基于模型的专家系统
专家系统的一般结构

专家系统的一般结构一、简介专家系统是一种基于人类知识的计算机系统,它采取了人类专家的知识和经验作为计算机系统的智力决策依据,被用来解决困难的决策问题。
专家系统可以模拟专家的经验和行为,在给定的应用领域内,给出精确的结果,同时专家系统也能够克服一些传统计算机科学研究中的困难,比如,自然语言、模糊逻辑、概念表示等方面。
专家系统包括:知识库、推理机制、接口机制和终端用户界面。
知识库存储专家知识,推理机制利用专家知识进行问题求解,接口机制将系统和外部知识源相连接,而终端用户界面提供操作系统的人机交互方式和功能,允许终端用户调用和使用专家系统。
二、专家系统的一般结构专家系统的一般结构包括:知识模型,推理模型,存储模型,规则模型,排序模型,输入/输出模型和用户界面。
1. 知识模型确定了专家系统建立的基本知识结构,它定义了文本体系、概念、属性和关系之间的关系,而系统实现的知识表示形式是有自己特定语言,这种特定的语言是由人工构建的,可以将专家知识进行抽象和概括,以满足系统的需要。
2. 推理模型是专家系统实现的核心,它的功能是使用知识模型中定义的知识,以及系统存储的知识,进行智能决策推理,以实现具体的决策任务。
3. 存储模型是实现专家系统的知识存储,它定义了系统当前的知识状态,并存储系统的输入和输出信息。
4. 规则模型是实现专家系统的描述性知识,它定义了系统做出决策时所需要的一系列规则,这些规则可以通过推理模型进行描述性推理,规则模型通常以规则库的形式存在,包括前置条件、决策结果和推出规则等。
5. 排序模型是专家系统确定推理场景下的优先顺序,它利用系统中存储的专家知识,对出现的不同推理决策选项,进行价值比较,以便选出最优解,实现系统的决策。
6. 输入/输出模型是与外部系统进行通信时使用的接口,它使用标准语言将系统外部的信息和系统内部的信息进行编码和解码,实现系统和外部系统的交互。
7. 用户界面是专家系统提供给终端用户的界面,它是专家系统的外壳,包括文本框、按钮、菜单、视图等,实现了人机交互界面的功能,使终端用户能够处理自己的问题。
人工智能专家系统

人工智能专家系统人工智能(Artificial Intelligence,简称AI)专家系统是一种基于计算机技术和人类专家经验的智能化系统。
它能够模拟和实现人类专家在特定领域的问题解决能力,可以用于辅助决策、问题诊断和解决方案推荐等方面。
本文将从专家系统的定义、原理、组成和应用等四个方面进行论述。
一、专家系统的定义专家系统是一种基于知识工程的人工智能系统,它通过模拟和利用领域专家的经验和知识来解决特定领域的问题。
专家系统主要由知识库、推理机和用户界面三部分组成。
知识库存储了经验和知识,推理机则对知识进行推理和运算,用户界面则提供了用户与系统进行交互的接口。
二、专家系统的原理专家系统的原理可以概括为知识获取、知识表示、知识推理和知识应用四个步骤。
知识获取是指将专家的经验和知识进行提取和整理,并存储到系统的知识库中;知识表示是指将知识以适当的形式进行表达和组织,以便系统能够理解和推理;知识推理是指根据系统中的知识,通过推理机对问题进行分析和推理;知识应用是指将推理得到的结果转化为实际解决方案,供用户使用。
三、专家系统的组成专家系统主要由知识库、推理机和用户界面三部分组成。
知识库是专家系统存储知识和经验的地方,常见的形式包括规则库、案例库和模型库等。
推理机是专家系统进行推理和运算的核心组件,它能够根据知识库中的知识进行逻辑推理和问题求解。
用户界面则提供了用户与系统进行交互的接口,使用户能够方便地向系统提供问题并获取解决方案。
四、专家系统的应用专家系统在各个领域都有广泛的应用。
在医疗领域,专家系统可以用于辅助疾病诊断和治疗方案选择;在金融领域,专家系统可以用于风险评估和投资决策;在工业领域,专家系统可以用于故障诊断和维修指导。
此外,专家系统还可以应用于法律、教育、交通等领域,为人们提供更加智能化和便捷化的服务。
