北师大版八年级数学上勾股定理的应用
北师大版-数学-八年级上册-《勾股定理》教学分析与建议

北师大版八年级数学(上)第一章勾股定理教学分析与建议一、主要内容勾股定理在数学的发展历史上起过重要的作用,在现实世界中也有着广泛的应用。
它的发现、证明和应用都蕴涵着丰富的数学的、文化的内涵。
它是几何学中的重要的定理之一。
教材为学生设计了自主探索勾股定理内容以及验证它的素材和空间,教学中要使学生经历观察、归纳、猜想和验证的数学发现过程教材的设计过程中,希望学生能够利用方格纸探索勾股定理内容,并且能利用拼图验证勾股定理,再次就是通过测量获得勾股定理的逆定理教材提供了较为丰富的历史的或现实的例子,以展示勾股定理及其逆定理的应用,体现其文化价值。
当然限于学生的已有知识,问题解决中所涉及的数据均为完全平方数,本章更多的关注学生对勾股定理及其逆定理的理解和应用,不追求复杂计算。
二、评价建议1,关注对探索勾股定理等活动的评价。
一方面要关注学生是否积极参与,是否能与同伴进行有效合作交流;另一方面也要关注学生在活动中能否进行积极的思考,能否探索出解决问题的方法,是否能够进行积极的思考,在活动中学生所表现出的归纳,概括能力,学生是否能够有条理地表达活动过程和所获得的结论等。
2,关注考查对勾股定理及其逆定理的理解和应用。
注意评价时,不应以复杂运算为主,我们应更另关注学生对有关结论的正确使用。
三、教学目标l.经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想;2.掌握勾股定理,了解利用拼图验证勾股定理的方法,并能运用勾股定理解决一些实际问题;3.掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题;4.通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。
四、教材特点勾股定理是反映自然界基本规律的一条重要结论,它有着悠久的历史,在数学发展中起过重要的作用,在现实世界中也有着广泛的应用。
勾股定理的发现、验证和应用蕴涵着丰富的文化价值。
勾股定理从边的角度进一步刻画了直角三角形的特征,通过对勾股定理的学习,学生将在原有的基础上对直角三角形有进一步的认识和理解。
1.3勾股定理的应用2-2021-2022学年八年级上册初二数学(教案)(北师大版)

-理解并掌握勾股定理的表达式及其在直角三角形中的应用。
-学会运用勾股定理解决实际问题,如计算直角三角形的斜边长度及判断一个三角形是否为直角三角形。
-掌握勾股定理在解决几何图形面积、周长等问题中的应用。
-举例:重点讲解勾股定理的推导过程,通过动画、模型等多种教学手段,让学生直观感受定理的形成过程。强调a²+b²=c²的数学表达,并在此基础上解决以下类型的题目:
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.通过实际例题,让学生体会勾股定理在生活中的应用,培养学以致用的能力。
4.本章内容涉及以下例题和练习:
a.计算直角三角形的斜边长度;
b.已知直角三角形两边长度,求第三边长度;
c.判断一个三角形是否为直角三角形,并运用勾股定理进行计算;
d.结合实际情境,解决与勾股定理相关的问题。
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,提升数学应用意识。
五、教学反思
在今天的课堂中,我们探讨了勾股定理的应用。回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,我发现学生在理解勾股定理的概念时,对直角三角形和斜边的认识还不够清晰。在以后的教学中,我需要更加注重基础知识的讲解,确保学生能够扎实掌握相关概念。
其次,在新课导入环节,我尝试通过提问方式引导学生思考,但感觉学生的参与度并不高。我考虑是否可以通过设置更具趣味性和生活化的情境来激发学生的兴趣,让他们更积极地投入课堂。
北师大版八年级上第一章勾股定理(附习题和答案)

第一章 勾股定理1、勾股定理(性质定理)直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、勾股定理的逆定理(判定定理)如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意 (1)首先确定最大边,不妨设最长边长为c ;(2)验证c 2和a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的直角三角形(若c 2>a 2+b 2,则△ABC 是以∠C 为钝角的钝角三角形;若c 2<a 2+b 2,则△ABC 为锐角三角形)。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
经典的勾股数:3、4、5(3n 、4n 、5n ) 5、12、13(5n 、12n 、13n ) 7、24、25(7n 、24n 、25n ) 8、15、17(8n 、15n 、17n ) 9、40、41(9n 、40n 、41n ) 11、60、61(11n 、60n 、61n ) 13、84、85(13n 、84n 、85n )例1. 如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .5练习1:如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C'处,BC'交AD 于E ,AD=8,AB=4,则DE 的长为( )A.3B.4C.5D.6FEDCBACA B E D练习2:如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为例 2. 三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是 ( ).A 、钝角三角形B 、锐角三角形C 、直角三角形D 、等边三角形练习1:已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A :底与边不相等的等腰三角形B :等边三角形C :钝角三角形D :直角三角形练习2:已知a 、b 、c 是△ABC 的三边,且a 2c 2-b 2c 2=a 4-b 4,试判断三角形的形状.例3. 将一根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hcm ,则h 的取值范围是( ). A .h ≤17cm B .h ≥8cm C .15cm ≤h ≤16cm D .7cm ≤h ≤16cmCABD练习:如图,圆柱形玻璃容器高20cm ,底面圆的周长为48cm ,在外侧距下底1cm 的 点A 处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距上口1cm 的点B 处有一只 苍蝇,则蜘蛛捕获苍蝇所走的最短路线长度为________.例4. a 2+b 2+c 2=10a +24b +26c -338,试判定△ABC 的形状,并说明你的理由练习:已知直角三角形的周长是62 ,斜边长2,求它的面积.例5. 已知,如图,四边形ABCD 中,AB=3cm ,AD=4cm ,BC=13cm ,CD=12cm ,且∠A=90°, 求四边形ABCD 的面积。
勾股定理的应用(知识讲解)八年级数学上册基础知识讲与练(北师大版)

专题1.6 勾股定理的应用(知识讲解)【学习目标】(1)利用勾股定理及逆定理解决生活中的实际问题。
