。

- 插入排序:阐述插入排序的基本原理,分析其时间复杂度和空间复杂度。

2. 排序算法应用:- 编写冒泡排序、选择排序和插入排序的C语言程序。

- 通过实例演示,让学生了解排序算法在实际问题中的应用。

3. 算法分析与优化:- 对比分析冒泡排序、选择排序和插入排序的性能,探讨各种排序算法的优缺点。

排序算法分析课程设计

排序算法分析课程设计

排序算法分析课程设计一、课程目标知识目标:1. 理解排序算法的基本概念和分类;2. 掌握冒泡排序、选择排序和插入排序的原理及实现步骤;3. 了解不同排序算法的时间复杂度和空间复杂度;4. 能够分析实际问题,选择合适的排序算法解决问题。

技能目标:1. 能够运用编程语言实现冒泡排序、选择排序和插入排序;2. 能够通过对比分析,评估不同排序算法的性能;3. 能够运用所学知识解决实际生活中的排序问题。

情感态度价值观目标:1. 培养学生对算法学习的兴趣和积极性;2. 培养学生的团队合作意识和解决问题的能力;3. 增强学生对计算机科学的认识,提高信息素养。

分析课程性质、学生特点和教学要求:1. 课程性质:本课程为计算机科学领域的基础课程,排序算法是算法设计与分析的重要部分,具有实际应用价值;2. 学生特点:五年级学生,具备一定的编程基础和逻辑思维能力,对新鲜事物充满好奇心;3. 教学要求:结合实际案例,以学生为主体,注重启发式教学,培养学生的实践能力和创新精神。

二、教学内容1. 排序算法基本概念:介绍排序算法的定义、作用和分类;- 教材章节:第二章第二节;- 内容列举:排序算法的定义、分类及其应用场景。

2. 冒泡排序:讲解冒泡排序的原理、实现步骤及优化方法;- 教材章节:第三章第一节;- 内容列举:冒泡排序的基本思想、实现过程、时间复杂度及优化。

3. 选择排序:介绍选择排序的原理、实现步骤及性能分析;- 教材章节:第三章第二节;- 内容列举:选择排序的基本思想、实现过程、时间复杂度及优缺点。

4. 插入排序:讲解插入排序的原理、实现步骤及性能分析;- 教材章节:第三章第三节;- 内容列举:插入排序的基本思想、实现过程、时间复杂度及优缺点。

5. 排序算法对比分析:分析冒泡排序、选择排序和插入排序的优缺点,探讨在不同场景下如何选择合适的排序算法;- 教材章节:第三章第四节;- 内容列举:排序算法的性能比较、适用场景及选择策略。

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。

本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。

1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。

2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计

《计算机算法设计与分析》课程设计用分治法解决快速排序问题及用动态规划法解决最优二叉搜索树问题及用回溯法解决图的着色问题一、课程设计目的:《计算机算法设计与分析》这门课程是一门实践性非常强的课程,要求我们能够将所学的算法应用到实际中,灵活解决实际问题。

通过这次课程设计,能够培养我们独立思考、综合分析与动手的能力,并能加深对课堂所学理论和概念的理解,可以训练我们算法设计的思维和培养算法的分析能力。

二、课程设计内容:1、分治法:(2)快速排序;2、动态规划:(4)最优二叉搜索树;3、回溯法:(2)图的着色。

三、概要设计:分治法—快速排序:分治法的基本思想是将一个规模为n的问题分解为k个规模较小的子问题,这些子问题互相独立且与原问题相同。

递归地解这些子问题,然后将各个子问题的解合并得到原问题的解。

分治法的条件:(1) 该问题的规模缩小到一定的程度就可以容易地解决;(2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质;(3) 利用该问题分解出的子问题的解可以合并为该问题的解;(4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。

抽象的讲,分治法有两个重要步骤:(1)将问题拆开;(2)将答案合并;动态规划—最优二叉搜索树:动态规划的基本思想是将问题分解为若干个小问题,解子问题,然后从子问题得到原问题的解。

设计动态规划法的步骤:(1)找出最优解的性质,并刻画其结构特征;(2)递归地定义最优值(写出动态规划方程);(3)以自底向上的方式计算出最优值;(4)根据计算最优值时得到的信息,构造一个最优解。