综上所述,人工智能专家系统是一种基于计算机技术和人类专家经验的智能化系统。
它能够模拟和实现人类专家在特定领域的问题解决能力,具有广泛的应用前景。
人工智能习题答案-第6章-专家系统

⼈⼯智能习题答案-第6章-专家系统第六章专家系统6-1 什么叫做专家系统?它具有哪些特点与优点?专家系统是⼀种模拟⼈类专家解决领域问题的智能计算机程序系统,其内部含有⼤量的某个领域专家⽔平的知识与经验,能够利⽤⼈类专家的知识和解决问题的⽅法来处理该领域问题。
也就是说,专家系统是⼀个具有⼤量的专门知识与经验的程序系统,它应⽤⼈⼯智能技术和计算机技术,根据某领域⼀个或多个专家提供的知识和经验,进⾏推理和判断,模拟⼈类专家的决策过程,以便解决那些需要⼈类专家处理的复杂问题。
特点:(1)启发性专家系统能运⽤专家的知识与经验进⾏推理、判断和决策(2)透明性专家系统能够解释本⾝的推理过程和回答⽤户提出的问题,以便让⽤户能够了解推理过程,提⾼对专家系统的信赖感。
(3) 灵活性专家系统能不断地增长知识,修改原有知识,不断更新。
优点:(1) 专家系统能够⾼效率、准确、周到、迅速和不知疲倦地进⾏⼯作。
(2) 专家系统解决实际问题时不受周围环境的影响,也不可能遗漏忘记。
(3) 可以使专家的专长不受时间和空间的限制,以便推⼴珍贵和稀缺的专家知识与经验。
(4) 专家系统能促进各领域的发展,它使各领域专家的专业知识和经验得到总结和精炼,能够⼴泛有⼒地传播专家的知识、经验和能⼒。
(5) 专家系统能汇集多领域专家的知识和经验以及他们协作解决重⼤问题的能⼒,它拥有更渊博的知识、更丰富的经验和更强的⼯作能⼒。
(6) 军事专家系统的⽔平是⼀个国家国防现代化的重要标志之⼀。
(7) 专家系统的研制和应⽤,具有巨⼤的经济效益和社会效益。
(8) 研究专家系统能够促进整个科学技术的发展。
专家系统对⼈⼯智能的各个领域的发展起了很⼤的促进作⽤,并将对科技、经济、国防、教育、社会和⼈民⽣活产⽣极其深远的影响。
6-2 专家系统由哪些部分构成?各部分的作⽤为何?(1) 知识库(knowledge base)知识库⽤于存储某领域专家系统的专门知识,包括事实、可⾏操作与规则等。
专家系统发展综述

专家系统发展综述专家系统是领域的一个重要分支,自20世纪60年代初以来,已经经历了数十年的发展。
本文将对专家系统的发展历程、基本概念、应用领域以及未来趋势进行综述。
一、专家系统的发展历程专家系统的发展可以追溯到1965年,当时美国科学家Feigenbaum提出了基于规则的专家系统概念。
随后,在1970年,Feigenbaum和Stuart Russell合著的《专家系统》一书出版,标志着专家系统的正式诞生。
在此之后,专家系统经历了快速发展和广泛应用,逐渐成为了人工智能领域的重要支柱。
二、专家系统的基本概念专家系统是一种智能计算机程序,它利用计算机技术和人工智能理论,模拟人类专家解决问题的思维过程,为用户提供专业领域的咨询和服务。
通常情况下,专家系统包括知识库和推理机两个核心组成部分,其中知识库用于存储领域专业知识,推理机则用于根据已有知识进行推理和解决问题。
三、专家系统的应用领域1、医疗领域:医生专家系统可以帮助医生进行疾病诊断和治疗方案制定。
例如,基于医学知识的智能问诊系统,可以根据患者症状和病史,进行初步诊断和用药建议。
2、金融领域:金融专家系统可以帮助银行、证券公司等金融机构进行投资决策、风险管理等方面的工作。
例如,基于金融市场数据的智能投顾系统,可以根据市场行情和投资者风险偏好,制定个性化的投资策略。
3、交通领域:交通管理专家系统可以帮助交通管理部门进行交通流量规划和调度指挥。
例如,基于路网信息的智能交通管理系统,可以根据实时交通信息进行路况预测和交通调度。
4、教育领域:教育专家系统可以帮助教师进行教学辅助和学生学习辅导。
例如,基于学科知识的智能教育辅导系统,可以根据学生的学习需求和学科水平,提供个性化的学习资源和教学方案。