(2)通过观察图形,探索图形间的关系,发展学生的空间观念.【要点梳理】勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,从而达到把三角形边的问题转化为角的问题,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 本专题分类进行巩固解决以下生活实际问题【典型例题】类型一、应用勾股定理解决梯子滑落高度问题1.一个25米长的梯子AB ,斜靠在一竖直的墙AO 上,这时的AO 距离为24米,如果梯子的顶端A 沿墙下滑4米,那么梯子底端B 外移多少米?【答案】8米.【分析】梯子下滑4米,梯子的长度不变始终为25米,利用勾股定理分别求出OB 、OB '的长度,进而求出BB '的长度即可.解:如图,依题意可知AB =25(米),AO =24(米),∠O =90°,∠ BO 2=AB 2﹣AO 2=252-242,∠ BO =7(米),移动后,A O '=20(米),222222()()252015B O A B A O --''''===∠ 15B O '= (米),∠ =1578BB B O BO ''-=-=(米).答:梯子底端B 外移8米.【点拨】本题考查的是勾股定理的应用及勾股定理在直角三角形中的正确运用,本题中求B O 的长度是解题的关键.举一反三:【变式】一架梯子长13米,斜靠在一面墙上,梯子底端离墙5米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了7米到C,那么梯子的底端在水平方向滑动了几米?【答案】(1)12米;(2)7米【分析】(1)由题意易得AB=CD=13米,OB=5米,然后根据勾股定理可求解;(2)由题意得CO= 5米,然后根据勾股定理可得求解.解:(1)由题意得,AB=CD=13米,OB=5米,在Rt AOB,由勾股定理得:AO2=AB2-OB2=132-52=169-25=144,解得AO=12米,答:这个梯子的顶端距地面有12米高;(2)由题意得,AC=7米,由(1)得AO=12米,∠CO=AO-AC=12-7=5米,△,由勾股定理得:在Rt CODOD2=CD2-CO2=132-52=169-25=144,解得OD=12米∠BD=OD-OB=12-5=7米,答:梯子的底端在水平方向滑动了7米.【点拨】本题主要考查勾股定理,熟练掌握勾股定理是解题的关键.类型二、应用勾股定理解决旗杆高度2.数学综合实验课上,同学们在测量学校的高度时发现:将旗杆顶端升旗用的绳子垂到地面还多2米;当把绳子的下端拉开拉直后,下端刚好接触地面,测得绳子的下端离开旗杆底端8米,如图,根据以上数据,同学们就可以准确求出了旗杆的高度,你知道他们是如何计算出来的吗?【答案】旗杆的高度为15m【分析】由题可知,旗杆,绳子与地面构成直角三角形,根据题中的数据,用勾股定理解答即可.解:设旗杆高x 米,则绳子长为()2x +米,∠旗杆垂直于地面,∠旗杆,绳子与地面构成直角三角形,在Rt ABC 中,222AB BC AC +=,∠()22282x x +=+,解方程得:15x =,答:旗杆高度为15米.【点拨】本题考查的是勾股定理的应用,根据题意得出∠ABC 是直角三角形式解答此题的关键.举一反三:【变式】滑撑杆在悬窗中应用广泛.如图,某款滑撑杆由滑道OC ,撑杆AB 、BC 组成,滑道OC 固定在窗台上.悬窗关闭或打开过程中,撑杆AB 、BC 的长度始终保持不变.当悬窗关闭时,如图∠,此时点A 与点O 重合,撑杆AB 、BC 恰与滑道OC 完全重合;当悬窗完全打开时,如图∠,此时撑杆AB 与撑杆BC 恰成直角,即90B ∠=︒,测量得12cm OA =,撑杆15cm AB =,求滑道OC 的长度.【答案】滑道OC 的长度为51cm .【分析】设OC m =cm ,可得出(15)BC m =-cm ,(12)AC m =-cm ,在在Rt ∠ABC 中,根据勾股定理可得m 的值,由此可得结论.解:设OC m =cm ,则由图∠可知(15)BC OC AB m =-=- cm ,由图∠可知(12)AC OC OA m =-=-cm ,∠90B ∠=︒,∠在Rt∠ABC 中,根据勾股定理可得,222AB BC AC +=,∠22215(15)(12)m m +-=-,解得51m =,∠滑道OC 的长度为51cm .【点拨】本题考查勾股定理的应用,能结合撑杆AB 、BC 的长度始终保持不变正确表示出BC 和AC 是解题关键.类型三、应用勾股定理解决小鸟飞行的距离3.有一只喜鹊在一棵3m 高的小树上觅食,它的巢筑在距离该树24m 的一棵大树上,大树高14m ,且巢离树顶部1m .当它听到巢中幼鸟的叫声,立即赶过去,如果它飞行的速度为5m /s ,那它至少需要多少时间才能赶回巢中?【答案】它至少需要5.2s 才能赶回巢中.【分析】根据题意,构建直角三角形,利用勾股定理解答.解:如图,由题意知AB =3,CD =14-1=13,BD =24.过A 作AE ∠CD 于E .则CE =13-3=10,AE =24,∠在Rt ∠AEC 中,AC 2=CE 2+AE 2=102+242.∠AC =26,26÷5=5.2(s ).答:它至少需要5.2s 才能赶回巢中.【点拨】本题考查了勾股定理的应用.关键是构造直角三角形,同时注意:时间=路程÷速度.举一反三:【变式】有一只喜鹊在一棵高3米的小树的树梢上觅食,它的巢筑在距离该树24米,高为14米的一棵大树上,且巢离大树顶部为1米,这时,它听到巢中幼鸟求助的叫声,立刻赶过去,如果它的飞行速度为每秒5米,那么它至少几秒能赶回巢中?【答案】它至少5.2秒能赶回巢中.【分析】过点A 作AF CD ⊥于点F .求出AF,EF,再根据勾股定理求出AE ,从而求出时间.解:如图所示,3AB =米,14CD =米,1DE =米,24BC =米.过点A 作AF CD ⊥于点F .在Rt AEF ∆中,24AF BC ==米,10EF CD CF DE =--=米,所以222222410676AE AF EF =+=+=.所以喜鹊离巢的距离26AE =米.喜鹊赶回巢所需的时间为265 5.2÷=(秒).即它至少5.2秒能赶回巢中.【点拨】考核知识点:勾股定理和逆定理运用.构造直角三角形是解题关键.类型四、应用勾股定理解决大树折断前的高度4.如图,在一次地震中,一棵垂直于地面且高度为16米的大树被折断,树的顶部落在离树根8米处,即8BC =,求这棵树在离地面多高处被折断(即求AC 的长度)?【答案】这棵树在离地面6米处被折断【分析】设AC x =,利用勾股定理列方程求解即可.解:设AC x =,∠在Rt ABC △中,222AC BC AB +=,∠()222816x x +=-,∠6x =.答:这棵树在离地面6米处被折断【点拨】本题考查了勾股定理,熟练掌握勾股定理是解答本题的关键.直角三角形两条直角边的平方和等于斜边的平方. 当题目中出现直角三角形,且该直角三角形的一边为待求量时,常使用勾股定理进行求解.有时也可以利用勾股定理列方程求解.举一反三:【变式】我国古代的数学名著《九章算术》中记载“今有竹高一丈八,末折抵地,去本6尺.问:折者高几何?”译文:一根竹子,原高一丈八,虫伤有病,一阵风将竹子折断,其竹梢恰好着地,着地处离原竹子根部6尺远.问:折处离地还有多高的竹子?(1丈=10尺)【答案】8尺【分析】设原处还有x 尺高的竹子,由题意得到折后竹子竖直高度+斜倒部分的长度=18尺,再运用勾股定理列方程即可求解.解:设折处离地还有x 尺高的竹子,如图,在Rt ABC 中,AC =x 尺,则AB =一丈八- AC =(18-x )尺由勾股定理得222AC BC AB +=,所以2226(18)x x +=-,解得:8x =.答:折处离地还有8尺高的竹子.【点拨】此题考查勾股定理解决实际问题.此题中的直角三角形只知道一直角边,另两边未知往往要列方程求解.类型五、应用勾股定理解决水杯中的筷子问题5.如图,一个直径为20cm 的杯子,在它的正中间竖直放一根小木棍,木棍露出杯子外2cm ,当木棍倒向杯壁时(木棍底端不动),木棍顶端正好触到杯口,求木棍长度.【答案】26cm【分析】设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,因为直径为20cm 的杯子,可根据勾股定理列方程求解.