●回溯法—图的着色回溯法的基本思想是确定了解空间的组织结构后,回溯法就是从开始节点(根结点)出发,以深度优先的方式搜索整个解空间。

这个开始节点就成为一个活结点,同时也成为当前的扩展结点。

在当前的扩展结点处,搜索向纵深方向移至一个新结点。

这个新结点就成为一个新的或节点,并成为当前扩展结点。

算法设计与分析复习题目及答案

算法设计与分析复习题目及答案

分治法1、二分搜索算法是利用(?分治策略)实现的算法。

9. 实现循环赛日程表利用的算法是(分治策略)27、Strassen矩阵乘法是利用(分治策略?)实现的算法。

34.实现合并排序利用的算法是(分治策略)。

实现大整数的乘法是利用的算法(?分治策略)。

17.实现棋盘覆盖算法利用的算法是(分治法)。

29、使用分治法求解不需要满足的条件是(子问题必须是一样的)。

不可以使用分治法求解的是(0/1背包问题)。

动态规划下列不是动态规划算法基本步骤的是(构造最优解)下列是动态规划算法基本要素的是(子问题重叠性质)。

下列算法中通常以自底向上的方式求解最优解的是(动态规划法?)备忘录方法是那种算法的变形。

(动态规划法)最长公共子序列算法利用的算法是(?动态规划法)。

矩阵连乘问题的算法可由(动态规划算法B)设计实现。

实现最大子段和利用的算法是(??动态规划法?? )。

贪心算法能解决的问题:单源最短路径问题,最小花费生成树问题,背包问题,活动安排问题,不能解决的问题:N皇后问题,0/1背包问题是贪心算法的基本要素的是(贪心选择性质和最优子结构性质)。

回溯法回溯法解旅行售货员问题时的解空间树是(排列树)。

剪枝函数是回溯法中为避免无效搜索采取的策略回溯法的效率不依赖于下列哪些因素(确定解空间的时间)分支限界法最大效益优先是(?分支界限法)的一搜索方式。

分支限界法解最大团问题时,活结点表的组织形式是(?最大堆)。

分支限界法解旅行售货员问题时,活结点表的组织形式是(最小堆)优先队列式分支限界法选取扩展结点的原则是(结点的优先级)在对问题的解空间树进行搜索的方法中,一个活结点最多有一次机会成为活结点的是( 分支限界法).从活结点表中选择下一个扩展结点的不同方式将导致不同的分支限界法,以下除( 栈式分支限界法)之外都是最常见的方式.(1)队列式(FIFO)分支限界法:按照队列先进先出(FIFO)原则选取下一个节点为扩展节点。

(2)优先队列式分支限界法:按照优先队列中规定的优先级选取优先级最高的节点成为当前扩展节点。

算法分析与设计实验三贪心算法

算法分析与设计实验三贪心算法

实验三贪心算法实验目的1. 掌握贪心法的基本思想方法;2. 了解适用于用贪心法求解的问题类型,并能设计相应贪心法算法;3. 掌握贪心算法复杂性分析方法分析问题复杂性。

预习与实验要求1. 预习实验指导书及教材的有关内容,掌握贪心法的基本思想;2. 严格按照实验内容进行实验,培养良好的算法设计和编程的习惯;3. 认真听讲,服从安排,独立思考并完成实验。

实验设备与器材硬件:PC机软件:C++或Java等编程环境实验原理有一类问题是要从所有的允许解中求出最优解,其策略之一是“贪心法”,即逐次实施“贪心选择”:在每个选择步骤上做出的选择都是当前状态下最优的。

贪心选择依赖于在此之前所做出的选择,但不依赖于后续步骤所需要的选择,即不依赖于后续待求解子问题。

显然,这种选择方法是局部最优的,但不是从问题求解的整体考虑进行选择,因此不能保证最后所得一定是最优解。

贪心法是求解问题的一种有效方法,所得到的结果如果不是最优的,通常也是近似最优的。

实验内容以下几个问题选做一项:1. 用贪心法实现带有期限作业排序的快速算法应用贪心设计策略来解决操作系统中单机、无资源约束且每个作业可在等量时间内完成的作业调度问题。

假定只能在一台机器上处理N个作业,每个作业均可在单位时间内完成;又假定每个作业i都有一个截止期限di>0(它是整数),当且仅当作业i在它的期限截止以前被完成时,则获得pi的效益。