四、专家系统的未来趋势1、知识库的构建与更新:随着知识爆炸的时代到来,专家系统的知识库需要不断更新和优化,以适应领域发展的需要。
因此,如何高效地进行知识获取、整理、表达和更新将成为未来研究的重要方向。
第8章 专家系统

2.专家系统的知识表示和推理
2.1 知识表示
知识表示是一种用来在专家系统的知识库中对知识编码的 方法。
2.1.1 知识的类型
◆过程性知识。描述如何解决问题,提供如何做事的建议。
◆陈述性知识。描述问题的相关已知信息,包括断定为真或 假的简单语句和一组更完整地描述一些对象或概念的语句。 ◆启发式 知识。描述引导推理过程的规则。它是经验性的, 并且表示专家通过求解过去问题的经验编译知识。专家将获 取有关问题的基本知识,如基本法则、函数关系等,并且把 它编译成简单的启发信息,以辅助问题求解。 ◆结构知识。描述知识的结构。这类知识描述专家对此问题 的整体智力模型。
(2)从处理问题的方法看,专家系统则是靠知识和 推理来解决问题(不像传统软件系统使用固定的算法 来解决问题),所以,专家系统是基于知识的智能问 题求解系统。
(3)从系统的结构来看,专家系统则强调知识与推 理的分离,因而系统具有很好的灵活性和可扩充性。
(4)专家系统一般还具有解释功能,即在运行过程 中一方面能回答用户提出的问题,另一方面还能对最后 的输出(结论)或处理问题的过程作出解释。
◆例子 :VAX计算机结构设计专家系统、花布立体感图 案设计和花布印染专家系统、大规模集成电路设计专 家系统以及齿轮加工工艺设计专家系统等。
规划专家系统
◆任务 :寻找出某个能够达到给定目标的动作序列或步 骤。
◆特点 :所要规划的目标可能是动态的或静态的,需要 对未来动作做出预测,所涉及的问题可能很复杂,要 求系统能抓住重点,处理好各子目标间的关系和不确 定的数据信息,并通过实验性动作得出可行规划 。
站进行被修设备的调整、测量与试验。在这方面的实 例还比较少见。
教学专家系统
◆任务:根据学生的特点、弱点和基础知识,以最适当的 教案和教学方法对学生进行教学和辅导。
专家系统发展综述

2010,46(19)1引言专家系统(ES )是人工智能领域最活跃和最广泛的领域之一[1]。
自从1965年第一个专家系统Dendral 在美国斯坦福大学问世以来,经过40年的开发,各种专家系统已遍布各个专业领域。
目前,专家系统得到了更广泛的应用,并在应用开发中得到进一步发展。
调查显示,专家系统主要应用在商业和工业领域,约占60%。
在英国的调查也显示,24%的专家系统服务于财政部门。
这表明专家系统正以信息处理的主流兴起,代替传统的数据处理器。
按照发展阶段的不同,可以将ES 分为如下5个阶段:基于规则的、基于框架的、基于案例的、基于模型的、基于Web 的。
本文对ES 的发展进行了综述,分析了每个阶段ES 的特征。
目的在于,通过回顾ES 的发展,总结规律,并对发展方向进行预测。
2专家系统简介专家系统定义为:使用人类专家推理的计算机模型来处理现实世界中需要专家作出解释的复杂问题,并得出与专家相同的结论[2]。
简言之,专家系统可视作“知识库”和“推理机”的结合,如图1所示。
显然,知识库是专家的知识在计算机中的映射,推理机是利用知识进行推理的能力在计算机中的映射,构造专家系统的难点也在于这两个方面。
为了更好地建立知识库,兴起了“知识表示”、“知识获取”、“数据挖掘”等学科;为了更好地建立推理机,兴起了“机器推理”、“模糊推理”、专家系统发展综述张煜东,吴乐南,王水花ZHANG Yu-dong ,WU Le-nan ,WANG Shui-hua东南大学信息科学与工程学院,南京210096School of Information Science &Engineering ,Southeast University ,Nanjing 210096,China E-mail :zhangyudongnuaa@ZHANG Yu-dong ,WU Le-nan ,WANG Shui-hua.Survey on development of expert puter Engineering and Ap-plications ,2010,46(19):43-47.Abstract :To survey the development of expert system ,this paper partitions expert systems as 5stages :rule-based ,frame-based ,case-based ,ontology-based ,and web-based ,on the basis of development sequence.In each stage the concept of corresponding expert system is analyzed ,the typical algorithm is put forward ,and some representative examples are advanced.Then ,the development law is proposed ,which is advised to consist of principle development law and technique development law.The principle development obeys the negation of negation law while the technique development can be seen as the inter-disciplinary.In the end ,the further direction of research is predicted.Key words :expert system ;development rule ;survey ;negation of the negation 摘要:为了概括专家系统近期的发展,按照发展次序,将专家系统划分为基于规则、基于框架、基于案例、基于模型和基于网络的5个阶段。
基于知识的模型名词解释

基于知识的模型名词解释所谓基于知识的模型是指利用基于知识的软件平台构造的,用来解决系统开发中问题的专家系统。
如果把专家系统与人工神经网络比作原子核式的粒子计算机,那么这种基于知识的专家系统就相当于半导体电路。
专家系统能够有效地处理包括模糊、随机、不确定、非线性、高度耦合等复杂非线性关系,这是人工神经网络所做不到的。
知识表示是建立知识库的首要问题。
一般而言,知识库可分为三类:(1)具有固定结构的已知库;(2)自动生成的随机产生库;(3)将已有的数据和规则映射到自己构造的模型中。
模型优化是设计出基于知识的模型的核心。
知识库是专家系统运行的基础。
一般情况下,专家系统主要采用知识工程的方法获取和存储知识库,并采用推理机的方法求解问题。
专家系统的实际应用是从某一领域知识库中提取数据和事实规则并进行加工,以解决实际问题。
由于专家系统可以借助知识库中的数据和事实规则求解复杂的问题,因此它在管理、教育、医疗等领域有广泛的应用前景。
由于是不确定性规划问题,所以,从对大量不同的模型搜索过程中可以得到各种不同的求解方法。
1、确定型规划的模型有三个:(1)一次优化法,这类问题没有明显的二阶段或多阶段性,即先找出优化解,再找出最优解。
( 2)逐次优化法,该方法是根据以往的经验,通过观察和试验确定优化值,然后反复调整直到达到最优值。
(3)禁忌搜索法,这类方法是从以往的经验中找出一些模型的解来替代真正的解。
2、随机型规划的模型有四个:(1)动态规划法,主要是用前面提到的遗传算法和禁忌搜索算法求解该问题。
(2)灵敏度法,即先估计当前状态的状态变量S的概率密度函数,再根据相应的信息,求出状态S的值,这类问题的解常有多个,但每个解只反映一个状态,而且常不是最优的。