解:设杯子的高度是x cm ,那么小木棍的高度是(x +2)cm ,∠杯子的直径为20cm ,∠杯子半径为10cm ,∠x 2+102=(x +2)2,即x 2+100=x 2+4x +4,解得:x =24,24+2=26(cm ).答:小木棍长26cm .【点拨】本题考查了勾股定理的运用,解题的关键是看到构成的直角三角形以及各边的长.举一反三:【变式】如图,有一个水池,水面是一个边长为16尺的正方形,在水池正中央有一根芦苇,它高出水面2尺,如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,则水池里水的深度是多少尺?请你用所学知识解答这个问题.【答案】水池里水的深度是15尺【分析】根据勾股定理列出方程,解方程即可.解:设水池里水的深度是x 尺,由题意得,()22282x x +=+,解得:x =l5,答:水池里水的深度是15尺.【点拨】本题考查的是勾股定理的应用,掌握勾股定理、根据勾股定理正确列出方程是解题的关键. 类型六、应用勾股定理解决航海问题6.如图,某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于点Q ,R 处,且相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案】北偏东45°(或西北)【分析】直接得出RP=18海里,PQ=24海里,QR=30海里,利用勾股定理逆定理以及方向角即可得到“海天”号航行方向.解:由题意可得:RP=18海里,PQ=24海里,QR=30海里,∠182+242=302,∠∠RPQ是直角三角形,∠∠RPQ=90°,∠“远航”号沿东北方向航行,即沿北偏东45°方向航行,∠∠RPS=45°,∠“海天”号沿北偏西45°(或西北)方向航行.【点拨】本题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.举一反三:【变式】在寻找某坠毁飞机的过程中,两艘搜救艇接到消息,在海面上有疑似漂浮目标A、B.于是,一艘搜救艇以16海里/时的速度离开港口O(如图)沿北偏东40°的方向向目标A前进,同时,另一艘搜救艇也从港口O出发,以12海里/时的速度向着目标B出发,1.5小时后,他们同时分别到达目标A、B.此时,他们相距30海里,请问第二艘搜救艇的航行方向是北偏西多少度?【答案】第二艘搜救艇的航行方向是北偏西50度.【分析】根据题意求出OA、OB,根据勾股定理的逆定理求出∠AOB=90°,即可得出答案.解:根据题意得:OA =16海里/时×1.5小时=24海里;OB =12海里/时×1.5小时=18海里,∠OB 2+OA 2=242+182=900,AB 2=302=900,∠OB 2+OA 2=AB 2,∠∠AOB =90°,∠艘搜救艇以16海里/时的速度离开港口O (如图)沿北偏东40°的方向向目标A 的前进,∠∠BOD =50°,即第二艘搜救艇的航行方向是北偏西50度.【点拨】本题考查了方向角,勾股定理的逆定理的应用,能熟记定理的内容是解此题的关键,注意:如果三角形两边a 、b 的平方和等于第三边c 的平方,那么这个三角形是直角三角形.类型七、应用勾股定理解决河的宽度7.湖的两岸有A ,B 两棵景观树,数学兴趣小组设计实验测量两棵景观树之间的距离,他们在与AB 垂直的BC 方向上取点C ,测得30BC =米,50AC =米.求:(1)两棵景观树之间的距离;(2)点B 到直线AC 的距离.【答案】(1)A ,B 两点间的 距离是40米;(2)点B 到直线AC 的距离是24米.【分析】(1)根据勾股定理解答即可;(2)根据三角形面积公式解答即可.解:(1)因为ABC 是直角三角形,所以由勾股定理,得222AC BC AB =+.因为50AC =米,30BC =,所以22250301600AB =-=.因为0AB >,所以40AB =米.即A ,B 两点间的 距离是40米.(2)过点B 作BD AC ⊥于点D . 因为1122ABC S AB BC AC BD =⋅=⋅△, 所以AB BC AC BD ⋅=⋅. 所以30402450AB BC BD AC ⋅⨯===(米), 即点B 到直线AC 的距离是24米.【点拨】本题考查了勾股定理的应用,属于基础题,关键是掌握勾股定理在直角三角形中的表达式.举一反三:【变式】著名的赵爽弦图(如图∠,其中四个直角三角形较大的直角边长都为a ,较小的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为2c ,也可以表示为214()2ab a b ,由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则222+=a b c .(1)图∠为美国第二十任总统伽菲尔德的“总统证法”,请你利用图∠推导勾股定理.(2)如图∠,在一条东西走向河流的一侧有一村庄C ,河边原有两个取水点A ,B ,其中AB AC =,由于某种原因,由C 到A 的路现在已经不通,该村为方便村民取水决定在河边新建一个取水点H (A 、H 、B 在同一条直线上),并新修一条路CH ,且CH AB ⊥,测得 1.2CH =千米,0.9HB =千米,求新路CH 比原路CA 少多少千米?(3)在第(2)问中若AB AC ≠时,CH AB ⊥,4AC =,5BC =,6AB =,设AH x =,求x 的值.【答案】(1)见分析;(2)新路CH 比原路CA 少0.05千米;(3) 2.25x =.【分析】(1)梯形的面积可以由梯形的面积公式求出,也可利用三个直角三角形面积求出,两次求出的面积相等列出关系式,化简即可得证;(2)设CA x =,则AH 0.9x =-,根据勾股定理列方程,解得即可得到结果;(3)在Rt∠ACH 和Rt∠BCH 中,由勾股定理得求出CH 2=CA 2-AH 2=CB 2-BH 2,列出方程求解即可得到结果.解:(1)梯形ABCD 的面积为()()()21122b a b a a b ++=+, 也可以表示为2111222ab ab c ++, ∠()2211112222a b ab ab c +=++, 整理得:222a b c +=;(2)∠CA x =,∠AH 0.9x =-,在Rt∠ACH 中,222CA CH AH =+,即()2221.20.9x x =+-,解得x=1.25,即CA=1.25,CA -CH=1.25-1.2=0.05(千米),答:新路CH 比原路CA 少0.05千米;(3)设AH x =,则BH 6x =-,在Rt∠ACH 中,222CH CA AH =-,在Rt∠BCH 中,222CH CB BH =-,∠2222CA AH CB BH -=-,即()2222456x x -=--,解得: 2.25x =.【点拨】本题主要考查了勾股定理的证明与应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法, 类型八、应用勾股定理解决台阶上地毯问题8.如图所示,是一个三级台阶,它的每一级的长、宽、高分别为55cm ,10cm ,6cm ,点A 和点B 是这个台阶的两个相对的端点,A 点处有一只蚂蚁,那么这只蚂蚁从点A 爬到点B 的最短路程是多少?【答案】73cm【分析】首先把楼梯展开得到平面几何图,根据“两点之间,线段最短”得到蚂蚁所走的最短路线为AB ,则问题是求AB 的长,根据已知数据得出AC 、BC 的长,再利用勾股定理求出AB 的长,即可完成解答.解:如图所示,将这个台阶展开成一个平面图形,则蚂蚁爬行的最短路程就是线段AB 的长.在Rt ABC ∆中,55cm BC =,10+6+10+6+10+6=48cm AC =.由勾股定理,得222=5329AB AC BC +=.所以73cm AB =.因此,蚂蚁从点A 爬到点B 的最短路程是73cm.【点拨】此题考查勾股定理的应用,把立体几何图中的问题转化为平面几何图中的问题是解题的关键.举一反三:【变式】如图,小明准备把一支笔放入铅笔盒ABCD ,竖放时笔的顶端E 比铅笔盒的宽AB 还要长2cm ,斜着放入时笔的顶端F 与铅笔盒的边缘AB 距离为6cm ,求铅笔盒的宽AB 的长度.