这个问题的一个可行解是这N个作业的一个子集合J,J中的每个作业都能在各自的截止期限之前完成。

可行解的效益值是J中这些作业的效益之和,即Σp。

具有最大效益值的可行解就是最优解。

2. 实现K元归并树贪心算法两个分别包含n个和m个记录的已分类文件可以在O(n+m)时间内归并在一起而得到一个分类文件。

当要把两个以上的已分类文件归并在一起时,可以通过成对地重复归并已分类的文件来完成。

例如:假定X1,X2,X3,X4是要归并的文件,则可以首先把X1和X2归并成文件Y1,然后将Y1和X3归并成Y2,最后将Y2和X4归并,从而得到想要的分类文件;也可以先把X1和X2归并成Y1,然后将X3和X4归并成Y2,最后归并Y1和Y2而得到想要的分类文件。

算法设计与分析王晓东

算法设计与分析王晓东

习题2-1 求下列函数的渐进表达式:3n^2+10n; n^2/10+2n; 21+1/n; logn^3; 10 log3^n 。

解答:3n^2+10n=O(n^2),n^2/10+2^n=O(2^n),21+1/n=O(1),logn^3=O(logn),10log3^n=O(n).习题2-3 照渐进阶从低到高的顺序排列以下表达式:n!,4n^2,logn,3^n,20n,2,n^2/3。

解答:照渐进阶从高到低的顺序为:n!、3^n、4n^2 、20n、n^2/3、logn、2习题2-4(1)假设某算法在输入规模为n时的计算时间为T(n)=3*2^n。

在某台计算机上实现并完成该算法的时间为t秒。

现有另外一台计算机,其运行速度为第一台计算机的64倍,那么在这台新机器上用同一算法在t秒内能解输入规模为多大的问题?(2)若上述算法的计算时间改进为T(n)=n^2,其余条件不变,则在新机器上用t秒时间能解输入规模多大的问题?(3)若上述算法的计算时间进一步改进为,其余条件不变,那么在新机器上用t秒时间能解输入规模多大的问题?解答:(1)设能解输入规模为n1的问题,则t=3*2^n=3*2^n/64,解得n1=n+6(2)n1^2=64n^2得到n1=8n(3)由于T(n)=常数,因此算法可解任意规模的问题。

习题2-5 XYZ公司宣称他们最新研制的微处理器运行速度为其竞争对手ABC公司同类产品的100倍。

对于计算复杂性分别为n,n^2,n^3和n!的各算法,若用ABC公司的计算机能在1小时内能解输入规模为n的问题,那么用XYZ公司的计算机在1小时内分别能解输入规模为多大的问题?解答:n'=100nn'^2=100n^2得到n'=10nn'^3=100n^3得到n'=4.64nn'!=100n!得到n'<n+log100=n+6.64习题2-6对于下列各组函数f(n)和g(n),确定f(n)=O(g(n))或f(n)=Ω(g(n))或f(n)=θ(g(n)),并简述理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

算法设计与分析课程设计
————三次捡苹果
专业班级:软件工程二班
组长:王(41312218)
组员:谢(41312194)
2015.12.24
1
1 引言
动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法。

20世纪50年代初美国数学家R.E.Bellman 等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimality),把多阶段过程转化为一系列单阶段问题,利用各阶段之间的关系,逐个求解,创立了解决这类过程优化问题的新方法——动态规划。

2 概述
2.1 问题描述
一个矩形区域被划分为N*M个小矩形格子,在格子(i,j)中有A[i][j]个苹果。

现在从左上角的格子(1,1)出发,要求每次只能向右走一步或向下走一步,每经过一个格子就把其中的苹果全部拿走,最后到达(N,M)。

此时,只允许向上或向左走一步,反方向走回(1,1)。

这一趟可以不走第一趟的路线,但当经过第一趟所经过的格子时,里面已经没有苹果了。

到达(1,1)后,再次反方向地只允许向右或向下走,走到(N,M),同样可以不走前两趟走过的路线。

求这三趟的走法,使得最终能拿取最多数量的苹果。

2.2 问题摘要
针对三次捡苹果可以分解成更小的子问题,并通过找出子问题的结构进而可以构造出最优解,从而解决这个问题。

最终利用动态规划算法,采用一种较好的数据结构来表示解空间,给出了一种逻辑清晰的非递归算法解决了递归算法中时间效率低的问题。

3 分析与设计
3.1 问题分析
(1)可以发现,虽然第二趟方向相反,但其实和从(1,1)走到(N,M)是一样的,即三趟路线全部可以转化为从(1,1)向下或向右走到(N,M)的过程。