(3)混合模型法,即采用遗传算法、禁忌搜索算法和动态规划法三者之一的组合。
(4)模拟退火法,即先对某些未知参数,对某些初始值进行模拟退火,然后使用遗传算法和动态规划法进行优化求解。
第八章 基于模型的专家系统

• 因果顺序理论获取Ta2中的因果关系,其中 顺序意义表示数学从属性。但这个理论不会 获取Ta1中的因果关系。
⑤原始数据议程
系统可处理的时间标度集合指定推理关系 的原始推理议程。假设TS为这样的集合, Ec为当前实施的时间集合。当前时间标 度Tc以及相邻的时间标度T1和T2的一 般推理议程定义如下:
③因果时间标度 在表8.1中定义的13种因果时间标度可分为四 类,每一类具有特定建模原理的建模技术。 a)直接建模 描述使用数学微分方程的模型,这个模型直接 表示时间上的动态行为。 时间标度Ta3的预备条件就是完全满足的参数 集合,集合中每个参数具有满足所有田间约 束的值。 时间标度Ta2的预备条件为本质上同时满足方 程的集合。
• 所谓的Agent,在信息技术尤其是人工智能和计算机 领域,可以看作是能够通过传感器感知其环境,并 借助于执行器作用于该环境的任何事物。例如对于 人Agent,其传感器为眼睛耳朵和其他感官,其执行 器为手、腿、嘴和身体的其他部分。对于软件Agent, 则同过编码位的字符串进行感知和作用。 • 分布式人工智能的研究,其研究目标是要建立一个 由多个子系统构成的协作系统,各子系统间协同工 作对特定问题进行求解.分布式人工智能系统中的 分布性不仅指知识的垂直和水平划分,还包括知识 的复制和传播。对知识的划分和组织的原因在于有 限合理性原则,即任何主体单个地处理能力是有限 的,不可能同时处理问题的所有因素,因此对问题 进行分解和划分是开发问题求解体系结构中较快捷 的方法。
(4)实体论工程
在专家系统的领域,研究者都期望实体论 的概念在实现知识共享和重用方面起到 重要的作用。 实体论 哲学领域含义为存在论。在人工 智能领域,其定义为 概念化的清楚规范。 对知识库来说,实体论定义为用来创建 人工系统的原始词表/概念的理论/系统。 对于不同层次,实体论可以用于以下几个 主要方面:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②理论基础 a)在因果时间实体论中,推理机产生的时间上的行为
根据时间及其连接的术语表示,类似于历史模型。
b)下面介绍变化传播的时间间隔。 因果时间实体论对这些时间间隔进行归类,成为时间
标度。因果时间标度表示效果传播的时间间隔概念。
a)必需的时间标度 此系统时间用来基于设备实体论获取因果关系。
目标系统是有关流的系统。
表8.2显示要生成的因果关系及其时间标度:
表8.3中所显示的是如何处理表8.2中必需的原 始时间标度的设计决定结果:
而且,推理机有一些假设:假定目标系统有一 个没有任何干扰的正常均衡状态;推理机有 必要推断最初的改变和最后的响应,并跳过 瞬间行为;最后,假定所有约束都是连续的。
传统的推理进程可由表8.2中的时间标度解释。 推理结果由一套时间E和一套连接L组成,其
中每个部分都由相关的时间标度。
⑥反馈和因果时间标度
参数事件的结果最终传播到由此参数本身 的现象成为反馈。
反馈启发信息:
(2)推理系统设计 设计推理系统,包括如何根据必需的时间标度
决定建模议程,模型的要素,推理过程。使 用因果推理系统为例。
根据因果时间标度,可以明确制定模型或因 果推理机的临时含义,包括:
a)因果关系的临时含义 b)推理机的临时性能 c)一般因果推理议程 d)反馈的复杂分析 首先,推理机所生成的因果关系可以归类为
因果时间标度之一。 其次,因果时间标度可以指定推理机在因果
排序方面的性能,成为因果时间解。
第三,一般原始推理议程可以描述传统推理方法的 必要部分。
一般来说,推理系统的时间决定由一套原始时间标度 的组合指定。
表8.2显示一些传统的定性推理系统课处理的时间标 度:
• 因果顺序理论获取Ta2中的因果关系,其中 顺序意义表示数学从属性。但这个理论不会 获取Ta1中的因果关系。
⑤原始数据议程
系统可处理的时间标度集合指定推理关系 的原始推理议程。假设TS为这样的集合, Ec为当前实施的时间集合。当前时间标 度Tc以及相邻的时间标度T1和T2的一 般推理议程定义如下:
为了澄清因果关系的物理意义,介绍每个时 间标度的物理意义的两个方面:
间隔意义-时间标度上时间间隔存在的物理理由
顺序意义-时间标度上存在时间顺序的理由
③因果时间标度
在表8.1中定义的13种因果时间标度可分为四 类,每一类具有特定建模原理的建模技术。
a)直接建模
描述使用数学微分方程的模型,这个模型直接 表示时间上的动态行为。
推理系统产生的因果关系的即时含义, 就是说实际物理行为中因果关系的时间 间隔有多长,往往被忽视。
因而,实体论的目标在于揭示因果时间 的结构,以暗示定性模型和因果推理机。
实体论在定性模型中定义13种成为因果时间标 度的一般时间概念,如表所示:
• 因果时间标度生成以前框架中描述 的时间概念。与建模技术相关的因 果时间标度表示临时粒度和/或实体 论观点。
(1)什么是基于模型的专家系统
一个知识系统中的知识库是由各种模型组合而 成的,而这些模型又往往是定性的模型。由 于模型的建立与知识密切相关,所以有关模 型的获取、表达、使用就包括了知识的获取、 表达和使用。
用这种观点看待专家系统的设计,可以认为一 个专家系统是由一些原理与运行方式不同的 模型综合而成。这样的专家系统称为基于模 型的专家系统。
No Image
c)和流相关的组件模型
No Image
No Image
第八章 基于模型的 专家系统
内容概要
(1)基于模型专家系统的提出 什么是基于模型的专家系统 实体论工程 (2)基于神经网络的专家系统 一般专家系统存在的问题及神经网络的优势 基于神经网络的专家系统的结构 (3)基于模型专家系统的设计 因果时间实体论 推理系统的设计 可变系统的实体论
一、基于模型专家系统的提出
领域实体论是指目标领域特定的清楚范围。领 域实体论起到两个作用,一是提取获取领域 模型表示的词表,并展示隐含的假定和决策; 一是通过表示要解决的问题类和推理条件定 义推理系统的性能规范。这样的清楚规范适 用于模型的复用性。
人工智能发展史中由两类研究,面向形式的研 究处于主导;面向内容的则有一定困难。
b)必需的模型元素
c)组件的因果关系
当组件有其自己的因果特征时,其方法就是清 晰的描述组件中每个参数的内在因果属性, 为因果规范。为了帮助不从上下文中捕获因 果属性,要在组件内标识以下三类因果关系
d)模型表示
系统的整体结构由组件模型和设备实体论基础 上的连接组合而成。组件模型由以下几部分
参数的因果规范表示通过以下两个标记T1<T2,定义如下:
• 也即T1表示比T2更快的事件。这种关系是 传递的。其关系如图:
c)T1的便捷条件或T2的预备条件:在短一些 的时间标度T1上的推理过程中,当某个条件 变为真时,推理就切换到相邻的更长时间标 度T2.
从物理观点来看,推理机生成的关系l不会总 是合理的。连接l可能表示物理上不合理的操 作顺序。
时间标度Ta3的预备条件就是完全满足的参数 集合,集合中每个参数具有满足所有田间约 束的值。
时间标度Ta2的预备条件为本质上同时满足方 程的集合。
例如,介绍由直接模型y=x-z,dz/dt=y建模的 实例系统。
当模型设计器根据微分方程的术语描述现象时, 模型原理就是捕获Ta3的转移行为的动态变 化以求其均衡。一般来说,这意味着达到均 衡的时间间隔比其他现象更长。
三、基于模型专家系统的设计
基于模型专家系统的设计一般建立在因果 模型基础上,因果时间实体论是一种常 用的因果模型理论。本部分从以下几个 方面介绍基于模型的专家系统的设计:
因果时间实体论
推理系统设计
可变系统的实体论
(1)因果时间实体论
①动机和目标
人类对因果关系的识别是建立在因果和 结果之间的时间延迟(间隔)的识别基 础之上。
