牺牲阳极阴极保护接地电阻改善方案
储罐内壁牺牲阳极阴极保护设计方案及说明书_2019

河南汇龙合金材料有限公司编制刘珍技术部储罐内壁牺牲阳极阴极保护设计目前,防腐涂层与阴极保护系统相结合的防腐方法已在储罐防护中得到了广泛应用。
然而,在一些储罐进行大修时发现,罐内底板虽然采用了牺牲阳极阴极保护,但罐内底板仍然产生了严重的腐蚀,究其原因主要是因为牺牲阳极设计重量不足、罐底周边牺牲阳极安装量不足等。
储罐内壁阴极保护设计过程中,保护电流的需求量取决于储罐内保护面积的大小和内涂层质量的优劣。
为最大程度的降低保护电流的需求,罐内金属表面均应涂有有效的防腐涂层,包括耐蚀合金的内表面。
对于原油储罐内阴极保护系统设计,只有罐内沉积水区域内金属表面(带或不带涂层)接触水相时才应予以考虑。
进行储罐内壁阴极保护设计之前,应收集设计时所需的必要数据,包括:①在正常操作情况下的电解质特性:S、CO),电阻率、pH值、温度(平成分(溶解气体、O、H2均和变化)、压力、水位(最小、最大和平均水位),工作时的最大流速;②阴极保护系统的设计寿命;③罐内涂层类型、涂层厚度等④根据电解质的资料,选择裸钢的保护电流密度。
河南汇龙合金材料有限公司编制刘珍技术部储罐内阴极保护系统设计过程中,牺牲阳极材料的选择至关重要,具体设计中应当考虑以下2个主要方面:①与电解液(成分、温度)的兼容性;②可用的空间和在有限区域内的电流分布。
活化铝铟合金阳极、锌合金阳极、镁阳极应根据不同的条件和设备选用。
根据挪威船级社规范DNVRP IM01-2005,铝的效率将随温度的变化而改变。
当储罐服役温度超过5O℃时,必须选用铝基合金牺牲阳极。
若为饮用水,应使用镁合金牺牲阳极。
如果电解液为污水且S、可适用铝合金。
但硫化氢溶解量每增加20m g/I,含有H2铝合金的工作效率将减少。
对于容积较小的容器,应采用小梯形或扁平截面的镶装式阳极。
对于容积较大的储罐,阳极类型可以是镶装式或底部截面为梯形或半圆柱,或者采用带有梯形或圆柱截面的悬挂型阳极。
当采用镶装式阳极时,其面对罐或容器表面的阳极表面应涂以适当的涂层。
牺牲阳极阴极保护设计说明

牺牲阳极施工图设计说明(五)阴极保护1.主要设计及施工规范《钢质管道外腐蚀控制规范》GB/T21447-2018《埋地钢质管道阴极保护技术规范》GB/T21448-2017《镁合金牺牲阳极》GB/T17731-2015《埋地钢质管道阴极保护参数测量方法》GB/T21246-20232.设计概况本工程对消耗油库至外场供油干管和同油干管进行牺牲阳极阴极保护。
供油干管与回油干管平行敷设,采用联合阴极保护方式,被保护管道两端设绝缘接头。
被保护管道相关数据见下表:3.设计参数土壤电阻率:30Ω∙m覆盖层电阻率:≥10000Ω∙m2设计使用年限:20年管道最小保护电流密度:0.05mA∕m2管道自然电位:-0.55V(CSE)管道最小保护电位:-0∙85V(CSE)4.设计内容及技术参数4.1本工程设5组镁合金牺牲阳极,每组设3支阳极块,每组间距400米。
4.2设测试桩5组,与牺牲阳极结合设置。
5.材料的选用及技术要求5.1本工程选用镁合金牺牲阳极,牌号:AZ63B,质量符合《镁合金牺牲阳极》GB/T17731-2015中的要求。
阳极形状选用梯形。
牺牲阳极应具有完整的质量证明文件,阳极上应标记材料类型,阳极质量和炉号。
阳极电化学性能、规格尺寸如下表:5.2牺牲阳极填包料由石膏粉、膨润土和工艺硫酸钠组成,它们的质量百分比为75:20:5o填包料预包装,袋子应采用麻袋或棉质布袋,不应采用化纤类包装袋。
填料厚度应均匀密实,各个方向填料厚度不小于200mmO5.3阴极保护电缆采用铜芯电缆,型号为:YJV22-1KV∕1X10mm26.主要施工技术要求6.1阳极使用前应对表面进行处理,清除表面氧化膜和油污,使其呈金属光泽。
6.2阳极采用立式埋地敷设方式,阳极与被保护管道间距3米,成组布置阳极间距3米,阳极覆土厚度不小于15米。
6.3牺牲阳极应埋设在冻土层以下,并尽量敷设在土壤电阻率低的位置。
阳极与管道之间不应存在其他金属构筑物。
输气输油输水钢制金属管道阴极保护牺牲阳极保护措施

输气输油输水钢制金属管道阴极保护牺牲阳极保护措施
输气输油输水钢制金属管道阴极保护牺牲阳极保护措施
钢制管道阴极保护牺牲阳极保护系统介绍
钢质管道在土壤环境中的腐蚀是自发进行的,如果任其发展,最终将导致管道穿孔破裂,造成输送介质漏失、污染环境。
对于油气管道,则还有可能引发火灾、爆炸等事故。
因此为了埋地钢质管道能够长期安全运营,必须对其进行防腐蚀保护