【答案】铅笔盒的宽AB 的长度为8cm .【分析】设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,然后根据勾股定理列方程解答即可.解:设铅笔盒的宽AB 的长度为cm x ,则笔长(2)cm x +,由题意得2226(2)x x +=+,解得8x =.答:铅笔盒的宽AB 的长度为8cm .【点拨】本题考查了勾股定理的应用,弄清题意、根据勾股定理列出方程是解答本题的关键.类型九、应用勾股定理解决汽车是否超速问题9.我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km /h .如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A 正前方30m 的C 处,2秒后又行驶到与车速检测点A 相距50m 的B 处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?【答案】超速了,超速了12km /h【分析】由勾股定理可求得小汽车行驶的距离,再除以小汽车行驶的时间即为小汽车行驶的车速,再与限速比较即可.解:.由已知得50m,30m AB AC ==∠在直角三角形ABC 中AB 2=AC 2+BC 2∠BC 2=AB 2-AC 2=222503040-=,40m BC ∴= 又4020m /s 22BC == 20m /s 72km/h 60km/h =>∠72-60=12km /h∠这辆小汽车超速了,超速了12km /h .【点拨】本题考查了勾股定理,其中1 米/秒=3.6 千米/时的速度换算是易错点. 举一反三:【变式】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过70千米/小时,如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 的正前方50米处的C 点,过了6秒后,测得小汽车所在的B 点与车速检测仪A 之间的距离为130米.(1)求BC 间的距离;(2)这辆小汽车超速了吗?请说明理由.【答案】(1)120米;(2)超速,理由见分析【分析】(1)根据勾股定理求出BC 的长;(2)直接求出小汽车的时速,进而比较得出答案.解:(1)在Rt∠ABC 中,∠AC=50m ,AB=130m ,且AB 为斜边,根据勾股定理得:BC=120(m );(2)这辆小汽车超速了.理由:∠120÷6=20(m/s ),平均速度为:20m/s ,20m/s=72km/h ,72>70,∠这辆小汽车超速了.【点拨】此题主要考查了勾股定理的应用,利用勾股定理求出BC 的长是解题关键. 类型十、应用勾股定理解决是否受台风影响问题10.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为海港,并且点C 与直线B 上的两点A ,B 的距离分别为300km AC =,400km BC =,又500km AB =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB ∠的度数;(2)海港C 受台风影响吗?为什么?【答案】(1)90°;(2)受台风影响,理由见分析(1)利用勾股定理的逆定理得出∠ABC 是直角三角形,进而得出∠ACB 的度数; (2)利用三角形面积得出CD 的长,进而得出海港C 是否受台风影响.解:(1)∠AC =300km ,BC =400km ,AB =500km ,∠AC 2+BC 2=AB 2,∠∠ABC 是直角三角形,∠ACB =90°;(2)海港C 受台风影响,理由:过点C 作CD ∠AB ,∠∠ABC 是直角三角形,∠AC ×BC =CD ×AB ,∠300×400=500×CD ,∠CD =240(km ),∠以台风中心为圆心周围250km 以内为受影响区域,∠海港C 受台风影响.【点拨】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.举一反三:【变式】如图,在甲村到乙村的公路旁有一块山地正在开发,现有C 处需要爆破.已知点C 与公路上的停靠站AB 、的距离分别为300m 和400m ,且AC BC ,为了安全起见,如果爆破点C 周围半径250m 的区域内不能有车辆和行人,问在进行爆破时,公路AB 段是否需要暂时封闭,为什么?【答案】爆破公路AB 段有危险,需要暂时封锁.过点C 作CD∠AB 于点D ,根据勾股定理求出AB 的长,再由面积公式求得CD 的长,并比较,即可得出公路AB 上是否有危险.解:如图,过点C 作CD AB ⊥于点D .在Rt ABC 中,由勾股定理,得:22222300400250000AB AC BC ,所以500AB m = 由1122ABC S AB CD AC BC =⋅=⋅,得500300400CD ,解得240CD m , 因为240250<,所以爆破公路AB 段有危险,需要暂时封锁.【点拨】本题考查了勾股定理的应用和三角形的面积,解题的关键是利用直角三角形的面积列出方程求出CD 的长.类型十一、应用勾股定理解决选扯距离相离问题11.如图,烟台市正政府决定在相距50km 的A 、B 两村之间的公路旁E 点,修建一个大樱桃批发市场,且使C 、D 两村到E 点的距离相等,已知DA ∠AB 于A ,CB ∠AB 于B ,DA =30km ,CB =20km ,那么大樱桃批发市场E 应建什么位置才能符合要求?【答案】大樱桃批发市场E 应建在离A 站20千米的地方【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出2DE 和2CE ,列等式求解即可.解:设大樱桃批发市场E 应建在离A 站x 千米的地方,则()50BE x =-千米.在直角ADE 中,根据勾股定理得:222AD AE DE +=,∠22230x DE +=,在直角CBE △中,根据勾股定理得:222CB BE CE +=,∠()222205x CE +-=.又∠C 、D 两村到E 点的距离相等,∠DE CE =,∠22DE CE =,所以()2222302050x x +=+-,解得20x .∠大樱桃批发市场E 应建在离A 站20千米的地方.【点拨】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.举一反三:【变式】如图,小明家在一条东西走向的公路MN 北侧200米的点A 处,小红家位于小明家北500米(500AC =米)、东1200米(1200BC =米)点B 处.(1)求小明家离小红家的距离AB ;(2)现要在公路MN 上的点P 处建一个快递驿站,使PA PB +最小,请确定点P 的位置,并求PA PB +的最小值.【答案】(1)1300AB =米;(2)见分析,1500米【分析】(1)如图,连接AB ,根据勾股定理即可得到结论;(2)如图,作点A 关于直线MN 的对称点A ',连接A 'B 交MN 于点P .驿站到小明家和到小红家距离和的最小值即为A 'B ,根据勾股定理即可得到结论.解:(1)如图,连接AB ,由题意知AC =500,BC =1200,∠ACB =90°,在Rt∠ABC中,∠∠ACB=90°,∠AB2=AC2+BC2=5002+12002=1690000,∠AB>0∠AB=1300米;(2)如图,作点A关于直线MN的对称点A',连接A'B交MN于点P.驿站到小明家和到小红家距离和的最小值即为A'B,由题意知AD=200米,A'C∠MN,∠A'C=AC+AD+A'D=500+200+200=900米,在Rt∠A'BC中,∠∠ACB=90°,∠A'B2=A'C2+BC2=9002+12002=2250000,∠A'B>0,∠A'B=1500米,即从驿站到小明家和到小红家距离和的最小值为1500米.【点拨】本题考查轴对称-最短问题,勾股定理,题的关键是学会利用轴对称解决最短问题.。