所以三次捡苹果问题通过分解我们可以分解为三个单次捡苹果问题。

所以我们下面先讨论一下单次捡苹果问题的解决方法。

(2)不难发现,这个问题与教材中的树塔问题(详见教材p163)有许多的相似之处。

所以这个问题用贪婪算法同样找不到真正的最大和。

(3)要找到最大和的前提条件是,要能看到苹果数组的全貌,下面的算法设计都是以此为前提的。

在知道苹果分布全貌的前提下,可以用枚举法或者搜索算法来解决问题。

但从图中可以看出,在m*n的矩形格子中,要枚举2^m+n-1 条路径。

在m和n 较大的情况下,需要列举的路径是一个庞大的数目。

所以枚举法也不是一个合适解决此问题的算法策略。

根据上面的分析我们可以发现,用动态规划来解决此问题是最合适的。

3.2算法设计
(1)阶段划分
平面上有N*M个格子,每个格子中放着一定数量的苹果。

你从左上角的格子开始,每一步只能向下走或是向右走,每次走到一个格子上就把格子里的苹果收集起来,这样下去,你最多能收集到多少个苹果。

不妨举一个例子来表示:在这个3×4的表格里面填写了一些数表示所在格子中的苹果数量。

根据题目的规则"每一步只能向下走或是向右走",如果用x表示纵向,用y表示横向,那么能够到达a[x,y]处的只有两个位置a[x-1,y](上一格)和a[x,y-1](左边一格),所以必然是取这两个位置中比较大的那一个点。

依此回溯到a[0,0],或者从a[0,0]递推到a[x,y]。

......... , ......... , a[x-1,y]
......... , a[x,y-1], a[x,y] ,
基于这一点,我们可以从左上角开始将到达第一行和第一列中各点所能收集到的最大苹果数量填成一张表格。

如下:
表1. 苹果分布
6 5 3 5
3 1 3 1
1 1
2 3
表2.第一行和第一列所能获得的最大苹果数
6 11 14 19
9
10
从捡苹果问题的特点来看,不难发现解决问题的阶段划分,应该是自上而下的逐层决策。

不同于贪婪策略的是做出的不是唯一决策。

接下来填第2行:
对于经过第2行第2列的1的路径,在第1行第2列的11和第2行第1列的9中,选择了11 ;
这是一次决策过程,也是一次递推过程和升阶过程。

(2)存储
接下来是第2行第3列的值,应该填写为MAX(A[1,3], A[2,2])+ A[2,3]对应的苹果数量。

也就是说到达第2行第3列能获得的最大苹果数,要看第2行第2列所获得的苹果数(12)和第1行第3列所获得的苹果数(14),这两者哪个更大,谁大就取谁的值,显然第1行第3列所获得的苹果数(14)更大,所以用14加上第2行第3列的苹果数3 等于17,就是到达第2行第3列能获得的最大苹果数。

同理,填所在格能获得的最大苹果数就是看它左面一格和上面一格哪个值更大,就取哪个值再加上自己格子里面的苹果数,就是到达此格能获得的最大苹果数。

依此填完所有格子,最后得到下图:
6 11 14 19
9 12 17 20
10 13 19 23
所以:到达右下角能够获得的最大苹果数量是23。

所经过的路径可以通过倒推的方法得到,从右下角开始看所在格子的左边一格和上面一格哪边大就往哪边走,如果遇到一样大的,任选一条即可。

这样我们可以画出路线图,如下图右边表格:
如此就得到了单次捡苹果的最优解。

6 5 3 5
3 1 3 1
1 1
2 3
(3)求解
经过上面的分析,很容易可以得出问题的状态和状态转移方程。

状态S[i][j]表示我们走到(i, j)这个格子时,最多能收集到多少个苹果。

那么,状态转移方程如下:
S[i][j]=A[i][j]+max(S[i-1][j],if i>0;S[i][j-1],if j>0)
其中i代表行,j代表列,下标均从0开始;A[i][j]代表格子(i, j)处的苹果数量。

S[i][j]有两种计算方式:1.对于每一行,从左向右计算,然后从上到下逐行处理;对于每一列,从上到下计算,然后从左向右逐列处理。

这样做的目的是为了在计算S[i][j]时,S[i-1][j]和S[i][j-1]都已经计算出来了。

伪代码如下:
for i=0 to N-1
For j=0 to M-1
S[i][j]=A[i][j]+max(S[i-1][j],if i>0;S[i][j-1],if j>0 ; 0)
Output S[n-1][m-1] ;
3.4
接下来我们只需要重复三次单次捡苹果的行为,就可以变成三次捡苹果问题。

相关文档
最新文档