管道的腐蚀控制一般采取防腐层加阴极保护的联合措施,这一点基本上得到了管道界的认同,在国内现有的45865.89km(2003年底的统计)的长输管道、油田的集输管道均采用了阴极保护;国内的城镇燃气管道中,城市的干线管道及配气管网多数施加了阴极保护;城市的钢质供水管道对阴极保护的要求不高,但重要的干线供水管道近些年来也都施加了阴极保护。
为了防止管道腐蚀,还必须对管道施加阴极保护技术?通过给管道施加阴极电流,主动为腐蚀环境提供足够的电子,来阻止管道金属腐蚀(失去电子),这个过程叫做阴极极化。
在这里,阴极保护的作用只是对涂层缺陷处的金属提供附加保护,因为如果没有涂层保护所建立的第一道防线,管道阴极保护所需要的电流将是非常巨大的,保护系统很难满足要求。
因此说阴极保护是埋地管道腐蚀控制必不可少的第二道防线。
管道牺牲阳极保护方式是比较方便、易管理、施工简单、易维护的一种有效防止金属腐蚀的措施。
牺牲阳极保护设计与施工的经验建议

随着城市建设事业的飞速发展,埋地管道的数量剧增。
这些管道多采用碳钢材质,为了延长管道的使用寿命,采取相应的防护措施尤为重要,其中涂层防腐和牺牲阳极保护联合防护取得了良好的效果。
本文结合一些建设案例,针对牺牲阳极保护设计和施工中的问题提出一些建议。
管道防腐通常采用涂层加牺牲阳极保护,常规阴极保护有两种方法:外加电流法和牺牲阳极法。
土壤电阻率约20Ω·m,保护电流密度为0.2mA/m2,自然电位为-0.4~-0.6V,管道保护电位(参比电极Cu/Cu-SO4)低于-0.95V。
经过技术经济比较,牺牲阳极保护采用牺牲阳极法较适宜,该法施工简单,安全可靠,对邻近金属管道电干扰少,不用专人管理,可延长管道寿命1倍以上。
②带状镁阳极的使用带状镁阳极由纯镁或镁锰合金冷轧压制而成,开路电位(参比电极Cu/CuSO4)为-1.7V,单位长度质量为0.37kg/m,宜在电阻率≥100Ω·m的环境中使用。
镁带在电阻率为50Ω·m的土壤中输出电流为10mA/m,在电阻率为150Ω·m的淡水中输出电流为3mA/m。
同等质量带状镁阳极比锭状镁阳极表面积大很多,如11kg 镁锭表面积为0.27m2,而11 kg镁带长度为30m,表面积为1.9m2,是前者的7倍。
阳极输出电流与表面积成正比,与电阻率成反比。
阳极质量决定阳极寿命。
设计上应考虑当地土壤电阻率,在穿越段或套管内管道上缠绕镁带要考虑它的使用寿命应该与管道寿命相当。
如果设计寿命为20年,而当地土壤电阻率较低,就不宜采用镁带,而应采用锭状镁阳极。
常规设计穿越段或套管内管道通常采用镁带缠绕安装方法。
绍兴天然气利用工程中采用的带状镁阳极断面尺寸为(19±0.5)mm×(9.5±0.5)mm,每根钢管缠绕2条带状镁阳极,缠绕方式为对称分布于管道两侧,每隔1~2m设一处捆绑带,其材料为尼龙带。
电缆与镁阳极采用灌锡焊。
牺牲阳极阴极保护接地故障原因在于阳极接地电阻与阳极地床的设计与施工质量密切相关_2020

阴极保护接地故障原因在于阳极接地电阻与阳极地床的设计与施工质量密切相关管道防腐通常采用涂层加阴极保护,其主要分为:牺牲阳极阴极保护和外加电流阴极保护法。
其工作机理是给金属补充大量的电子,使被保护金属整体处于电子过剩的状态,使金属表面各点达到同一负电位,金属原子不容易失去电子而变成离子溶入溶液。
牺牲阳极法是利用电位低的金属或合金(如镁合金、锌合金、铝合金等)作为阳极,通过介质与被保护金属相连接形成一个电池效应。
在阴极(被保护结构)得到保护的同时,阳极不断地被消耗,故称为牺牲阳极。
该方式简便易行,不需要外加电源,很少产生腐蚀干扰,广泛应用于保护小型或处于低土壤电阻率环境下的金属结构。
外加强制电流法则是给被保护结构加一阴极电流,而给辅助阳极加一阳极电流,构成一个腐蚀电池。
该方式主要用于保护大型或处于高土壤电阻率土壤中的金属结构。
漏电故障通常在阴极保护站投入运行,或牺牲阳极保护投产一段时间后,出现了在规定的通电点电位下,输出电流增大,管道保护距离却缩短的现象,或者在牺牲阳极系统中,牺牲阳极组的输出电流量增大,其值已超过管道的保护电流需要,但保护电位仍达不到规定指标的现象。
其原因主要是接地故障,阴极保护电源的过负荷和阴极保护引起的干扰。
当判断阳极地床连接电缆断路时,采用了以下方式:测输出电流,将恒电位仪开启,在恒电位仪阳极输出端串上一电流表,如果电流为零,则说明有断路现象;将恒电位仪机后阳极输出线断开,接入临时地床或其它接地装置,若有输出电压、电流,则可断定阳极地床连接线断路。
阴极保护工程接地故障原因在于阳极接地电阻与阳极地床的设计与施工质量密切相关。