初中数学北师大版八年级上册《13勾股定理的应用》教学设计

北师大版数学八年级上册1.3勾股定理的应用教学设计师:1. 勾股定理的内容是什么?如果用a,b和c分别表示直角三角形的两直角边和斜边,那么a2+b2=c2.2. 勾股定理的逆定理是什么?a2+b2=c2三角形是直角三角形3.欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子?在Rt△ABC中,AB2=AC2+BC2=122+52=132;AB=13米.提出问题,学生探究热情高涨,为下一环节奠定了良好基础.合作探究蚂蚁爬行的最短(1)自己做一个圆柱,尝试从点A到点B沿圆柱侧面画出几条路线,你觉得哪条路线最短呢?(2)如图所示,将圆柱侧面剪开展成一个长方形,从点A到点B的最短路线是什么?你画对了吗?师:想一想为什么线段AB是最短的路线?(3)蚂蚁从点A出发,想吃到点B处的食物,它沿圆柱侧面爬行的最短路程是多少?已知圆柱的高是12,∴AA'=12;底面周长是18,∴A'B=9;∴AB2=AA'2+A'B2=144+81=225,∴AB=15答:爬行的最短路程是15cm。
【总结提高】求圆柱侧面上两点间的最短路线长的方法:路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.生:两点之间,线段最短【解】设滑道AC的长度为xm,则AB的长度为xm,AE的长度为(x-1)m,在Rt△ACE中,∠AEC=90°,由勾股定理得AE2+CE2=AC2,即(x-1)2+32=x2,解得x=5.故滑道AC的长度为5m.1.如图,正方体的边长为1,一只蚂蚁沿正方体的表面从一个顶点A爬行到另一个顶点B,则蚂蚁爬行的最短路程的平方是( D )。
A.2 B.3 C.4 D.52.已知A,B,C三地位置如图所示,∠C=90°,A,C两地的距离是4 km,B,C两地的距离是3 km,则A,B两地的距离是__5KM______;若A地在C地的正东方向,则B地在C地的____正北____方向.3.甲、乙两位探险者,到沙漠进行探险。
北师大版八上数学专题一勾股定理(内含答案详解)

北师大版八上数学专题一勾股定理(内含答案详解)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(北师大版八上数学专题一勾股定理(内含答案详解))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为北师大版八上数学专题一勾股定理(内含答案详解)的全部内容。
BS 八上数学专题一勾股定理一.选择题(共14小题)1.在Rt△ABC中,若斜边AB=3,则AC2+BC2等于()A.6B.9C.12D.182.在△ACB中,若AB=AC=5,BC=6,则△ABC的面积为()A.6B.8C.12D.243.直角三角形的两边长分别为6和8,那么它的第三边长度为()A.8B.10C.8或2D.10或24.如图,两个较大正方形的面积分别为225、289,则字母A所代表的正方形的面积为()A.4B.8C.16D.645.如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB的长为()A.B.2C.D.26.如图Rt△ABC,∠C=90°,分别以各边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”;当AC=3,BC=4时,计算阴影部分的面积为()A.6B.6πC.10πD.127.△ABC的三边长为a,b,c,已知a:b=1:2,且斜边c=2,则△ABC的周长为()A.3B.5C.6D.68.如图,线段AD是直角三角形ABC斜边上的高,AB=6,AC=8,则AD=()A.4B.4.5C.4.8D.59.如图,在四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,分别以AB、BC、DC为边向外作正方形,它们的面积分别为S1、S2、S3.若S2=48,S3=9,则S1的值为()A.18B.12C.9D.310.下列各组数据分别为三角形的三边长,不能组成直角三角形的是()A.9,12,15B.7,24,25C.6,8,10D.3,5,711.如图,三级台阶,每一级的长、宽、高分别为8dm、3dm、2dm.A和B是这个台阶上两个相对的端点,点A处有一只蚂蚁,想到点B处去吃可口的食物,则蚂蚁沿着台阶面爬行到点B的最短路程为()A.15 dm B.17 dm C.20 dm D.25 dm12.在一次课外社会实践中,王强想知道学校旗杆的高,他发现旗杆上的绳子垂到地面上还多1m,当他把绳子的下端拉开5m后,发现下端刚好接触地面,则旗杆的高为()A.13 m B.12 m C.4 m D.10 m13.如图,圆柱的底面周长是14cm,圆柱高为24cm,一只蚂蚁如果要沿着圆柱的表面从下底面点A爬到与之相对的上底面点B,那么它爬行的最短路程为()A.14cm B.15cm C.24cm D.25cm14.一架长25dm的梯子,斜立在一竖直的墙上,这时梯足距离墙底端7dm,如果梯子的顶端沿墙下滑4dm,那么梯足将滑()A.9 dm B.15 dm C.5 dm D.8 dm二.填空题(共6小题)15.探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.16.如果一个三角形的三边长之比为9:12:15,且周长为72cm,则它的面积为cm2.17.如图,AC⊥BC,AC=6,BC=8,AB=10,则点C到线段AB的距离是.18.已知两线段的长分别是5cm、3cm,则第三条线段长是时,这三条线段构成直角三角形19.小东拿着一根长竹竿进一个宽为4米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高0。
北师大版八年级上册 1.3 勾股定理的应用 学案设计(无答案)

第2讲勾股定理的应用【教学目标】知识目标:熟练使用勾股定理进行相关计算,会利用勾股定理计算路程的最短距离问题。
重难点:勾股定理的运用思维目标:数形结合思想、方程思想、转化思想。
【知识梳理】1.勾股定理的应用(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2.平面展开-最短路径问题(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.3.常见立体图形的平面展开图。
圆柱侧面展开图为长方形【典例讲解】类型一、圆柱中的最短路径问题:圆柱侧面展开图为长方形,最短路径及长方形的对角线。
例1.为筹备迎新生晚会,同学们设计了一个圆筒形灯罩,底色漆成白色,然后缠绕红色油纸,如图,已知圆筒高108cm,其截面周长为36cm,如果在表面缠绕油纸4圈,应裁剪多长油纸。
练习1.如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()A.6cm B.12cm C.13cm D.16cm例2. 如图,长方体的长EF为15cm,宽AE为10cm,高AD为20cm,点B到点C的距离为5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距高是多少?练习2.如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.A.4.8 B. C.5 D.【当堂检测】1.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米2.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树米之外才是安全的.3. 已知一直角三角形的木板,三边的平方和为1800cm’,则斜边长为()A.80mB.30mC.90 mD.120 m4. 如图是一个圆柱形饮料罐,底面半径是5,高是12.上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤135. 轮船在大海中航行,它从点A出发,向正北方向航行20km.遇到冰山后折向正东方向航行15km,则此时轮船与点A的距离为 km.6. 如图是一个三级台阶,它的每一级的长、宽和高分别为55 dm,10 dm和6dm.A和B是这个台阶的两个相对的端点,点A上有一只蚂蚁,想到点B去吃可口的蜜糖,则蚂蚁从点A出发,沿若台阶面爬到点B,最短路线 dm。
