2010年高考数学试题分类汇编:向量含详解

合集下载

十年高考真题分类汇编(2010-2019) 数学专题20空间向量(含答案及解析)

十年高考真题分类汇编(2010-2019) 数学专题20空间向量(含答案及解析)

十年高考真题分类汇编(2010—2019)数学专题20空间向量1.(2014·全国2·理T11)直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成角的余弦值为( )A.110B.25C.√3010D.√22 【答案】C【解析】如图,以点C 1为坐标原点,C 1B 1,C 1A 1,C 1C 所在的直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 不妨设BC=CA=CC 1=1,可知点 A (0,1,1),N (0,12,0),B (1,0,1),M (12,12,0).∴AN ⃗⃗⃗⃗⃗⃗ =(0,-1,-1),BM ⃗⃗⃗⃗⃗⃗ =(-1,1,-1). ∴cos <AN ⃗⃗⃗⃗⃗⃗ ,BM ⃗⃗⃗⃗⃗⃗ >=AN ⃗⃗⃗⃗⃗⃗⃗ ·BM⃗⃗⃗⃗⃗⃗⃗ |AN ⃗⃗⃗⃗⃗⃗⃗ ||BM ⃗⃗⃗⃗⃗⃗⃗ |=√3010. 根据AN ⃗⃗⃗⃗⃗⃗ 与BM ⃗⃗⃗⃗⃗⃗ 的夹角及AN 与BM 所成角的关系可知,BM 与AN 所成角的余弦值为√30.2.(2013·北京·文T8)如图,在正方体ABCD-A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A.3个B.4个C.5个D.6个【答案】B【解析】设正方体的棱长为a.建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a ,0),B (a ,a ,0),B 1(a ,a ,a ),A (a ,0,0),A 1(a ,0,a ),P (23a ,23a ,13a),则|PB ⃗⃗⃗⃗⃗ |=√19a 2+19a 2+19a 2=√33a , |PD ⃗⃗⃗⃗⃗ |=√49a 2+49a 2+19a 2=a , |PD 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+49a 2+49a 2=2√33a , |PC 1⃗⃗⃗⃗⃗⃗⃗ |=|PA 1⃗⃗⃗⃗⃗⃗⃗ |=√49a 2+19a 2+49a 2=a , |PC ⃗⃗⃗⃗⃗ |=|PA ⃗⃗⃗⃗⃗ |=√49a 2+19a 2+19a 2=√63a ,|PB 1⃗⃗⃗⃗⃗⃗⃗ |=√19a 2+19a 2+49a 2=√63a ,3.(2012·陕西·理T5)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA=CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为( )A.√55B.√53C.2√55D.35【答案】A【解析】不妨设CB=1,则CA=CC 1=2.由题图知,A 点的坐标为(2,0,0),B 点的坐标为(0,0,1),B 1点的坐标为(0,2,1),C 1点的坐标为(0,2,0).所以BC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,-1),AB 1⃗⃗⃗⃗⃗⃗⃗ =(-2,2,1).所以cos <BC 1⃗⃗⃗⃗⃗⃗⃗ ,AB 1⃗⃗⃗⃗⃗⃗⃗ >=3√5=√55. 4.(2010·大纲全国·文T6)直三棱柱ABC-A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线BA 1与AC 1所成的角等于( )A.30°B.45°C.60°D.90°【答案】C【解析】不妨设AB=AC=AA 1=1,建立空间直角坐标系如图所示,则B(0,-1,0),A 1(0,0,1),A(0,0,0),C 1(-1,0,1),∴BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,1,1),AC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1).∴cos <BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |BA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |=2×2=12. ∴<BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >=60°.∴异面直线BA 1与AC 1所成的角为60°.5.(2019·天津·理T17)如图,AE ⊥平面ABCD,CF ∥AE,AD ∥BC,AD ⊥AB,AB=AD=1,AE=BC=2.(1)求证:BF ∥平面ADE;(2)求直线CE 与平面BDE 所成角的正弦值;(3)若二面角E-BD-F 的余弦值为13,求线段CF 的长.【解析】(1)证明依题意,可以建立以A 为原点,分别以AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ ,AE⃗⃗⃗⃗⃗ 的方向为x 轴,y 轴,z 轴正方向的空间直角坐标系(如图),可得A(0,0,0),B(1,0,0),C(1,2,0),D(0,1,0),E(0,0,2).设CF=h(h>0),则F(1,2,h).依题意,AB⃗⃗⃗⃗⃗ =(1,0,0)是平面ADE 的法向量, 又BF⃗⃗⃗⃗⃗ =(0,2,h ),可得BF ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ =0,又因为直线BF ⊄平面ADE ,所以BF ∥平面ADE. (2)解依题意,BD ⃗⃗⃗⃗⃗⃗ =(-1,1,0),BE⃗⃗⃗⃗⃗ =(-1,0,2),CE ⃗⃗⃗⃗⃗ =(-1,-2,2). 设n =(x ,y ,z )为平面BDE 的法向量,则{n ·BD ⃗⃗⃗⃗⃗⃗ =0,n ·BE ⃗⃗⃗⃗⃗ =0,即{-x +y =0,-x +2z =0,不妨令z=1, 可得n =(2,2,1).因此有cos <CE ⃗⃗⃗⃗⃗ ,n >=CE ⃗⃗⃗⃗⃗⃗ ·n |CE⃗⃗⃗⃗⃗⃗ ||n |=-49. 所以,直线CE 与平面BDE 所成角的正弦值为49.(3)解设m =(x ,y ,z )为平面BDF 的法向量,则{m ·BD ⃗⃗⃗⃗⃗⃗ =0,m ·BF⃗⃗⃗⃗⃗ =0,即{-x +y =0,2y +ℎz =0, 不妨令y=1,可得m =1,1,-2ℎ.由题意,有|cos <m,n >|=|m ·n ||m ||n |=|4-2ℎ|3√2+4ℎ2=13, 解得h=87,经检验,符合题意.所以,线段CF 的长为87.6.(2019·浙江·T 19)如图,已知三棱柱ABC-A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC=90°,∠BAC=30°,A 1A=A 1C=AC ,E ,F 分别是AC ,A 1B 1的中点.