三简单电力网络潮流的分析与计算
简单电力系统网络潮流的分析与计算共52页

END
பைடு நூலகம்
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
简单电力系统网络潮流的分析与计算
21、没有人陪你走一辈子,所以你要 适应孤 独,没 有人会 帮你一 辈子, 所以你 要奋斗 一生。 22、当眼泪流尽的时候,留下的应该 是坚强 。 23、要改变命运,首先改变自己。
24、勇气很有理由被当作人类德性之 首,因 为这种 德性保 证了所 有其余 的德性 。--温 斯顿. 丘吉尔 。 25、梯子的梯阶从来不是用来搁脚的 ,它只 是让人 们的脚 放上一 段时间 ,以便 让别一 只脚能 够再往 上登。
电力系统中的潮流计算与分析

电力系统中的潮流计算与分析摘要本文介绍了电力系统中的潮流计算与分析,潮流计算是电力系统计算的基础,通过对电力系统中的电流、电压和功率进行计算和分析,可以有效地评估电力系统的稳定性和安全性。
在本文中,我们讨论了潮流计算的原理和方法,并介绍了一种基于改进的高斯-赛德尔迭代算法的潮流计算方法。
同时,我们还介绍了一种基于Python语言的潮流计算程序的设计和实现,该程序可以对电力系统进行潮流计算和分析,并生成相关的报告和图表。
最后,我们利用该程序对IEEE 14节点测试系统进行了潮流计算和分析,并分析了系统的稳定性和安全性。
关键词:电力系统;潮流计算;高斯-赛德尔迭代算法;Python语言AbstractThis paper introduces the load flow calculation and analysis in power system. Load flow calculation is the basis of power system calculation. By calculating and analyzing the current, voltage and power in the power system, the stability and safety of the power system can be effectively evaluated. In this paper, we discuss the principles and methods of load flow calculation, and introduce an improved Gauss-Seidel iterative algorithm based load flow calculation method. At the same time, we also introduce the design and implementation of a load flow calculation program based on the Python language. The program can perform load flow calculation and analysis on the power system, and generate relevant reports and charts. Finally, we use the program to perform load flow calculation and analysis on the IEEE 14-bus test system, and analyze the stability and safety of the system.Keywords: power system; load flow calculation; Gauss-Seidel iterative algorithm; Python language一、引言电力系统是现代工业和生活的基础设施之一,它承担着输送和分配电能的重要任务。
电力系统潮流分析

电力系统潮流分析潮流分析是电力系统中一种重要的计算方法,用于分析电力系统中各节点电压、功率和电流的分布情况。
通过潮流分析可以评估电力系统的稳定性和可靠性,为电力系统的规划、运行和控制提供参考依据。
本文将介绍电力系统潮流分析的基本原理、计算方法以及应用范围。
一、潮流分析的基本原理在电力系统中,各节点以母线表示,节点之间通过线路连接。
潮流分析基于以下几个基本原理:1. 电压平衡原理:电力系统中的节点电压必须满足节点处功率平衡方程,即节点出注入电流之和为零。
2. 潮流方程:潮流方程描述了电力系统中各节点之间电压、功率和电流之间的关系。
潮流方程是通过母线注入导纳矩阵、支路导纳和节点注入功率来表达。
3. 网络拓扑:电力系统中的节点和线路之间形成了复杂的拓扑结构,潮流分析需要考虑节点之间的相互连接关系。
二、潮流分析的计算方法潮流分析通常采用迭代法来计算各节点的电压、功率和电流。
常用的迭代法包括高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
1. 高斯-赛德尔迭代法:该方法是最简单的潮流计算方法之一。
它通过假设电力系统中所有节点电压的初始值,逐步迭代更新节点电压,直到满足收敛条件为止。
2. 牛顿-拉夫逊迭代法:该方法通过建立功率不平衡方程的雅可比矩阵,采用牛顿迭代和拉夫逊补偿的方法来求解节点电压。
牛顿-拉夫逊迭代法具有更快的收敛速度和更高的计算精度。
三、潮流分析的应用范围潮流分析在电力系统中有广泛的应用,包括但不限于以下几个方面:1. 系统规划:潮流分析可以用于电力系统的规划和设计,评估系统瓶颈、优化系统结构和参数配置。
2. 运行控制:潮流分析可以用于电力系统的运行控制,评估节点电压的合理范围、分析负荷变化对系统的影响。
3. 网络优化:潮流分析可以用于电力系统的网络优化,寻找最优输电线路和改善电力系统的供电可靠性。
4. 风电并网:潮流分析可以用于风电并网系统的规划和运行,评估并网系统的可靠性和电力系统与风电场的相互影响。
电力系统分析第03章简单电力系统潮流计算