北师大版八年级数学上勾股定理

初中数学试卷勾股定理一探索勾股定理(一)勾股定理知识链接(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a2=c2-b2,b2=c2-a2及c2=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.同步练习1.如图所示,在Rt△ABC中,∠A=90°,BD平分∠ABC,交AC于点D,且AB=4,BD=5,则点D到BC的距离是()A.3 B.4 C.5 D.62.(2014•乐山)如图,△ABC 的顶点A 、B 、C 在边长为1的正方形网格的格点上,BD ⊥AC 于点D .则BD 的长为( )A .532B .543C .554D .5533.(2013•黔西南州)一直角三角形的两边长分别为3和4.则第三边的长为( )A .5B .7 C .5 D .5或74.(2013•六合区一模)如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为3和4,则b 的面积为( )A .3B .4C .5D .75.(2014•增城市一模)在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,AC=20,BC=15,(1)求AB 的长;(2)求CD 的长.6.(2014•金华模拟)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”.已知Rt△ABC中,∠B=90°,较短的一条直角边边长为1,如果Rt△ABC是“有趣三角形”,那么这个三角形“有趣中线”长等于.7.(2014•本溪一模)如图,在△ABC,∠C=90°,∠B=15°,AB的中垂线DE交BC于D,E为垂足,若BD=10cm,则AC等于()A.10cm B.8cm C.5cm D.2.5cm8.(2014•徐汇区二模)如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=5,BO=4,则AO的长为.9.(2014•香坊区三模)如图,在Rt△ABC中,∠ACB=90°,BD平分∠ABC.若CD=3,BC+AB=16,则△ABC的面积为()A.16 B.18 C.24 D.3210.(2014•南充)如图,有一矩形纸片ABCD,AB=8,AD=17,将此矩形纸片折叠,使顶点A落在BC 边的A′处,折痕所在直线同时经过边AB、AD(包括端点),设BA′=x,则x的取值范围是.11.(2014•房山区一模)阅读下列材料:小明遇到这样一个问题:已知:在△ABC中,AB,BC,AC三边的长分别为5、10、13,求△ABC的面积.小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出△ABC的面积.他把这种解决问题的方法称为构图法.请回答:(1)图1中△ABC的面积为______;参考小明解决问题的方法,完成下列问题:(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).2、29的格点△DEF;①利用构图法在答题卡的图2中画出三边长分别为13、5②计算△DEF的面积为______.(3)如图3,已知△PQR,以PQ,PR为边向外作正方形PQAF,PRDE,连接EF.若PQ=22,PR=13,QR=17,则六边形AQRDEF的面积为______.(二)勾股定理证明知识链接(1)勾股定理的证明方法有很多种,教材是采用了拼图的方法证明的.先利用拼图的方法,然后再利用面积相等证明勾股定理.(2)证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理得到勾股定理.同步练习1.用四个边长均为a、b、c的直角三角板,拼成如图中所示的图形,则下列结论中正确的是()A.c2=a2+b2 B.c2=a2+2ab+b2 C.c2=a2-2ab+b2 D.c2=(a+b)2.2.下列选项中,不能用来证明勾股定理的是()A.B.C.D.3.(2014•满洲里市模拟)我国古代数学家赵爽的“勾股方圆图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a和b,那么(a+b)2的值为()A.49 B.25 C.13 D.14.(2012•宁波)勾股定理是几何中的一个重要定理.在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,∠BAC=90°,AB=3,AC=4,点D,E,F,G,H,I都在矩形KLMJ的边上,则矩形KLMJ的面积为()A.90 B.100 C.110 D.1215、(2011•温州)我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它是由八个全等的直角三角形拼接而成.记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=10,则S2的值是______.6.由8个相同的直角三角形(图中带阴影的三角形)与中间的小正方形拼成的一个大正方形.如果最大的正方形的面积是25,最小正方形的面积是1,直角三角形的较短直角边长为a,较长直角边长为b,那么222a3-333b3=______.7.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为____ __,该定理的结论其数学表达式是____ __.8.如图,网格中的图案是美国总统Garfield于1876年给出的一种验证某个著名结论的方法:(1)请你画出直角梯形EDBC绕EC中点O顺时针方向旋转180°的图案,你会得到一个美丽的图案.(阴影部分不要涂错).(2)若网格中每个小正方形边长为单位1,旋转后A、B、D的对应点为A′、B′、D′,求四边形ACA′E的面积?(3)根据旋转前后形成的这个美丽图案,你能说出这个著名的结论吗?若能,请你写出这个结论.9.(1)如图1是一个重要公式的几何解释.请你写出这个公式;(2)如图2,Rt△ABC≌Rt△CDE,∠B=∠D=90°,且B,C,D三点共线.试证明∠ACE=90°;(3)请利用(1)中的公式和图2证明勾股定理.10..如图,已知正方形ABCD和CEFG,连接DE,以DE为边作正方形EDHI,试用该图形证明勾股定理:CD2+CE2=DE2.(三)等腰直角三角形知识链接(1)两条直角边相等的直角三角形叫做等腰直角三角形. (2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,两腰相等,斜边上中线、角平分线、斜边上的高,三线合一;(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r :R=1:2+1.同步练习1.如图,在Rt △ABC 中,AB=AC ,∠A=90°,BD 是角平分线,DE ⊥BC ,垂足为点E .若CD=25,则AD 的长是( )A .225B .22C .25 D .52.在△ABC 中,BC :AC :AB=1:1:2,则△ABC 是( )A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形3.如图,等腰直角三角形ABC 中,AC=BC >3,点M 在AC 上,点N 在CB 的延长线上,MN 交AB 于点O ,且AM=BN=3,则S △AMO 与S △BNO 的差是( )A .9B .4.5C .0D .