(1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】方法一:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC.又因为A 1F ∥AB ,∠ABC=90°,故BC ⊥A 1F.所以BC ⊥平面A 1EF.因此EF ⊥BC.(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC=4,则在Rt △A 1EG 中,A 1E=2√3,EG=√3.由于O 为A 1G 的中点,故EO=OG=A 1G 2=√152, 所以cos ∠EOG=EO 2+OG 2-EG 22EO ·OG =35.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A=A 1C ,E 是AC 的中点,所以A 1E ⊥AC.又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC=AC ,所以,A 1E ⊥平面ABC.如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E-xyz.不妨设AC=4,则A 1(0,0,2√3),B (√3,1,0),B 1(√3,3,2√3),F √32,32,2√3,C (0,2,0).因此,EF ⃗⃗⃗⃗⃗ =√32,32,2√3,BC⃗⃗⃗⃗⃗ =(-√3,1,0). 由EF⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =0得EF ⊥BC.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ⃗⃗⃗⃗⃗ =(-√3,1,0),A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0.2,-2√3).设平面A 1BC 的法向量为n =(x ,y ,z ).由{BC ⃗⃗⃗⃗⃗ ·n =0,A 1C ⃗⃗⃗⃗⃗⃗⃗ ·n =0,得{-√3x +y =0,y -√3z =0. 取n =(1,√3,1),故sin θ=|cos <EF ⃗⃗⃗⃗⃗ ·n >|=|EF⃗⃗⃗⃗⃗⃗ ·n ||EF ⃗⃗⃗⃗⃗⃗ |·|n |=4.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.7.(2019·全国1·理T18)如图,直四棱柱ABCD-A 1B 1C 1D 1的底面是菱形,AA 1=4,AB=2,∠BAD=60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求二面角A-MA 1-N 的正弦值.【解析】(1)连接B 1C ,ME.因为M ,E 分别为BB 1,BC 的中点,所以ME ∥B 1C ,且ME= B 1C.又因为N 为A 1D 的中点,所以ND= A 1D.由题设知A 1B 1 DC ,可得B 1C A 1D ,故ME ND ,因此四边形MNDE 为平行四边形,MN ∥ED.又MN ⊄平面EDC 1,所以MN ∥平面C 1DE.(2)由已知可得DE ⊥DA.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz,则A (2,0,0),A 1(2,0,4),M (1,√3,2),N (1,0,2),A 1A ⃗⃗⃗⃗⃗⃗⃗ =(0,0,-4),A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,√3,-2),A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =(-1,0,-2),MN ⃗⃗⃗⃗⃗⃗⃗ =(0,-√3,0).设m =(x ,y ,z )为平面A 1MA 的法向量,则{m ·A 1M ⃗⃗⃗⃗⃗⃗⃗⃗ =0,m ·A 1A ⃗⃗⃗⃗⃗⃗⃗ =0.所以{-x +√3y -2z =0,-4z =0.可取m =(√3,1,0). 设n =(p ,q ,r )为平面A 1MN 的法向量,则{n ·MN ⃗⃗⃗⃗⃗⃗⃗ =0,n ·A 1N ⃗⃗⃗⃗⃗⃗⃗⃗ =0. 所以{-√3q =0,-p -2r =0.可取n =(2,0,-1). 于是cos <m,n >=m ·n|m ||n |=√32×√5=√155,所以二面角A-MA 1-N 的正弦值为√105.8.(2019·全国2·理T17)如图,长方体ABCD-A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE=A 1E ,求二面角B-EC-C 1的正弦值.【解析】(1)证明由已知得,B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故B 1C 1⊥BE.又BE ⊥EC 1,所以BE ⊥平面EB 1C 1.(2)解由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以∠AEB=45°,故AE=AB ,AA 1=2AB.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|DA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系D-xyz ,则C (0,1,0),B (1,1,0),C 1(0,1,2),E (1,0,1),CB ⃗⃗⃗⃗⃗ =(1,0,0),CE ⃗⃗⃗⃗⃗ =(1,-1,1),CC 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2).{CB ⃗⃗⃗⃗⃗ ·n =0,CE ⃗⃗⃗⃗⃗ ·n =0,即{x =0,x -y +z =0, 所以可取n=(0,-1,-1).设平面ECC 1的法向量为m =(x ,y ,z ),则{CC 1⃗⃗⃗⃗⃗⃗⃗ ·m =0,CE ⃗⃗⃗⃗⃗ ·m =0,即{2z =0,x -y +z =0, 所以可取m =(1,1,0).于是cos <n,m >=n ·m |n ||m |=-12. 所以,二面角B-EC-C 1的正弦值为√32. 9.(2019·全国3·理T19)图1是由矩形ADEB,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC 折起使得BE 与BF 重合,连接DG,如图2.(1)证明:图2中的A,C,G,D 四点共面,且平面ABC ⊥平面BCGE;(2)求图2中的二面角B-CG-A 的大小.【解析】(1)证明由已知得AD ∥BE,CG ∥BE,所以AD ∥CG,故AD,CG 确定一个平面,从而A,C,G,D 四点共面.由已知得AB ⊥BE,AB ⊥BC,故AB ⊥平面BCGE.又因为AB ⊂平面ABC,所以平面ABC ⊥平面BCGE.(2)解作EH ⊥BC,垂足为H.因为EH ⊂平面BCGE,平面BCGE ⊥平面ABC,所以EH ⊥平面ABC.由已知,菱形BCGE 的边长为2,∠EBC=60°,可求得BH=1,EH=√3.以H 为坐标原点,HC ⃗⃗⃗⃗⃗ 的方向为x 轴的正方向,建立如图所示的空间直角坐标系H-xyz,则A (-1,1,0),C (1,0,0),G (2,0,√3),CG⃗⃗⃗⃗⃗ =(1,0,√3),AC ⃗⃗⃗⃗⃗ =(2,-1,0).