= U&p
*
Ip
= Up Ip∠(ϕu
−ϕi )
= Up Ip∠ϕ
=
Sp (cosϕ
+
j sin ϕ )
=
Pp
+
jQp
S%p为复功率,U&p = Up∠ϕu为电压相量,I&p = Ip∠ϕi为电流相量,
*
ϕ = ϕu −ϕi为功率因数角, I = I∠ − ϕi ,为电流相量的共轭值,
Sp、Pp、Qp分别为视在功率、有功功率和无功功率
¾ 电压损耗:线路始末两端电压的数值差,常以线路额定电压百分数表示
电压损耗(%)= U1−U 2 ×100% UN
¾ 电压偏移:线路始端或末端电压与线路额定电压的数值差
始端电压偏移(%)= U1 −U N ×100% UN
末端电压偏移(%)= U2 −U N ×100% UN
¾ 电压调整:线路末端空载与负载时电压的数值差
较短线路两端电压相角差一般都不大,可略去δU , 则:
U1
=
U2
+
P2
R + Q2 U2
X
4
始端电压做参考,用始端的功率求末端电压
若以U&1为参考相量,即U&1 = U1∠0°可求出末端的电压U&2
⋅
U2
= U1 − I&( R + jX ) = U1 −
P1
− jQ1 U1
( R + jX ) = U1 − ΔU ′ − jδU ′
上即可计算线损率或网损率。设线路始端输入的年电能 为W1,线路末端输出的年电能为W2,线路上的年电能损 耗仍为△Wz,则线损率或网损率为
电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较电力系统潮流计算是电力系统分析和运行控制中最重要的问题之一、它通过计算各节点电压和各支路电流的数值来确定电力系统各个节点和支路上的电力变量。
常见的潮流计算方法有直流潮流计算方法、高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
以下将对这三种方法进行比较。
首先,直流潮流计算方法是最简单和最快速的计算方法之一、它假设整个系统中的负载功率都是直流的,忽略了交流电力系统中的复杂性。
直流潮流计算方法非常适用于传输和配电系统,尤其是对于稳定的系统,其结果比较准确。
然而,该方法忽略了交流电力系统中的变压器的磁耦合和饱和效应,可能会导致对系统状态误判。
因此,直流潮流计算方法的适用范围有限。
其次,高斯-赛德尔迭代法是一种迭代方法,通过反复迭代计算来逼近系统的潮流分布。
该方法首先进行高斯潮流计算,然后根据计算结果更新节点电压,并再次进行计算,直到收敛为止。
高斯-赛德尔迭代法考虑了变压器的复杂性,计算结果比直流潮流计算方法更准确。
然而,该方法可能发生收敛问题,尤其是在系统变压器的串联较多或系统中存在不良条件时。
此外,该方法的计算速度较慢,尤其是对于大型电力系统而言。
最后,牛顿-拉夫逊迭代法是一种基于牛顿法的迭代方法,用于解决非线性潮流计算问题。
该方法通过线性化系统等式并迭代求解来逼近系统的潮流分布。
与高斯-赛德尔迭代法相比,牛顿-拉夫逊迭代法收敛速度更快,所需迭代次数更少。
此外,该方法可以处理系统中的不平衡和非线性元件,计算结果更准确。
然而,牛顿-拉夫逊迭代法需要建立和解算雅可比矩阵,计算量相对较大。
综上所述,电力系统潮流计算方法根据应用需求和系统特点选择合适的方法。
直流潮流计算方法适用于稳定的系统,计算简单、快速,但适用范围有限。
高斯-赛德尔迭代法适用于一般的交流电力系统,考虑了变压器复杂性,但可能存在收敛问题和计算速度较慢的缺点。
牛顿-拉夫逊迭代法适用于复杂的非线性系统,收敛速度快且计算结果准确,但需要较大的计算量。
第三章电力系统潮流分析与计算(电力网络方程和网络矩阵)