因为AC 、BC 的长度未知,所以无法确定4.(2011•万州区模拟)如图,△ACD 和△AEB 都是等腰直角三角形,∠EAB=∠CAD=90°,下列五个结论:①EC=BD ;②EC ⊥BD ;③S 四边形EBCD = 21EC •BD ;④S △ADE =S △ABC ;⑤△EBF ∽△DCF ;其中正确的有( )A .①②④⑤B .①②③④C .①②③⑤D .①②③④⑤5.如图,已知△ABC 是腰长为1的等腰直角三形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,则第2015个等腰直角三角形的斜边长是____ __.6.如图,在等腰直角△ACB 中,∠ACB=90°,O 是斜边AB 的中点,点D 、E 分别在直角边AC 、BC 上,且∠DOE=90°,DE 交OC 于点P .有下列结论:①∠DEO=45°;②△AOD ≌△COE ;③S 四边形CDOE = 21S △ABC ;④OD 2=OP •OC . 其中正确的结论序号为____ __.(把你认为正确的都写上)7.如图,a ∥b ,点A 在直线a 上,点C 在直线b 上,∠BAC=90°,AB=AC ,若∠1=20°,则∠2的度数为____ __.8.(2014•徐州模拟)如图,在△ABC中,∠A=90°,∠C=45°,AB=6cm,∠ABC的平分线交AC于点D,DE⊥BC,垂足为E,则DC+DE= ____ _cm.9.(2014•温州五校一模)如图,在△ABC中,AC=BC,∠ACB=90°,D为AC延长线上一点,点E在BC 边上,且CE=CD,连结AE、BD、DE.①求证:△ACE≌△BCD;②若∠CAE=25°,求∠BDE的度数.二能得到直角三角形吗(一)勾股定理的逆定理知识链接(1)勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.说明:①勾股定理的逆定理验证利用了三角形的全等.②勾股定理的逆定理将数转化为形,作用是判断一个三角形是不是直角三角形.必须满足较小两边平方的和等于最大边的平方才能做出判断.(2)运用勾股定理的逆定理解决问题的实质就是判断一个角是不是直角.然后进一步结合其他已知条件来解决问题.注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.同步练习1.(2012•广西)已知三组数据:①2,3,4;②3,4,5;③1,3,2.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有()A.②B.①②C.①③D.②③2.(2012•连云港一模)如图,在5×5的正方形网格中,以AB为边画直角△ABC,使点C在格点上,满足这样条件的点C的个数()A.6 B.7 C.8 D.93.(2014•江西模拟)下列各三角形中,面积为无理数的是()A.B.C.D.4.下列能构成直角三角形三边长的是( )A .1,1,2B .5,8,10C .5,12,13D .6,7,85.(2012•松北区二模)如图△ABC 中,AB=5,AC=3,中线AD=2,则BC 长为____ _.6.在直角三角形中,满足条件的三边长可以是____ _(写出一组即可).7.三角形的三边a ,b ,c 满足(a+b )2=c 2+2ab ,则这个三角形是____ _三角形.8.(2014•萧山区模拟)如图,在四边形ABCD 中,∠B=90°,∠BCD=135°,且AB=3cm ,BC=7cm ,CD=25cm ,点M 从点A 出发沿折线A-B-C-D 运动到点D ,且在AB 上运动的速度为21cm/s ,在BC 上运动的速度为1cm/s ,在CD 上运动的速度为2cm/s ,连接AM 、DM ,当点M 运动时间为____ _(s )时,△ADM 是直角三角形.9.(2014•高安市模拟)如图,方格纸中的每个正方形的边长均为1,点A 、B 在小正方形的顶点上,在图中画△ABC (点C 在小正方形的顶点上),使△ABC 为直角三角形(要求画两个且不全等)10.(2014•顺义区一模)在△ABC 中,BC=a ,AC=b ,AB=c ,设c 为最长边.当a 2+b 2=c 2时,△ABC 是直角三角形;当a 2+b 2≠c 2时,利用代数式a 2+b 2和c 2的大小关系,可以判断△ABC 的形状(按角分类).(1)请你通过画图探究并判断:当△ABC 三边长分别为6,8,9时,△ABC 为______三角形;当△ABC 三边长分别为6,8,11时,△ABC 为______三角形.(2)小明同学根据上述探究,有下面的猜想:“当a 2+b 2>c 2时,△ABC 为锐角三角形;当a 2+b 2<c 2时,△ABC 为钝角三角形.”请你根据小明的猜想完成下面的问题:当a=2,b=4时,最长边c 在什么范围内取值时,△ABC 是直角三角形、锐角三角形、钝角三角形?(二)勾股数三勾股定理应用(一)勾股定理的应用知识链接(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.同步练习1.已知小龙、阿虎两人均在同一地点,若小龙向北直走160公尺,再向东直走80公尺后,可到神仙百货,则阿虎向西直走多少公尺后,他与神仙百货的距离为340公尺?()A.100 B.180 C.220 D.2602.如图,为了测得湖两岸A点和B点之间的距离,一个观测者在C点设桩,使∠ABC=90°,并测得AC 长20米,BC长16米,则A点和B点之间的距离为()米.4A.25 B.12 C.13 D.33.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为()A.5米B.3米C.(5+1)米D.3米4.(2014•和平区一模)如图,在两面墙之间有一个底端在A点的梯子,当它靠在一侧墙上时,梯子的顶端在B点,当它靠在另一侧墙时,梯子的顶端在D点.已知∠BAC=60°,∠DAE=45°.点D到地面的垂直距离DE=32m,则点B到地面的垂直距离BC为___ .5.(2013•池州一模)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为___ .6.(2014•西湖区一模)如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,开始时B到墙C的距离为0.7米,若梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离相等,则下滑的距离是___ 米.7.(2014•三门县一模)如图,这是某种牛奶的长方体包装盒,长、宽、高分别为5cm、4cm、12cm,插吸管处的出口到相邻两边的距离都是1cm,为了设计配套的直吸管,要求插入碰到底面后,外露的吸管长度要在3cm至5cm间(包括3cm与5cm,不计吸管粗细及出口的大小),则设计的吸管总长度L的范围是__ _.8.(2014•西宁)课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图.(1)求证:△ADC≌△CEB;(2)从三角板的刻度可知AC=25cm,请你帮小明求出砌墙砖块的厚度a的大小(每块砖的厚度相等).9.(2014•广东一模)如图,小丽想知道自家门前小河的宽度,于是她按以下办法测出了如下数据:小丽在河岸边选取点A,在点A的对岸选取一个参照点C,测得∠CAD=30°;小丽沿岸向前走30m选取点B,并测得∠CBD=60°.请根据以上数据,用你所学的数学知识,帮小丽计算小河的宽度.10.(2013•本溪)校车安全是近几年社会关注的热点问题,安全隐患主要是超速和超载.某中学九年级数学活动小组进行了测试汽车速度的实验,如图,先在笔直的公路l旁选取一点A,在公路l上确定点B、C,使得AC⊥l,∠BAC=60°,再在AC上确定点D,使得∠BDC=75°,测得AD=40米,已知本路段对校车限速是50千米/时,若测得某校车从B到C匀速行驶用时10秒,问这辆车在本路段是否超速?