则{CG ⃗⃗⃗⃗⃗ ·n =0,AC⃗⃗⃗⃗⃗ ·n =0,即{x +√3z =0,2x -y =0. 所以可取n =(3,6,-√3).又平面BCGE 的法向量可取为m =(0,1,0),所以cos <n,m >=n ·m|n ||m |=√32.因此二面角B-CG-A 的大小为30°.10.(2018·浙江·T 8)已知四棱锥S-ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S-AB-C 的平面角为θ3,则( )A.θ1≤θ2≤θ3B.θ3≤θ2≤θ1C.θ1≤θ3≤θ2D.θ2≤θ3≤θ1【答案】D【解析】当点E 不是线段AB 的中点时,如图,点G 是AB 的中点,SH ⊥底面ABCD,过点H 作HF ∥AB,过点E 作EF ∥BC,连接SG,GH,EH,SF.可知θ1=∠SEF ,θ2=∠SEH ,θ3=∠SGH.由题意可知EF ⊥SF ,故tan θ1=SF EF =SF GH >SH GH=tan θ3. ∴θ1>θ3.又tan θ3=SH GH >SH EH =tan θ2,∴θ3>θ2.∴θ1>θ3>θ2.当点E 是线段AB 的中点时,即点E 与点G 重合,此时θ1=θ3=θ2.综上可知,θ1≥θ3≥θ2.11.(2018·全国3·理T19)如图,边长为2的正方形ABCD 所在的平面与半圆弧CD⏜所在平面垂直,M 是CD ⏜上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC;(2)当三棱锥M-ABC 体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【解析】(1)由题设知,平面CMD ⊥平面ABCD,交线为CD.因为BC ⊥CD,BC ⊂平面ABCD,所以BC ⊥平面CMD,故BC ⊥DM.因为M 为CD⏜上异于C,D 的点,且DC 为直径,所以DM ⊥CM.又BC ∩CM=C,所以DM ⊥平面BMC. 而DM ⊂平面AMD,故平面AMD ⊥平面BMC.(2)以D 为坐标原点, DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz.当三棱锥M-ABC 体积最大时,M 为 CD⏜的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM ⃗⃗⃗⃗⃗⃗ =(-2,1,1),AB ⃗⃗⃗⃗⃗ =(0,2,0),DA ⃗⃗⃗⃗⃗ =(2,0,0).设n=(x,y,z)是平面MAB 的法向量,则{n ·AM ⃗⃗⃗⃗⃗⃗ =0,n ·AB⃗⃗⃗⃗⃗ =0.即{-2x +y +z =0,2y =0. 可取n=(1,0,2),DA ⃗⃗⃗⃗⃗ 是平面MCD 的法向量,因此cos <n,DA ⃗⃗⃗⃗⃗ >=n ·DA ⃗⃗⃗⃗⃗⃗ |n ||DA ⃗⃗⃗⃗⃗⃗ |=√55,sin <n,DA ⃗⃗⃗⃗⃗ >=2√55. 所以面MAB 与面MCD 所成二面角的正弦值是2√55.12.(2018·北京·理T16)如图,在三棱柱ABC-A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB=BC= √5,AC=AA 1=2.(1)求证:AC ⊥平面BEF;(2)求二面角B-CD-C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【解析】(1)证明在三棱柱ABC-A 1B 1C 1中,∵CC 1⊥平面ABC ,∴四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,∴AC ⊥EF.∵AB=BC ,∴AC ⊥BE ,∴AC ⊥平面BEF.(2)解由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.∵CC 1⊥平面ABC ,∴EF ⊥平面ABC. ∵BE ⊂平面ABC ,∴EF ⊥BE.建立如图所示的空间直角坐标系E-xyz.由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).∴CD ⃗⃗⃗⃗⃗ =(2,0,1),CB ⃗⃗⃗⃗⃗ =(1,2,0). 设平面BCD 的法向量为n =(a ,b ,c ), 则{n ·CD⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,∴{2a +c =0,a +2b =0,令a=2,则b=-1,c=-4,∴平面BCD 的法向量n =(2,-1,-4),又平面CDC 1的法向量为EB ⃗⃗⃗⃗⃗ =(0,2,0), ∴cos <n,EB⃗⃗⃗⃗⃗ >=n ·EB ⃗⃗⃗⃗⃗⃗ |n ||EB ⃗⃗⃗⃗⃗⃗ |=-√2121.由图可得二面角B-CD-C 1为钝角,∴二面角B-CD-C 1的余弦值为-√2121. (3)证明平面BCD 的法向量为n=(2,-1,-4), ∵G(0,2,1),F(0,0,2), ∴GF⃗⃗⃗⃗⃗ =(0,-2,1), ∴n ·GF ⃗⃗⃗⃗⃗ =-2,∴n 与GF⃗⃗⃗⃗⃗ 不垂直, ∴FG 与平面BCD 不平行且不在平面BCD 内, ∴FG 与平面BCD 相交.13.(2018·天津·理T17)如图,AD ∥BC 且AD=2BC,AD ⊥CD,EG ∥AD 且EG=AD,CD ∥FG 且CD=2FG,DG ⊥平面ABCD,DA=DC=DG=2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN ∥平面CDE; (2)求二面角E-BC-F 的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【解析】依题意,可以建立以D 为原点,分别以DA ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ ,DG ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M 0,32,1,N (1,0,2).(1)证明:依题意DC ⃗⃗⃗⃗⃗ =(0,2,0),DE ⃗⃗⃗⃗⃗ =(2,0,2). 设n0=(x,y,z)为平面CDE 的法向量, 则{n 0·DC ⃗⃗⃗⃗⃗ =0,n 0·DE⃗⃗⃗⃗⃗ =0,即{2y =0,2x +2z =0,不妨令z=-1,可得n 0=(1,0,-1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,-32,1),可得MN ⃗⃗⃗⃗⃗⃗⃗ ·n 0=0.(2)依题意,可得BC ⃗⃗⃗⃗⃗ =(-1,0,0),BE ⃗⃗⃗⃗⃗ =(1,-2,2),CF ⃗⃗⃗⃗⃗ =(0,-1,2).设n =(x ,y ,z )为平面BCE 的法向量,则{n ·BC⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-x =0,x -2y +2z =0,不妨令z=1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则{m ·BC⃗⃗⃗⃗⃗ =0,m ·CF ⃗⃗⃗⃗⃗ =0,即{-x =0,-y +2z =0,不妨令z=1,可得m =(0,2,1). 