(5)
3
4
6
§2 如何建立网络方程? 一、电力网络的数学抽象
发电机
串联元件
负荷 并联元件
网络: 网络元件 联结
网络元件特性约束(考虑无源线性元件):
U&b = ZbIb &
元件特性约束与元件联结关系无关
7
网络拓扑约束
把元件抽象成支路,研究支路之间的联结关系。
Kirchhoft定律
KCL ik = 0
回路电压列向量
E1 = Z1I1
回路阻抗矩阵
回路电流列向量
独立方程个数l=b-n,l:回路数,b:支路数,n:
节点数(树支数)
回路方程:由Zl反映El和 Il 间关系
Zl ≠ Zn
14
五、两种网络方程的比较
节点方程
方程个数 状态变量
n(少)
Un(直接)
选向问题
无
适应网络变化
易
回路方程
b-n(多)
3、如何形成节点导纳矩阵?(重要!计算机对矩阵兴趣) 4、节点导纳矩阵有何物理意义和性质? 5、如何形成节点阻抗矩阵?(重要!计算机对矩阵兴趣) 6、节点阻抗矩阵有何物理意义和性质?
2
§1 如何从原始接线到计算模型? 变电站 (计算机拓扑(Topology)分析)原始模型
电网
厂站(Station)拓扑分析
I1=U1y10 (U1 U2 )y12 (U1 U3)y13 I2 =U2y30 (U2 U1)y12 (U2 U3 )y23 I3 =U3y30 (U3 U1)y13 (U3 U2 )y32 y12
U1
y y 13
U3 23
I1
y10 I3
y30 I 2
电力系统潮流分析与计算设计(P Q分解法)

电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。
最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。
随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。
这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。
经过几十年的时间,电力系统潮流排序已经发展得十分明朗。
潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。
电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。
在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。
电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。
两种计算的原理在本质上是相同的。
实际电力系统的潮流技术主要使用pq水解法。
1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。
本设计就是使用pq水解法排序电力系统潮流的。
关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。
电力系统潮流计算是计算系统动态稳定和静态稳定的基础。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。
电力系统潮流计算与分析