• 所谓的Agent,在信息技术尤其是人工智能和计算机 领域,可以看作是能够通过传感器感知其环境,并 借助于执行器作用于该环境的任何事物。例如对于 人Agent,其传感器为眼睛耳朵和其他感官,其执行 器为手、腿、嘴和身体的其他部分。对于软件Agent, 则同过编码位的字符串进行感知和作用。
• 分布式人工智能的研究,其研究目标是要建立一个 由多个子系统构成的协作系统,各子系统间协同工 作对特定问题进行求解.分布式人工智能系统中的 分布性不仅指知识的垂直和水平划分,还包括知识 的复制和传播。对知识的划分和组织的原因在于有 限合理性原则,即任何主体单个地处理能力是有限 的,不可能同时处理问题的所有因素,因此对问题 进行分解和划分是开发问题求解体系结构中较快捷 的方法。
(2)当前许多专家系统中就知识工程存 在的主要缺点为:
缺乏知识的重用性和共享性。缺乏知识 的重用和共享主要是因为对知识的假设 和性能不够清楚。
(3)基于模型的优点和必要性
采用各种模型设计专家系统,一方面, 它增加了系统的功能,提高了性能 的指标;另一方面可独立地深入研 究各种模型及其相关问题,把获得 的结果用于改进系统设计。因而为 了使知识能够重用和共享,模型的 假定则是必不可少的。
No Image
为了处理全局现象,描述了本地组件上的全局 约束。这样的全局约束由物理实体的一般属 性证明。
推理机可通过现象的时间标度区分全局同时发 生的现象。表示此现象的约束称为全局同时 发生约束,其特点就是同时发生的。
e)推理 推理方法是建立在上述原始推理议程上的。给
定初始事件,启动最小时间
No Image
(3)可变系统的实体论
a)流的因果关系
整体连续性的概念用来捕获不可压缩的流的因 果关系。组件的整体连续性显示进入此组件 的全部流是否不断流出。
因果关系由组件内的内部时间组成,并且因果 关系影响唯一的定性值。这种类型的关系成 为本地确定性。
b)时间标度和全局约束
对于形成循环结构的全局连续流子系统,一般 存在以下全局约束:
其结构图如图所示:
(5)神经网络专家系统的相关问题
a)神经网络的知识表示是一种隐式表示
b)神经网络通过实例学习实现知识自动获取。
c)神经网络的推理是个正向非线性数值计算过 程,同时也是一种并行推理机制。它需要解 释器对输出模式进行解释。
d)一个神经网络专家系统可以用加权有向图、 或领域权矩阵表示,因此可以把同一知识领 域的几个独立的专家系统组合成更大的神经 网络专家系统。而基于规则的专家系统,其 子系统的规则越多,组合的大系统的知识库 越不可靠。
(2)神经网络与之相对的优点
a)固有的并行性 b)分布式联想存储 c)较好的容错性 d)自适应能力
e)有通过实例学习的能力 f )便于硬件实现
(3)将神经网络与基于逻辑的心理模型 结合是值得进一步研究的课题
a)神经网络支持专家系统 b)专家系统支持神经网络 c)协同式的神经网络专家系统
(4)基于神经网络专家系统的结构
(4)实体论工程
在专家系统的领域,研究者都期望实体论 的概念在实现知识共享和重用方面起到 重要的作用。
实体论 哲学领域含义为存在论。在人工 智能领域,其定义为 概念化的清楚规范。 对知识库来说,实体论定义为用来创建 人工系统的原始词表/概念的理论/系统。
对于不同层次,实体论可以用于以下几个 主要方面:
b)时间约束建模
定性归类为对现象建模的时间约束。为了表示 时间约束的差别,这种建模技术讲目标系统 分为参数集合,其中Ta4的时间间隔彼此十 分不同。
c)组件结构模型
引入组件的概念,在于反应目标系统的物理结 构的因果关系。按照基于设备实体论的组件 结构,最小粒度的设备成为组件。
下图显示本地组件c1和c2中因果关系实例:
尽管Tc2和Tc3有间隔意义,但仅有连接信息还不能 给予它们顺序意义。另一方面,Tc1不可能有物理 意义。这种建模技术暗示一种建模原理,即因果关 系应反映功能组件和结构中的媒介流。