因此有cos <m,n >=m ·n |m ||n |=3√1010,于是sin <m,n >=√1010.所以,二面角E-BC-F 的正弦值为√1010. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得BP ⃗⃗⃗⃗⃗ =(-1,-2,h ).易知,DC ⃗⃗⃗⃗⃗ =(0,2,0)为平面ADGE 的一个法向量,故|cos <BP ⃗⃗⃗⃗⃗ ,DC ⃗⃗⃗⃗⃗ >|=|BP ⃗⃗⃗⃗⃗⃗ ·DC ⃗⃗⃗⃗⃗⃗ ||BP ⃗⃗⃗⃗⃗⃗ ||DC ⃗⃗⃗⃗⃗⃗ |=√ℎ+5.由题意,可得√ℎ+5=sin 60°=√32,解得h=√33∈[0,2].所以,线段DP 的长为√33.14.(2018·全国1·理T18)如图,四边形ABCD 为正方形,E,F 分别为AD,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF. (1)证明:平面PEF ⊥平面ABFD; (2)求DP 与平面ABFD 所成角的正弦值.【解析】(1)由已知可得,BF ⊥PF,BF ⊥EF, 所以BF ⊥平面PEF.又BF ⊂平面ABFD,所以平面PEF ⊥平面ABFD. (2)作PH ⊥EF,垂足为H. 由(1)得,PH ⊥平面ABFD.以H 为坐标原点,HF⃗⃗⃗⃗⃗ 的方向为y 轴正方向,|BF ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系H-xyz. 由(1)可得,DE ⊥PE.又DP=2,DE=1,所以PE=√3.又PF=1,EF=2,故PE ⊥PF.可得PH=√32,EH=32.则H (0,0,0),P (0,0,√32),D (-1,-32,0),DP ⃗⃗⃗⃗⃗ =(1,32,√32),HP ⃗⃗⃗⃗⃗⃗ =(0,0,√32)为平面ABFD 的法向量. 设DP 与平面ABFD 所成角为θ, 则sin θ=|HP ⃗⃗⃗⃗⃗⃗ ·DP⃗⃗⃗⃗⃗⃗ |HP ⃗⃗⃗⃗⃗⃗ ||DP ⃗⃗⃗⃗⃗⃗ ||=343=√34.所以DP 与平面ABFD 所成角的正弦值为√34.15.(2018·全国2·理T20)如图,在三棱锥P-ABC 中,AB=BC=2√2,PA=PB=PC=AC=4,O 为AC 的中点. (1)证明:PO ⊥平面ABC;(2)若点M 在棱BC 上,且二面角M-PA-C 为30°,求PC 与平面PAM 所成角的正弦值.【解析】(1)因为AP=CP=AC=4,O 为AC 的中点, 所以OP ⊥AC ,且OP=2√3. 连接OB ,因为AB=BC=√22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB=12AC=2. 由OP2+OB2=PB2知PO ⊥OB.由OP ⊥OB,OP ⊥AC 知PO ⊥平面ABC.(2)如图,以O 为坐标原点,OB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系O-xyz. 由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,2√3),AP ⃗⃗⃗⃗⃗ =(0,2,2√3). 取平面PAC 的法向量OB ⃗⃗⃗⃗⃗ =(2,0,0),由AP ⃗⃗⃗⃗⃗ ·n =0,AM ⃗⃗⃗⃗⃗⃗ ·n =0得 {2y +2√3z =9,ax +(4-a )y =0.可取n =(√3(a-4),√3a ,-a ),所以cos <OB ⃗⃗⃗⃗⃗ ,n >=√3(2√3(a -4)+3a 2+a 2.由已知可得|cos <OB ⃗⃗⃗⃗⃗ ,n >|=√32. 所以√32√3(a -4)+3a 2+a 2=√32,解得a=-4(舍去),a=43. 所以n =(-8√33,4√33,-43).又PC ⃗⃗⃗⃗⃗ =(0,2,-2√3),所以cos <PC ⃗⃗⃗⃗⃗ ,n >=√34. 所以PC 与平面PAM 所成角的正弦值为√34.16.(2018·浙江·T9)如图,已知多面体ABCA 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=1,AB=BC=B 1B=2.(1)证明:AB 1⊥平面A 1B 1C 1;(2)求直线AC 1与平面ABB 1所成的角的正弦值.【解析】解法一(1)证明:由AB=2,AA 1=4,BB 1=2,AA 1⊥AB ,BB 1⊥AB ,得AB 1=A 1B 1=2√2,所以A 1B 12+A B 12=A A 12,故AB 1⊥A 1B 1.由BC=2,BB 1=2,CC 1=1,BC 1⊥BC ,CC 1⊥BC ,得B 1C 1=√5,由AB=BC=2,∠ABC=120°,得AC=2√3,由CC 1⊥AC ,得AC 1=√13,所以A B 12+B 1C 12=A C 12,故AB 1⊥B 1C 1.因此AB 1⊥平面A 1B 1C 1.(2)如图,过点C 1作C 1D ⊥A 1B 1,交直线A 1B 1于点D ,连接AD.由AB 1⊥平面A 1B 1C 1,得平面A 1B 1C 1⊥平面ABB 1,由C 1D ⊥A 1B 1,得C 1D ⊥平面ABB 1,所以∠C 1AD 是AC 1与平面ABB 1所成的角. 由B 1C 1=√5,A 1B 1=2√2,A 1C 1=√21, 得cos ∠C 1A 1B 1=√6√7,sin ∠C 1A 1B 1=√7,所以C 1D=√3,故sin ∠C 1AD=C 1D AC 1=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.解法二(1)证明:如图,以AC 的中点O 为原点,分别以射线OB,OC 为x,y 轴的正半轴,建立空间直角坐标系O-xyz.由题意知各点坐标如下:A (0,-√3,0),B (1,0,0),A 1(0,-√3,4),B 1(1,0,2),C 1(0,√3,1). 因此AB 1⃗⃗⃗⃗⃗⃗⃗ =(1,√3,2),A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(1,√3,-2),A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,-3).由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1B 1. 由AB 1⃗⃗⃗⃗⃗⃗⃗ ·A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =0,得AB 1⊥A 1C 1.所以AB 1⊥平面A 1B 1C 1.(2)设直线AC 1与平面ABB 1所成的角为θ.由(1)可知AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,2√3,1),AB ⃗⃗⃗⃗⃗ =(1,√3,0),BB 1⃗⃗⃗⃗⃗⃗⃗ =(0,0,2). 设平面ABB 1的法向量n =(x ,y ,z ).由{n ·AB ⃗⃗⃗⃗⃗ =0,n ·BB 1⃗⃗⃗⃗⃗⃗⃗ =0,即{x +√3y =0,2z =0,可取n =(-√3,1,0).