当阳极腐蚀严重,表面溶解不均匀将造成电流障碍。
另外施工不当则会造成接头处的腐蚀与断路,使阴极保护电流断路而无法保护管道。
管道外防腐绝缘层与的联合使用是最经济、最合理的防蚀措施。
由于防腐绝缘层的各种材料,不同程度具备吸水和透气性,在土壤溶液作用下会逐步吸水老化。
燃气管道牺牲阳极保护

燃气管道牺牲阳极保护牺牲阳极法是最早应用的电化学保护法。
它简单易行,又不干扰邻近的设施。
牺牲阳极还是抗干扰腐蚀的一种手段,可用来排流、防雷及防静电接地。
与强制电流保护法相比,牺牲阳极法具有独特的优点和功能,因而同样受到人们的重视。
近年来,牺牲阳极技术在我国得到了推广和发展。
在生产上也向标准化、系列化方向发展。
并在油、气管道、海船及海上结构物的防护上得到了成功的应用。
一、牺牲阳极保护原理依据电化学原理,把不同电极电位的两种金属置于电解质体系内,当有导线连接时就有电流流动,这时,电极电位较负的金属为阳极、利用两金属的电极电位差作阴极保护的电流源。
这就是牺牲阳极法的基本原理。
见图10-54。
二、牺牲阳极材料由于牺牲阳极法是通过阳极自身的消耗,给被保护金属体提供保护电流。
因此,对牺牲阳极材料就产生了性能要求。
图10-54 牺牲阳极装配示意图1.要有足够负的电位,在长期放电过程中很少极化。
2.腐蚀产物应不粘附于阳极表面,疏松易脱落,不可形成高电阻硬壳,且无污染。
3.自腐蚀小,电流效率高。
4.单位重量发生的电流量大,且输出电流均匀。
5.有较好的力学性能,价格便宜,来源广。
常用的牺牲阳极有镁及镁合金、锌及锌合金以及铝合金三大类。
它们的电化学性能见表10-59。
牺牲阳极的电化学性能取决于材料的成分和杂质含量。
在牺牲阳极的标准规范中都有规定。
表10-59 牺牲阳极的电化学性能··a17.2510.07.924.68三、牺牲阳极种类及规格型号(一)镁合金牺牲阳极镁是比较活泼的金属,表面不易极化,电极电位比较负,所以是理想的牺牲了极材料。
但是,钝镁的电流效率不高,造价太高,所以一般都使用镁合金做牺牲阳极材料。
目前世界上流行的镁阳极成分很多,但归纳起来只有三个系列:高纯镁系、镁锰系和镁铝锌锰系。
其典型的代表成分见表10-60。
这三个系列中,Mg-6 Al-3 Zn-0.15Mn 是使用最广泛的,也是国内定型生产的商品化镁阳极,用于土壤和淡水中性能最正确。
牺牲阳极保护施工方案4646

牺牲阳极保护施工方案..doc山西中南部铁路通道ZNTJ-17标输油管道电磁防护施工方案【牺牲阳极保护】湖北江汉良机石化集团成都有限公司2012.5.15- 1 -山西中南部铁路通道ZNTJ-17标输油管道电磁防护施工方案【牺牲阳极保护】编制人: 王万志技术负责人: 王万志审查人: 朱北批准人: 曹仁斌湖北江汉良机石化集团成都有限公司2012.5.15- 2 -一工程简介 ..................................................................... . (5)1.概况 ..................................................................... (5)1.2 编制依据 ..................................................................... ............................... 5 二牺牲阳极法 ..................................................................... . (5)2.1 选用牺牲阳极法 ..................................................................... . (5)2.2 牺牲阳极保护原理 ..................................................................... .. (5)2.3 牺牲阳极法作用 ..................................................................... .. (6)2.4.