请说明理由(参考数据:2=1.41,3=1.73)(二)平面展开----最短路径问题 知识链接(1)平面展开-最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.同步练习1.如图,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC=6cm ,点P 是母线BC 上一点,且PC=32BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(4+π6)cmB .5cmC .35cmD .7cm2.如图,若圆柱的底面周长是30cm ,高是40cm ,从圆柱底部A 处沿侧面缠绕一圈丝线到顶部B 处做装饰,则这条丝线的最小长度是( )A .80cmB .70cmC .60cmD .50cm3.如图,为了庆祝“五•一”,学校准备在教学大厅的圆柱体柱子上贴彩带,已知柱子的底面周长为1m ,高为3m .如果要求彩带从柱子底端的A 处均匀地绕柱子4圈后到达柱子顶端的B 处(线段AB 与地面垂直),那么应购买彩带的长度为( )A . 45mB .3mC .4mD .5m4.如图,圆柱底面半径为π2cm ,高为9cm ,点A 、B 分别是圆柱两底面圆周上的点,且A 、B 在同一母线上,用一根棉线从A 点顺着圆柱侧面绕3圈到B 点,则这根棉线的长度最短为( ) A .12cm B . 97cm C .15cm D . 21cm5.(2014•博山区模拟)如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是()A.3 B.2+2C.10D.46.(2013•荆州模拟)如图所示,有一圆柱形油罐,现要以油罐底部的一点A环绕油罐建梯子(图中虚线),并且要正好建到A点正上方的油罐顶部的B点,已知油罐高AB=5米,底面的周长是的12米,则梯子最短长度为___ 米.7.(2013•盐城模拟)如图,圆柱形玻璃杯高为12cm、底面周长为18cm,在杯内离杯底4cm的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为___ cm.8.(2014•西湖区一模)如图,是一个无盖玻璃容器的三视图,其中俯视图是一个正六边形,A、B两点均在容器顶部,现有一只小甲虫在容器外A点正下方距离顶部5cm处,要爬到容器内B点正下方距离底部5cm处,则这只小甲虫最短爬行的距离是___ cm.9.(2013•贵阳模拟)请阅读下列材料:问题:如图1,圆柱的底面半径为1dm,BC是底面直径,圆柱高AB为5dm,求一只蚂蚁从点A出发沿圆柱表面爬行到点C的最短路线,小明设计了两条路线:路线1:高线AB+底面直径BC,如图1所示.路线2:侧面展开图中的线段AC,如图2所示.(结果保留π)(1)设路线1的长度为L1,则L12=______.设路线2的长度为L2,则L22=______.所以选择路线______(填1或2)较短.(2)小明把条件改成:“圆柱的底面半径为5dm,高AB为1dm”继续按前面的路线进行计算.此时,路线1:L12=______.路线2:L22=______.所以选择路线______(填1或2)较短.(3)请你帮小明继续研究:当圆柱的底面半径为2dm,高为hdm时,应如何选择上面的两条路线才能使蚂蚁从点A出发沿圆柱表面爬行到点C的路线最短.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金戈铁制卷
初中数学试卷
勾股定理的应用
一、选择题(共8小题)
1.如图,在Rt△ABC中,∠C=90°,AC=3.将其绕B点顺时针旋转一周,则分别以BA、BC为半
径的圆形成一圆环.该圆环的面积为( )
A.π B.3π C.9π D.6π
2.为迎接新年的到来,同学们做了许多拉花布置教室,准备召开新年晚会,小刘搬来一架高2.5米
的木梯,准备把拉花挂到2.4米高的墙上,则梯脚与墙角距离应为( )
A.0.7米 B.0.8米 C.0.9米 D.1.0米
3.小华和小刚兄弟两个同时从家去同一所学校上学,速度都是每分钟走50米.小华从家到学校走
直线用了10分钟,而小刚从家出发先去找小明再到学校(均走直线),小刚到小明家用了6分钟,
小明家到学校用了8分钟,小刚上学走了个( )
A.锐角弯 B.钝角弯 C.直角弯 D.不能确定
金戈铁制卷
4.如图,是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达
底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15
5.一个木工师傅测量了一个等腰三角形木板的腰、底边和高的长,但他把这三个数据与其它的数据
弄混了,请你帮助他找出来,是第( )组.
A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4
6.如图,王大伯家屋后有一块长12m,宽8m的矩形空地,他在以长边BC为直径的半圆内种菜,
他家养的一只羊平时拴A处的一棵树上,为了不让羊吃到菜,拴羊的绳长可以选用( )
A.3m B.5m C.7m D.9m
7.如图,带阴影的长方形面积是( )
A.9 cm2 B.24 cm2 C.45 cm2 D.51 cm2
8.如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长
方体的表面从点A爬到点B,需要爬行的最短距离是( )
金戈铁制卷
A.5 B.25 C.10+5 D.35
二、填空题(共5小题)
9.如果直角三角形的斜边与一条直角边分别是15cm和12cm,那么这个直角三角形的面积是
______.
10.如图,有一个圆柱,它的高等于16cm,底面半径等干4cm,在圆柱下底面的A点有一只蚂蚁,
它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是______cm.(π取3)
11.如图:知:AM⊥MN,BN⊥MN,垂足分别为M,N,点C是MN上使AC+BC的值最小的
点.若AM=3,BN=5,MN=15,则AC+BC=______.
12.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm、和10cm的长方体无
盖盒子中,则细木棒露在盒外面的最短长度是______cm.
金戈铁制卷
13.如图,有一个圆柱形杯子,底面周长为12cm,高为8cm,A点在内壁距杯口2cm处,在A
点正对面的外壁距杯底2cm的B处有一只小虫,小虫要到A处饱餐一顿至少要走______cm.(杯
子厚度忽略不计)
三、解答题(共4小题,满分38分)
14.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m,当他把绳子的下端拉开
5m后,发现下端刚好接触地面,求旗杆的高.
15.如图,在一棵树的10米高B处有两只猴子,其中一只爬下树走向离树20米的池塘C,而另一
只爬到树顶D后直扑池塘C,结果两只猴子经过的距离相等,问这棵树有多高?
金戈铁制卷
16.有一个长、宽、高分别为12cm,4cm,3cm的长方体铁盒,铁盒内能放入的最长的木棒长为
多少?
17.印度数学家什迦逻(1141年﹣1225年)曾提出过“荷花问题”:
“平平湖水清可鉴,面上半尺生红莲;
出泥不染亭亭立,忽被强风吹一边,
渔人观看忙向前,花离原位二尺远;
能算诸君请解题,湖水如何知深浅”
请用学过的数学知识回答这个问题.
金戈铁制卷
答案
一、选择题(共8小题)
1.C;2.A;3.C;4.C;5.C;6.A;7.C;8.B;
二、填空题(共5小题)
9.54cm2;10.20;11.17;12.5;13.10;
三、解答题(共4小题,满分38分)
14. 12m ;15. 15 ;16. 13(cm) ;
17.