所以sin θ=|cos <AC 1⃗⃗⃗⃗⃗⃗⃗ ,n >|=|AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n ||AC 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ |·|n |=√3913.因此,直线AC 1与平面ABB 1所成的角的正弦值是√3913.17.(2018·上海·T17)已知圆锥的顶点为P,底面圆心为O,半径为2. (1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,如图,求异面直线PM 与OB 所成的角的大小.【解析】(1)∵圆锥的顶点为P,底面圆心为O,半径为2,母线长为4,∴圆锥的体积V=13πr 2h=13×π×22×√42-22=8√3π3. (2)∵PO=4,OA,OB 是底面半径,且∠AOB=90°,M 为线段AB 的中点,∴以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,∴P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0), ∴PM⃗⃗⃗⃗⃗⃗ =(1,1,-4),OB ⃗⃗⃗⃗⃗ =(0,2,0). 设异面直线PM 与OB 所成的角为θ,则cos θ=|PM ⃗⃗⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗⃗ ||PM ⃗⃗⃗⃗⃗⃗⃗ ||OB ⃗⃗⃗⃗⃗⃗ |=√1+1+(-4)×√0+2+0=√26.∴θ=arccos √26.∴异面直线PM 与OB 所成的角的大小为arccos √26.18.(2017·北京·理T16)如图,在四棱锥P-ABCD 中,底面ABCD 为正方形,平面PAD ⊥平面ABCD,点M 在线段PB 上,PD ∥平面MAC,PA=PD=√6,AB=4. (1)求证:M 为PB 的中点; (2)求二面角B-PD-A 的大小;(3)求直线MC 与平面BDP 所成角的正弦值.【解析】(1)证明设AC,BD 交点为E,连接ME. 因为PD ∥平面MAC,平面MAC ∩平面PDB=ME,所以PD ∥ME. 因为ABCD 是正方形,所以E 为BD 的中点. 所以M 为PB 的中点.(2)解取AD 的中点O,连接OP,OE. 因为PA=PD,所以OP ⊥AD.又因为平面PAD ⊥平面ABCD,且OP ⊂平面PAD,所以OP ⊥平面ABCD. 因为OE ⊂平面ABCD,所以OP ⊥OE. 因为ABCD 是正方形,所以OE ⊥AD.如图建立空间直角坐标系O-xyz ,则P (0,0,√2),D (2,0,0),B (-2,4,0),BD⃗⃗⃗⃗⃗⃗ =(4,-4,0),PD ⃗⃗⃗⃗⃗ =(2,0,-√2).设平面BDP 的法向量为n =(x ,y ,z ), 则{n ·BD⃗⃗⃗⃗⃗⃗ =0,n ·PD ⃗⃗⃗⃗⃗ =0,即{4x -4y =0,2x -√2z =0.令x=1,则y=1,z=√2.于是n =(1,1,√2),平面PAD 的法向量为p =(0,1,0).所以cos <n,p >=n ·p|n ||p |=12.由题知二面角B-PD-A 为锐角,所以它的大小为π3.(3)解由题意知M (-1,2,√22),C (2,4,0),MC ⃗⃗⃗⃗⃗⃗ =(3,2,-√22). 设直线MC 与平面BDP 所成角为α, 则sin α=|cos <n,MC⃗⃗⃗⃗⃗⃗ >|=|n ·MC ⃗⃗⃗⃗⃗⃗⃗ ||n ||MC ⃗⃗⃗⃗⃗⃗⃗ |=2√69.所以直线MC 与平面BDP 所成角的正弦值为2√6.19.(2017·全国1·理T18)如图,在四棱锥P-ABCD 中,AB ∥CD,且∠BAP=∠CDP=90°. (1)证明:平面PAB ⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,求二面角A-PB-C 的余弦值.【解析】(1)证明由已知∠BAP=∠CDP=90°,得AB ⊥AP,CD ⊥PD. 由于AB ∥CD,故AB ⊥PD,从而AB ⊥平面PAD. 又AB ⊂平面PAB,所以平面PAB ⊥平面PAD. (2)解在平面PAD 内作PF ⊥AD,垂足为F. 由(1)可知,AB ⊥平面PAD ,故AB ⊥PF , 可得PF ⊥平面ABCD.以F 为坐标原点,FA⃗⃗⃗⃗⃗ 的方向为x 轴正方向, |AB⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系F-xyz. 由(1)及已知可得A (√22,0,0),P (0,0,√22),B (√22,1,0),C (-√22,1,0).所以PC ⃗⃗⃗⃗⃗ =(-√22,1,-√22),CB⃗⃗⃗⃗⃗ =(√2,0,0),PA ⃗⃗⃗⃗⃗ =(√22,0,-√22),AB ⃗⃗⃗⃗⃗ =(0,1,0). 设n =(x ,y ,z )是平面PCB 的法向量,则{n ·PC ⃗⃗⃗⃗⃗ =0,n ·CB ⃗⃗⃗⃗⃗ =0,即{-√22x +y -√22z =0,√2x =0.可取n =(0,-1,-√2).设m =(x ,y ,z )是平面PAB 的法向量,则{m ·PA⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,即{√22x -√22z =0,y =0.可取m =(1,0,1).则cos <n,m >=n ·m |n ||m |=-√33.所以二面角A-PB-C 的余弦值为-√33.20.(2017·全国2·理T19)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD, AB=BC=12AD,∠BAD=∠ABC=90°,E 是PD 的中点. (1)证明:直线CE ∥平面PAB;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成角为45°,求二面角M-AB-D 的余弦值.【解析】(1)证明取PA 的中点F,连接EF,BF. 因为E 是PD 的中点,所以EF ∥AD,EF=12 AD. 由∠BAD=∠ABC=90°得BC ∥AD,又BC=12AD,所以EF BC,四边形BCEF 是平行四边形,CE ∥BF,又BF ⊂平面PAB,CE ⊄平面PAB,故CE ∥平面PAB. (2)解由已知得BA ⊥AD ,以A 为坐标原点,AB⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|AB ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系A-xyz ,则A (0,0,0),B (1,0,0),C (1,1,0),P (0,1,√3),PC ⃗⃗⃗⃗⃗ =(1,0,-√3),AB ⃗⃗⃗⃗⃗ =(1,0,0). 设M (x ,y ,z )(0<x<1),则BM ⃗⃗⃗⃗⃗⃗ =(x-1,y ,z ),PM ⃗⃗⃗⃗⃗⃗ =(x ,y-1,z-√3). 