牺牲阳极的种类: .................................................................... .. (6)2.5执行标准: .................................................................... .. (8)2.6 牺牲阳极的施工 ..................................................................... ................... 8 三阳极的选择 ............................................................................................... 9 四、牺牲阳极法的施工 ..................................................................... . (9)4.1锌阳极安装 ..................................................................... (9)4.2阳极埋设技术措施 ..................................................................... .. (10)4.3阳极电缆与管道连接 ..................................................................... ............ 11 五技术资料收集整理 ..................................................................... .................... 14 六阴极保护系统的调运 ..................................................................... . (17)6.1 牺牲阳极保护测试条件 ..................................................................... .. (17)6 2 牺牲阳极投入运行后应进行一下项目的测试 (17)6.3 牺牲阳极后期维护...................................................................... (17)6.4质量检验标准 ..................................................................... (17)6.5附工程材料各类表格及管道穿越示意图 ................................................ 17 七管理职责...................................................................... .. (25)7.1、项目经理职责 ..................................................................... (25)7.2、总工程师职责 ..................................................................... (25)7.3、质、技部职责 ..................................................................... (25)7.4、工程队长职责 ..................................................................... (26)7.5、协调部职责 ..................................................................... . (26)7.6、计划财务部职责 ..................................................................... .. (27)7.7、物资装备部职责 ..................................................................... .. (27)7.8、QHSE管理部职责...................................................................... . (27)7.9、后勤部职责 ..................................................................... ...................... 