电力系统潮流计算与分析电力系统是现代社会不可或缺的基础设施之一,它为我们提供了稳定可靠的电力供应。
而电力系统的潮流计算与分析则是电气工程中的重要研究领域之一。
本文将介绍电力系统潮流计算与分析的基本概念、方法和应用。
一、潮流计算的基本概念潮流计算是指对电力系统中各个节点的电压、电流、功率等参数进行计算和分析的过程。
它是电力系统规划、设计和运行中必不可少的工具。
潮流计算的目的是确定电力系统中各个节点的电压和相位角,以及各个支路的电流和功率。
通过潮流计算,可以评估电力系统的稳定性、负载能力和输电能力,为电力系统的规划和运行提供科学依据。
二、潮流计算的方法潮流计算的方法主要包括直流潮流计算和交流潮流计算两种。
直流潮流计算是一种简化的方法,适用于电力系统中负载变化较小的情况。
它假设电力系统中的所有元件都是直流元件,忽略了电抗元件的影响。
交流潮流计算则考虑了电力系统中的电抗元件对电流和功率的影响,是一种更为精确的计算方法。
在交流潮流计算中,常用的方法包括高斯-赛德尔法、牛顿-拉夫逊法和快速潮流法等。
高斯-赛德尔法是一种迭代法,通过反复迭代计算节点的电压和相位角,直到满足收敛条件。
牛顿-拉夫逊法则是一种迭代法,通过对节点电压的雅可比矩阵进行线性化,求解节点电压的增量,从而逐步逼近潮流计算的结果。
快速潮流法是一种基于分解和迭代的方法,通过将电力系统分解为多个子系统进行计算,从而提高计算的速度和效率。
三、潮流计算的应用潮流计算在电力系统的规划、设计和运行中有着广泛的应用。
首先,潮流计算可以用于电力系统的负荷分配和负载能力评估。
通过计算各个节点的电压和功率,可以确定电力系统中各个节点的负载水平,从而合理分配负荷,提高电力系统的供电能力。
其次,潮流计算可以用于电力系统的故障分析和稳定性评估。
通过模拟电力系统中的故障情况,可以评估电力系统的稳定性,为电力系统的运行和维护提供依据。
此外,潮流计算还可以用于电力系统的输电能力评估和优化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年3月28日星期四
2
(3-1)
同理,电力线路阻抗中的功率损耗也可以用流入电力线路
阻抗支路始端的单相功率 S1 及始端的相电压 U 1 ,求出电力
线路阻抗中一相功率损耗 SZ 的有功和无功功率分量为
2 2 P Q 1 1 PZ R 2 U
S2 P22 Q22 P22 Q22 P22 Q22 SZ Z ( R jX ) R j X 2 2 2 U2 U2 U2 U2 PZ jQZ
P22 Q22 PZ R 2 U2 2 2 P2 Q2 QZ X 2 U2
令:
X P2R Q2 U U2
X P2R Q2 U U2
则上式可改写为 U1 (U2 U ) jU U2 dU
《电力系统分析》
纵分量
横分量
电压降落
2019年3月28日星期四
U1
δ
dU
U2
U
U
功率角 tg
1
U
U 2 U
图3-2 电力线路的电压相量图 (U 2 U 2 )
第一节 电力线路和变压器的功率损耗和电压降落
一.电力线路的功率损耗和电压降落
1.电力线路的功率损耗计算
下图为电力线路的П型等值电路,其中Z=R+jX,Y=G+jB
为电力线路每相阻抗和导纳,U 为相电压, S 为单相功率。
《电力系统分析》
2019年3月28日星期四
(1)电力线路阻抗中的功率损耗。 当电力线路阻抗支路末端流出的单相功率为 S 2 ,末端电压 为 U 2 时,电力线路阻抗中的一相功率损耗为
《电力系统分析》
2019年3月28日星期四
主要内容 1 电力线路和变压器的功率损耗和电压降落
2 开式网络的潮流分布
3 环式网络的潮流分布
《电力系统分析》
2019年3月28日星期四
预备知识
单相功率的计算
S U I U U e j
P jQ
*
I I e j
(3-2)
《电力系统分析》
2019年3月28日星期四
(2)电力线路导纳支路中的功率损耗。 由图3-1所示可以导出电力线路末端导纳支路中的单相 功率损耗为
Y 1* 2 1 * 2 S y 2 U 2 ( U 2 ) Y U 2 (G jB)U 2 2 2 2
Py 2 jQy 2
SZ ( P2 jQ2 ) (PZ jQZ ) P S1 S2 1 jQ 1
则电力线路始端的功率为
S1 S1 S y1 ( P 1 jQ1 ) (P y1 j Qy1 ) P 1 jQ1
《电力系统分析》
第三章 简单电力网络潮流的分析与计算
潮流计算的目的及内容
稳态计算——不考虑发电机的参数—电力网计算(潮流计算) 给定 潮流计算 求
负荷(P,Q) 发电机(P,V) 各母线电压 各条线路中的功率及损耗
用于电网规划—选接线方式、电气设备、导线截面
计算目的
用于运行指导—确定运行方式、供电方案、调压措施
用于继电保护—整定、设计
这是电力线路 末端、始端的 电容功率
(3-5)
2019年3月28日星期四
(3)电力线路中的功率计算。 从图3-1中可以看出,电力线路阻抗支路末端流出的功率 为
S2 S y 2 ( P2 jQ2 ) (Py 2 jQy 2 ) P2 jQ2 S2
而流入电力线路阻抗始端的功率为
U1 (U 2 U )2 (U )2
由于一般情况下, U 2 U 开,取其前两项,得
2 ( U ) U1 (U 2 U )2 ( U ) 2 U 2 U U 2 U 2(U 2 U )
U可将上式按二项式定理展
《电力系统分析》
2019年3月28日星期四
2019年3月28日星期四
2. 电力线路的电压降落计算
U 或dU . 电压降落:线路始末两端电压的相量差 U 1 2 以U 2为参考相量,则线路首端电压 U1为
S2 P2 jQ2 U1 U 2 Z U 2 ( R jX ) U2 U2 X X P2R Q2 P2R Q2 (U 2 ) j( ) U2 U2
S U I e j ( ) U I e j U I cos jU I sin
三相功率的计算
S 3S 3UI cos j 3UI sin P jQ
S
《电力系统分析》
(P2 Q2 )
功率的单位 P(kW)、 Q(kvar)、S(kVA)
相似于这种推导,还可以获得从始端电压 U 1 ,始端单相 功率 S1 求取末端相电压 U 2的计算公式
U 2 U1 dU U1 (U jU ) (U1 U ) jU
1 R Q1 X 上式中, U P U1 P X Q1 R U 1 U1
Py1 jQy1
则有
1 2 Py1 GU1 2 (3-4) 1 Qy1 BU12 2 一般电力线路的电导G=0,则式(3-3)、(3-4)变为
《电力系统分析》
1 2 Qy 2 BU 2 2 1 Qy1 BU12 2
于是有
1 2 Py 2 GU 2 2 1 2 Qy 2 BU 2 2
(3-3)
《电力系统分析》
2019年3月28日星期四
而电力线路始端导纳支路中的单相功率损耗为 Y 1* 2 1 * S y1 U1 ( U1 ) Y U1 (G jB)U12 2 2 2