因为BM 与底面ABCD 所成的角为45°,而n=(0,0,1)是底面ABCD 的法向量,所以|cos <BM ⃗⃗⃗⃗⃗⃗ ,n >|=sin 45°,√(x -1)+y 2+z2=√22,即(x-1)2+y 2-z 2=0.① 又M 在棱PC 上,设PM⃗⃗⃗⃗⃗⃗ =λPC ⃗⃗⃗⃗⃗ ,则x=λ,y=1,z=√3−√3λ. ②由①,②解得{ x =1+√22,y =1,z =-√62(舍去),{x =1-√22,y =1,z =√62,所以M (1-√22,1,√62),从而AM ⃗⃗⃗⃗⃗⃗ =(1-√22,1,√62).设m=(x0,y0,z0)是平面ABM 的法向量,则{m ·AM⃗⃗⃗⃗⃗⃗ =0,m ·AB⃗⃗⃗⃗⃗ =0,即{(2-√2)x 0+2y 0+√6z 0=0,x 0=0,所以可取m =(0,-√6,2).于是cos <m,n >=m ·n |m ||n |=√105.因此二面角M-AB-D 的余弦值为√105.21.(2017·全国3·理T19)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD=∠CBD,AB=BD. (1)证明:平面ACD ⊥平面ABC;(2)过AC 的平面交BD 于点E,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D-AE-C 的余弦值.【解析】(1)证明由题设可得,△ABD ≌△CBD ,从而AD=DC. 又△ACD 是直角三角形,所以∠ADC=90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO=AO. 又由于△ABC 是正三角形,故BO ⊥AC. 所以∠DOB 为二面角D-AC-B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2,又AB=BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB=90°.所以平面ACD ⊥平面ABC.(2)解由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|OA ⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系O-xyz.则A (1,0,0),B (0,√3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的1,即E 为DB 的中点,得E (0,√3,1). 故AD ⃗⃗⃗⃗⃗ =(-1,0,1),AC ⃗⃗⃗⃗⃗ =(-2,0,0),AE ⃗⃗⃗⃗⃗ =(-1,√32,12).设n =(x ,y ,z )是平面DAE 的法向量,则{n ·AD ⃗⃗⃗⃗⃗ =0,n ·AE⃗⃗⃗⃗⃗ =0,即{-x +z =0,-x +√32y +12z =0. 可取n =(1,√33,1).设m 是平面AEC 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AE⃗⃗⃗⃗⃗ =0. 同理可取m =(0,-1,√3).则cos <n,m >=n ·m |n ||m |=√7. 所以二面角D-AE-C 的余弦值为√77. 22.(2017·山东·理T17)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB 边所在直线为旋转轴旋转120°得到的,G 是DF⏜的中点. (1)设P 是 CE⏜ 上的一点,且AP ⊥BE,求∠CBP 的大小; (2)当AB=3,AD=2时,求二面角E-AG-C 的大小.【解析】(1)因为AP ⊥BE,AB ⊥BE,AB,AP ⊂平面ABP,AB ∩AP=A,所以BE ⊥平面ABP,又BP ⊂平面ABP,所以BE ⊥BP,又∠EBC=120°.因此∠CBP=30°.(2)解法一:取EC⏜的中点H,连接EH,GH,CH. 因为∠EBC=120°,所以四边形BEHC 为菱形,所以AE=GE=AC=GC=√32+22=√13.取AG 中点M,连接EM,CM,EC,则EM ⊥AG,CM ⊥AG,所以∠EMC 为所求二面角的平面角.又AM=1,所以EM=CM=√13-1=2√3.在△BEC 中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos 120°=12,所以EC=2√3,因此△EMC 为等边三角形,故所求的角为60°.解法二:以B 为坐标原点,分别以BE,BP,BA 所在的直线为x,y,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,√3,3),C (-1,√3,0),故AE ⃗⃗⃗⃗⃗ =(2,0,-3),AG⃗⃗⃗⃗⃗ =(1,√3,0),CG ⃗⃗⃗⃗⃗ =(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由{m ·AE ⃗⃗⃗⃗⃗ =0,m ·AG⃗⃗⃗⃗⃗ =0,可得{2x 1-3z 1=0,x 1+√3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-√3,2). 设n=(x2,y2,z2)是平面ACG 的一个法向量.由{n ·AG ⃗⃗⃗⃗⃗ =0,n ·CG⃗⃗⃗⃗⃗ =0,可得{x 2+√3y 2=0,2x 2+3z 2=0. 取z 2=-2,可得平面ACG 的一个法向量n =(3,-√3,-2).所以cos <m,n >=m ·n|m ||n |=12. 因此所求的角为60°.23.(2017·天津·理T17)如图,在三棱锥P-ABC 中,PA ⊥底面ABC,∠BAC=90°,点D,E,N 分别为棱PA,PC,BC 的中点,M 是线段AD 的中点,PA=AC=4,AB=2.(1)求证:MN ∥平面BDE;(2)求二面角C-EM-N 的正弦值;(3)已知点H 在棱PA 上,且直线NH 与直线BE 所成角的余弦值为√721求线段AH 的长.【解析】如图,以A 为原点,分别以AB⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ ,AP ⃗⃗⃗⃗⃗ 方向为x 轴、y 轴、z 轴正方向建立空间直角坐标系. 依题意可得A(0,0,0),B(2,0,0),C(0,4,0),P(0,0,4),D(0,0,2),E(0,2,2),M(0,0,1),N(1,2,0).(1)证明:DE ⃗⃗⃗⃗⃗ =(0,2,0),DB⃗⃗⃗⃗⃗⃗ =(2,0,-2),设n =(x ,y ,z )为平面BDE 的法向量, 则{n ·DE ⃗⃗⃗⃗⃗ =0,n ·DB⃗⃗⃗⃗⃗⃗ =0,即{2y =0,2x -2z =0. 不妨设z=1,可得n =(1,0,1).又MN ⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1),可得MN⃗⃗⃗⃗⃗⃗⃗ ·n =0. 因为MN ⊄平面BDE,所以MN ∥平面BDE.(2)易知n1=(1,0,0)为平面CEM 的一个法向量.设n2=(x,y,z)为平面EMN 的法向量,则{n 2·EM ⃗⃗⃗⃗⃗⃗ =0,n 2·MN ⃗⃗⃗⃗⃗⃗⃗ =0.