27 八质量责任 ..................................................................... .. (27)8.1、项目经理责任 ..................................................................... (27)8.2、项目副经理责任 ..................................................................... .. (28)8.3、项目总工程师责任 ..................................................................... .. (28)8.4、项目总经济师责任 ..................................................................... .. (28)8.5、项目办公室责任 ..................................................................... .. (28)8.6、工程管理部责任 ..................................................................... .. (28)8.7、经营管理部责任 ..................................................................... .. (29)8.8、 QHSE控制部责任 ..................................................................... (29)8.9、技术管理部责任 ..................................................................... .. (29)8.10、施工作业操作者责任 ..................................................................... ..... 29 九 HSE措施 ..................................................................... .. (30)9.1 HSE 组织机构图 ..................................................................... .. (30)- 3 -9.2 施工安全定义 ..................................................................... .................... 30 9.3 HSE承诺: .................................................................... ........................ 31 9.4 HSE方针: .................................................................... ...................... 31 9.5 HSE目标: .................................................................... . (31)十生产安全事故应急救援预案...................................................................... ...... 31 10.1 应急管理 ..................................................................... ........................ 31 10.2组建现场应急组织 ..................................................................... ............ 32 10.3应急原则及范围 ..................................................................... ............... 32 10.4应急流程表 ..................................................................... ........................ 32 10.5 信息报告程序 ..................................................................... .................. 33 10.6. 应急处置 ..................................................................... ........................ 34 10.7 应急物资与装备保障 ..................................................................... . (35)十一应急预案 ..................................................................... ................................ 36 11.1 “火灾爆炸”事件应急预案 (36)11.2 “触电”事件应急预案 ..................................................................... .... 36 11.3 高处坠落应急预案 ..................................................................... . (36)- 4 -一工程简介1.概况1.1 新建山西中南部铁路工程采用交流不平衡的供电方式,在这种供电方式下,电力机车的回归电流由钢轨和大地流回变电所。
电厂接地网牺牲阳极阴极保护施工安装

电厂接地网牺牲阳极阴极保护施工安装河南汇龙合金材料有限公司2018年5月技术部刘珍1. 接地网阴极保护概述接地装置是化工厂、石油油集输站、石油联合站、原油储备库、天然气分输站、发电厂、变电站、通信站等站区内确保工作接地、防雷接地和保护接地的必备设施。
出于经济方面的考虑,接地装置一般采用镀锌碳钢(扁钢、圆钢)、锌包钢(接地线、接地极)、铜包钢(接地线、接地极)、高硅铸铁等组成立体接地网。
由于长期处于地下恶劣的运行环境中,土壤中的自然腐蚀,同时还要承受巨大的排流与杂散电流电解腐蚀,导致接地网投入运行一段时间后,接地网因腐蚀导致接地不良,是电网系统问题与事故的主要来源之一。
因此,确保接地网免受腐蚀是电网稳定安全运行的前提,在各种接地网防护措施中,阴极保护是一项科学、可行的方法,它既可以为接地网提供源源不断的保护电流,又可以作为接地体使用,尤其对于业已运行的接地网的保护,有其独特的优点。
2. 接地网阴极保护原理土壤是一个由气、液、固三相物质组成的复杂体系,其三相组成随温度、气候、季节等因素的变化而改变,由此导致土壤的电阻率、氧化还原电位、pH 值、含水率、透气性等特性改变;同时土壤中伴有一系列微生物的新陈代谢活动,这些都是引起接地网腐蚀的因素。
评定土壤的腐蚀性是非常复杂的。
牺牲阳极体通过自身腐蚀产生的电流对受保护金属设施(如变电站的接地网)进行阴极极化,使之变成一个大阴极,从而防止金属腐蚀,此即所谓的阴极保护。
牺牲阳极法简单易行,无须维护,它是在被保护的接地网上连接电位更负、更容易腐蚀的金属或合金(如镁及镁合金阳极),靠阳极的腐蚀溶解产生电流达到保护阴极(接地网)的目的。
牺牲阳极阴极保护是接地网阴极保护中最常用的保护方式。
3 .接地网阴极保护设计要点(1)接地网所在地土壤电阻率的测定测定不同时间、气候条件下的土壤电阻率,得到电阻率的变化范围。