因为EM ⃗⃗⃗⃗⃗⃗ =(0,-2,-1),MN⃗⃗⃗⃗⃗⃗⃗ =(1,2,-1), 所以{-2y -z =0,x +2y -z =0.不妨设y=1,可得n 2=(-4,1,-2).因此有cos <n 1,n 2>=n 1·n 2|n 1||n 2|=-√21, 于是sin <n 1,n 2>=√10521.所以,二面角C-EM-N 的正弦值为√10521.(3)依题意,设AH=h (0≤h ≤4),则H (0,0,h ),进而可得NH ⃗⃗⃗⃗⃗⃗ =(-1,-2,h ),BE⃗⃗⃗⃗⃗ =(-2,2,2). 由已知,得|cos <NH ⃗⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ >|=|NH ⃗⃗⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗⃗ ||NH ⃗⃗⃗⃗⃗⃗⃗ ||BE ⃗⃗⃗⃗⃗⃗ |=√ℎ+5×2√3=√721, 整理得10h 2-21h+8=0,解得h=85或h=12.所以,线段AH 的长为85或12.24.(2016·全国1·理T18)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60°.(1)证明:平面ABEF ⊥平面EFDC;(2)求二面角E-BC-A 的余弦值.【解析】(1)证明由已知可得AF ⊥DF,AF ⊥FE,所以AF ⊥平面EFDC.又AF ⊂平面ABEF,故平面ABEF ⊥平面EFDC.(2)解过D 作DG ⊥EF,垂足为G,由(1)知DG ⊥平面ABEF.以G 为坐标原点,GF ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,|GF⃗⃗⃗⃗⃗ |为单位长,建立如图所示的空间直角坐标系G-xyz.由(1)知∠DFE 为二面角D-AF-E 的平面角,故∠DFE=60°,则|DF|=2,|DG|=√3 ,可得A(1,4,0),B(-3,4,0),E(-3,0,0),D(0,0, √3).由已知,AB ∥EF,所以AB ∥平面EFDC.又平面ABCD ∩平面EFDC=CD,故AB ∥CD,CD ∥EF.由BE ∥AF,可得BE ⊥平面EFDC,所以∠CEF 为二面角C-BE-F 的平面角,∠CEF=60°.从而可得C (-2,0,√3).所以EC⃗⃗⃗⃗⃗ =(1,0,√3),EB ⃗⃗⃗⃗⃗ =(0,4,0),AC ⃗⃗⃗⃗⃗ =(-3,-4,√3),AB ⃗⃗⃗⃗⃗ =(-4,0,0), 设n =(x ,y ,z )是平面BCE 的法向量,则{n ·EC ⃗⃗⃗⃗⃗ =0,n ·EB ⃗⃗⃗⃗⃗ =0,即{x +√3z =0,4y =0.所以可取n =(3,0,-√3).设m 是平面ABCD 的法向量,则{m ·AC ⃗⃗⃗⃗⃗ =0,m ·AB ⃗⃗⃗⃗⃗ =0,同理可取m =(0,√3,4),则cos <n,m >=n ·m |n ||m |=-2√1919. 故二面角E-BC-A 的余弦值为-2√1919.25.(2016·全国2·理T19)如图,菱形ABCD 的对角线AC 与BD 交于点O,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=54 ,EF 交BD 于点H.将△DEF 沿EF 折到△D'EF 的位置,OD'=√10.(1)证明:D'H ⊥平面ABCD;(2)求二面角B-D'A-C 的正弦值.【解析】(1)证明由已知得AC ⊥BD ,AD=CD.又由AE=CF 得AE AD =CF CD ,故AC ∥EF.因此EF ⊥HD ,从而EF ⊥D'H.由AB=5,AC=6得DO=BO=√AB 2-AO 2=4.由EF ∥AC 得OH DO =AE AD =14.所以OH=1,D'H=DH=3.于是D'H 2+OH 2=32+12=10=D'O 2,故D'H ⊥OH.又D'H ⊥EF ,而OH ∩EF=H ,所以D'H ⊥平面ABCD.(2)解如图,以H 为坐标原点HF⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立空间直角坐标系H-xyz.则H(0,0,0),A(-3,-1,0),B(0,-5,0),C(3,-1,0),D'(0,0,3),AB ⃗⃗⃗⃗⃗ =(3,-4,0),AC ⃗⃗⃗⃗⃗ =(6,0,0),AD '⃗⃗⃗⃗⃗⃗⃗⃗ =(3,1,3).设m=(x1,y1,z1)是平面ABD'的法向量,则{m ·AB ⃗⃗⃗⃗⃗ =0,m ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{3x 1-4y 1=0,3x 1+y 1+3z 1=0, 所以可取m=(4,3,-5).设n=(x2,y2,z2)是平面ACD'的法向量,则{n ·AC ⃗⃗⃗⃗⃗ =0,n ·AD '⃗⃗⃗⃗⃗⃗⃗⃗ =0,即{6x 2=0,3x 2+y 2+3z 2=0, 所以可取n=(0,-3,1).于是cos <m,n >=m ·n|m ||n |=√50×√10=-7√525.sin <m,n >=2√9525. 因此二面角B-D'A-C 的正弦值是2√9525.26.(2016·山东·理T17)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O'的直径,FB 是圆台的一条母线.(1)已知G,H 分别为EC,FB 的中点.求证:GH ∥平面ABC;(2)已知EF=FB=12AC=2√3,AB=BC ,求二面角F-BC-A 的余弦值.【解析】(1)证明设FC 中点为I,连接GI,HI.在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF.又EF ∥OB,所以GI ∥OB.在△CFB 中,因为H 是FB 的中点,所以HI ∥BC.又HI ∩GI=I,所以平面GHI ∥平面ABC.因为GH ⊂平面GHI,所以GH ∥平面ABC.(2)解连接OO',则OO'⊥平面ABC.又AB=BC,且AC 是圆O 的直径,所以BO ⊥AC.以O 为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B (0,2√3,0),C (-2√3,0,0).过点F 作FM 垂直OB 于点M,所以FM=√FB 2-BM 2=3,可得F (0,√3,3).故BC ⃗⃗⃗⃗⃗ =(-2√3,-2√3,0),BF ⃗⃗⃗⃗⃗ =(0,-√3,3).设m =(x ,y ,z )是平面BCF 的一个法向量.由{m ·BC ⃗⃗⃗⃗⃗ =0,m ·BF ⃗⃗⃗⃗⃗ =0,可得{-2√3x -2√3y =0,-√3y +3z =0.可得平面BCF 的一个法向量m =(-1,1,√33).因为平面ABC 的一个法向量n =(0,0,1),所以cos <m,n >=m ·n |m |·|n |=√77.所以二面角F-BC-A 的余弦值为√77.27.(2016·浙江·理T17)如图,在三棱台ABC-DEF 中,平面BCFE ⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求二面角B-AD-F的平面角的余弦值.【解析】(1)证明延长AD,BE,CF相交于一点K,如图所示.