(2)根据土壤电阻率,决定选用牺牲阳极的类型(3)确定接地网最小保护电流密度(mA/m2)(4)根据接地网所用接地材料的外形尺寸、总长计算受保护的总面积(m2),按选定的保护电流密度计算所需的阴极保护总电流(A)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11111 .......... 牺牲阳极法阴极保护的设计计算 实施阴极保护的金属集购物上的点位和电流分布函数是复杂的,它不仅与被保护金属结构物材料、牺牲阳极材料、环境介质条件直接相关,而且还与结构物的几何构型密切有关。从原理上考虑,牺牲样激发和外加电流阴极保护的点位、电流分布的计算式基本相同的,它们都是保护电流在复杂电阻体系上产生的电压降结果。绵延分布的管线是几何构型最简单的一种结构物,它是一维延伸的,在数学上容易处理。许多复杂几何构型物往往可以看作为若干一维节段的组合和叠加。所以,阴极保护的设计计算常以埋地管线作为计算对象。 牺牲阳极法阴极保护的设计计算一般包括以下几个步骤。 ⑴确定最小保护电流密度i 对被保护结构物的最小保护电流密度确定,首选亏电实验值。可在现场安装一临时店员和接地极进行馈电试验,再根据达到保护电位时所对应的极化电流强度,推算出最小保护电流密度的取值范围。若无馈电实验值,一般可根据文献资料和经验选取。也可采用下式进行理论计算: I=△EO/RU 式中i—保护电流密度,mA/m2 △E—最小保护电位对结构物自腐蚀电位的负偏移值(极化电位,mV),△EO通常取300mV,它是最小保护电位-850mV(SCE)与钢铁在普通土壤中自腐蚀电位【一般为-550 mV(SCE)】的差值; R—结构物表面防腐层的楼电阻率,Ω•m2。 保护电流密度是阴极保护实践和设计十分重要的参数。但它受到被保护结构物/环境介质体系许多因素的影响,如结构物材料种类,防腐层质量,介质的性质、组成、分布和变化,甚至温度、气候或微生物存在与活动等。它的数值往往变化很大,即使在阴极保护运行过程中也是变化的。因此,要求准确的计算几乎是不可能的,但它仍是一个重要的参数值。对此,馈电试验或经验选取则是很有效的。 ⑵计算所需总保护电流强度I 根据被保护结构物的几何尺寸计算出需被被保护的总面积S(m),就可由保护电流密度i按下式计算所需总保护电流强度It(A): It=S•i 对于埋地管道则为: It=πDL•i 式中D—被保护管道外径,m; L—管道长度,m。 ⑶计算牺牲阳极接界电阻Ra 牺牲阳极的接界电阻是决定牺牲阳极输出电流的关键影响因素之一。它可通过实验测量或计算获得。经过一系列推导可获得接界电阻的计算公式,文献资料报道的阳极接界电阻的计算公式很多,现推荐以下一些计算公式: ① 在土壤环境中的牺牲阳极接界电阻,即接地电阻的计算公式 a. 单支立式圆柱形牺牲阳极无填料(即填包料,下同)时,阳极接地电阻的计算公式为: RV1=p/2πL(In2L/d+1/2ln〔4t+L〕/〔4t-L〕) b. 单支立式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: RV2= p/2πLa(In2La/D+1/2ln〔4t+L〕/〔4t-L〕+pa/p×In×D/d) c. 但是水平式圆柱形牺牲阳极有填料时,阳极接地电阻的计算公式为: Rh= p/2πLa(In2La/D+In×La/2t+pa/p×In×D/d) 以上三式中,La>>d,t>>La/4。 11111 .......... 式中R和R—分别为立式和水平式的阳极接地电阻(R无填料,Rv2有填料),Ω; p和pa—分别为土壤和阳极填料的电阻率,Ω•m; L和L—分别为阳极和阳极填料柱的长度,m; d和D—分别为阳极和填料的直径,m; t—阳极中心至地表面的距离,m。 对土壤中金属结构物进行牺牲阳极保护时,为提供足够的保护电流及施工安装方面的考虑,常采用多支阳极并联安装方式。对一个阳极组的总接地电阻R(Ω)可按下式计算: Rt=η×R/n 式中n—并联阳极支书; η—并联阳极修正系数。 多支阳极并联的总结地电阻一般比里理论计算值大,这时阳极直接按屏蔽作用的结果。可按照实际情况根据阳极之间的距离、并联支数及阳极长度在图4-23中火表4-29中选取修正系数η。
② 在水环境中的牺牲阳极接界电阻,即接水电阻的计算公式 长条形阳极的接水电阻R(Ω)计算公式为: Ra= p/2Πl(In×4L/r-1) 式中L—阳极的长度,cm; P—水介质的电阻率,Ω•cm; R—阳极的等效半径,cm,S=(长+宽)/2,长≥2×宽。 b. 板状阳极的接水电阻RA(Ω)计算公式为: 11111 .......... RA=p/2S c. 镯式阳极的接水电阻RA(Ω)计算公式为: RA=0.315p/ A为阳极横截面积,cm2。 式中,S为阳极两边的平均长度,cm;且式中,A为阳极表面积,cm。 ⑷计算单支阳极的输出电流I 对牺牲阳极-土壤-被保护结构物(阴极)构成的点回路,根据欧姆定律可按下式计算单支阳极的输出电流Ia: Ia=(EC-ΔEC)-(Ea+ΔEa)/Ra+Rc+Rw≈ΔE/Ra 式中 Ia—单支阳极输出电流,A; Ec和Ea—分别为阴极和阳极的开路电位,V; △ Ec和△Ea—分别为阴极和阳极的极化电位值,v; Rc和Ra—分贝为阴极和阳极的接界电阻(接地或接水电阻),Ω; Rw—导线电阻,Ω; △E—阴极和阳极工作时的有效电位差,在这里就是所谓驱动电压,V。 当R合R可忽略不计时,可获得相应的近似式,见式(4-19)。显然,单支阳极的输出电流主要取决于阳极的接界电阻R。 也可根据经验公式来计算单支阳极输出电流,由此可省却一系列复杂的计算,下面列出美国HARCO防腐蚀公司对埋地镁阳极和锌阳极总结地经验公式: Img=150000Fy/p Izn=150000Fy/p 式中Img和Izn —分别为单支镁阳极和单支锌阳极的输出电流,mA; P—土壤电阻率,Ω•cm; f—质量系数,可查表4-30获得; Y—被保护技能书对地(水)电位修正系数,可查表4-31获得。 当被保护金属结构物表面敷有良好的防腐层时,阳极输出电流将显著小于裸金属条件下的输出电流。此时,是(4-20)和(4-21)的系数可考虑分别减小20%。 11111
.......... ⑸计算阳极组的总输出电流I 为了降低阳极的接地电阻,对管道提供足够保护电流以及施工安装方面的考虑,往往采用多支阳极并联安装的方式。多支阳极并联安装的阳极组总输出电流I可按下式计算: In=nIa/η 式中In—阳极组的总输出电流,A In—单支阳极输出电流,A n—阳极组中的阳极支数; η—并联阳极修正系数,主要是考虑各阳极间的屏蔽效应,可有阿图4-23或表(4-19)、(4-20)或式(4-21)可⑺ 计算得单支阳极的输出电流I,由此可从下式计算确定对该结构物实施牺牲阳极保护所需阳极的总数量N: N=σIt/Ia 式中 I—所需总保护电流,A; I—单支阳极输出电流,A; σ—备用系数,一般取2~3倍。 ⑺计算阳极工作寿命T 可根据法拉电解定律计算牺牲阳极的有效工作寿命,即使用寿命T: T=u•m/e•Ia 式中 T—阳极工作寿命,a; m—阳极净质量,kg; u—阳极利用系数,对长条形阳极取0.9,对其它形状阳极取0.85; e—阳极消耗率,kg/(A•a); I—阳极的平均输出电流,A。 ⑻计算两组牺牲阳极间的保护范围 每组(站)牺牲阳极对被保护结构物实施的有效保护范围,是很重要的设计和评价参数。为了简化计算,首先考虑埋地管线上的牺牲阳极保护。对于一维的有限长被保护管道上的电位分布和电流分布,采用牺牲阳极保护和采用外加电流法阴极保护的计算过程和结果是相同的。每组阳极的保护范围可通过两组(站)牺牲阳极间的长度来评价。可按下式计算两组(站)牺牲阳极间的有效保护长度2L: 2L2=2/a•arcch•EA/Emin 式中2L—两组(站)牺牲那个阳极间的有效保护长度,M; E和E—分别是牺牲阳极接入点(通电点)和两组阳极之间的中间点所允许达到的管道电位的最大负偏移值和最小负偏值,v ; α—衰减系数
牺牲阳极阴极保护接地电阻改善方案 11111
.......... (2011-01-10 22:32:50)
标签: 杂谈
本文与大家共同学习! 输电线路铁塔接地系统改造 牺牲阳极(阴极保护)设计及施工 摘要 降低杆塔接地装置的接地电阻是提高输变电线路耐雷水平的一项十分重要的措施.对于多石少土的辽西山区线路杆塔.用传统施工方法接地电阻很难达到要求,根据多年运行经验,降低山区输电线路杆塔接地电阻是防雷的一种有效方法。
前言 雷电危害与接地电阻 在架空输电线路设计中,防雷设计是必须考虑的一个重要因素,随着电力系统的发展,雷击输电线路而引起的事故也日益增多,据资料介绍:在我国高压输电线路的总跳闸次数中,由雷击引起的约占40%~70%,尤其在雷电活动强烈、土壤电阻率高、地形复杂的地区,雷击输电线路而引起的事故率更高,造成巨大的经济损失。 当雷电击中接闪器。电流沿引下线向大地泄放时对地电位升高。有可能向临近的物体跳击,称为雷电“反击”。雷电直击在输电线路上的避雷线,如果接地电阻过大,就会对线路造成损伤,断路或击穿瓷瓶造成短路跳闸。从而造成停电事故。高山杆塔不仅路途遥远,攀爬也很困难,更换一次设备非常困难,这给维护增加了许多难度,而跳闸率恰恰又是电力系统考核的一个重要指标。由此可见接地系统在电力输变线路防雷中的重要性。 1、接地电阻 在超高压输电线路中,多以不大于10 n作为接地电阻的要求。我局的超高压输电线路比较长,途经地区的地理条件比较复杂,经常会遇到山上都是石头,或者多石少土的情况。通常的施工方法很难达到要求,经常是花费了很大的人力、物力,接地电阻还是达不到要求。