因为平面BCFE⊥平面ABC,且AC⊥BC,所以AC⊥平面BCK,因此BF⊥AC.又因为EF∥BC,BE=EF=FC=1,BC=2,所以△BCK为等边三角形,且F为CK的中点,则BF⊥CK.所以BF⊥平面ACFD.(2)解如图,延长AD,BE,CF相交于一点K,则△BCK为等边三角形. 取BC的中点O,则KO⊥BC,又平面BCFE⊥平面ABC,所以,KO⊥平面ABC.以点O为原点,分别以射线OB,OK的方向为x,z的正方向,建立空间直角坐标系O-xyz.由题意得B(1,0,0),C(-1,0,0),K(0,0,√3),A(-1,-3,0),E(12,0,√32),F(-12,0,√32).因此,AC ⃗⃗⃗⃗⃗ =(0,3,0),AK ⃗⃗⃗⃗⃗ =(1,3,√3),AB⃗⃗⃗⃗⃗ =(2,3,0). 设平面ACK 的法向量为m =(x 1,y 1,z 1),平面ABK 的法向量为n =(x 2,y 2,z 2).由{AC ⃗⃗⃗⃗⃗ ·m =0,AK ⃗⃗⃗⃗⃗ ·m =0得{3y 1=0,x 1+3y 1+√3z 1=0, 取m =(√3,0,-1);由{AB ⃗⃗⃗⃗⃗ ·n =0,AK ⃗⃗⃗⃗⃗ ·n =0得{2x 2+3y 2=0,x 2+3y 2+√3z 2=0, 取n =(3,-2,√3).于是,cos <m,n >=m ·n|m |·|n |=√34.所以,二面角B-AD-F 的平面角的余弦值为√34. 28.(2016·全国3·理T19)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD,AD ∥BC,AB=AD=AC=3,PA=BC=4,M 为线段AD 上一点,AM=2MD,N 为PC 的中点.(1)证明:MN ∥平面PAB;(2)求直线AN 与平面PMN 所成角的正弦值.【解析】(1)证明由已知得AM=23AD=2.取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN=12BC=2. 又AD ∥BC,故TN AM,四边形AMNT 为平行四边形,于是MN ∥AT.因为AT ⊂平面PAB,MN ⊄平面PAB,所以MN ∥平面PAB.(2)解取BC 的中点E,连接AE.由AB=AC 得AE ⊥BC,从而AE ⊥AD,且AE=√AB 2-BE 2=√AB 2-(BC 2)2=√5. 以A 为坐标原点,AE⃗⃗⃗⃗⃗ 的方向为x 轴正方向, 建立如图所示的空间直角坐标系A-xyz.由题意知,P (0,0,4),M (0,2,0),C (√5,2,0),N (√52,1,2),PM ⃗⃗⃗⃗⃗⃗ =(0,2,-4),PN ⃗⃗⃗⃗⃗⃗ =(√52,1,-2),AN ⃗⃗⃗⃗⃗⃗ =(√52,1,2).设n =(x ,y ,z )为平面PMN 的法向量,则{n ·PM ⃗⃗⃗⃗⃗⃗ =0,n ·PN ⃗⃗⃗⃗⃗⃗ =0,即{2y -4z =0,√52x +y -2z =0, 可取n =(0,2,1).于是|cos <n,AN ⃗⃗⃗⃗⃗⃗ >|=|n ·AN ⃗⃗⃗⃗⃗⃗⃗ ||n ||AN ⃗⃗⃗⃗⃗⃗⃗ |=8√525. 29.(2015·全国2·理T19)如图,长方体ABCD-A 1B 1C 1D 1中,AB=16,BC=10,AA 1=8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E=D 1F=4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求直线AF 与平面α所成角的正弦值.【解析】(1)交线围成的正方形EHGF 如图:(2)作EM ⊥AB ,垂足为M ,则AM=A 1E=4,EM=AA 1=8.因为EHGF 为正方形,所以EH=EF=BC=10.以D 为坐标原点,DA ⃗⃗⃗⃗⃗ 的方向为x 轴正方向,建立如图所示的空间直角坐标系D-xyz ,则A (10,0,0),H (10,10,0),E (10,4,8),F (0,4,8),FE ⃗⃗⃗⃗⃗ =(10,0,0),HE⃗⃗⃗⃗⃗⃗ =(0,-6,8). 设n=(x,y,z)是平面EHGF 的法向量,则{n ·FE ⃗⃗⃗⃗⃗ =0,n ·HE ⃗⃗⃗⃗⃗⃗ =0,即{10x =0,-6y +8z =0,所以可取n =(0,4,3).又AF ⃗⃗⃗⃗⃗ =(-10,4,8), 故|cos <n,AF ⃗⃗⃗⃗⃗ >|=|n ·AF ⃗⃗⃗⃗⃗⃗ ||n ||AF ⃗⃗⃗⃗⃗⃗ |=4√515.所以AF 与平面EHGF 所成角的正弦值为4√515.30.(2015·上海·理T19)如图,在长方体ABCD-A 1B 1C 1D 1中,AA 1=1,AB=AD=2,E ,F 分别是棱AB ,BC 的中点.证明A 1,C 1,F ,E 四点共面,并求直线CD 1与平面A 1C 1FE 所成的角的大小.【解析】如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1),C 1(0,2,1),E (2,1,0),F (1,2,0),C (0,2,0),D 1(0,0,1).因为A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =(-2,2,0),EF⃗⃗⃗⃗⃗ =(-1,1,0), 所以A 1C 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ∥EF⃗⃗⃗⃗⃗ ,因此直线A 1C 1与EF 共面, 即A 1,C 1,F ,E 四点共面.设平面A 1C 1FE 的法向量为n =(u ,v ,w ),则n ⊥EF ⃗⃗⃗⃗⃗ ,n ⊥FC 1⃗⃗⃗⃗⃗⃗⃗ ,又EF ⃗⃗⃗⃗⃗ =(-1,1,0),FC 1⃗⃗⃗⃗⃗⃗⃗ =(-1,0,1),故{-u +v =0,-u +w =0,解得u=v=w. 取u=1,得平面A 1C 1FE 的一个法向量n =(1,1,1).又CD 1⃗⃗⃗⃗⃗⃗⃗ =(0,-2,1),故CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ·n |CD 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ ||n |=-√1515.因此直线CD 1与平面A 1C 1FE 所成的角的大小为arcsin √1515.31.(2015·北京·理T17)如图,在四棱锥A-EFCB 中,△AEF 为等边三角形,平面AEF ⊥平面EFCB,EF ∥BC,BC=4,EF=2a,∠EBC=∠FCB=60°,O 为EF 的中点.(1)求证:AO ⊥BE;(2)求二面角F-AE-B 的余弦值;(3)若BE ⊥平面AOC,求a 的值.【解析】(1)证明因为△AEF 是等边三角形,O 为EF 的中点,所以AO ⊥EF.又因为平面AEF ⊥平面EFCB,AO ⊂平面AEF,所以AO ⊥平面EFCB,所以AO ⊥BE.(2)解取BC 中点G,连接OG.由题设知EFCB 是等腰梯形,所以OG ⊥EF.由(1)知AO ⊥平面EFCB,又OG ⊂平面EFCB,所以OA ⊥OG.如图建立空间直角坐标系O-xyz ,则E (a ,0,0),A (0,0,√3a ),B (2,√3(2-a ),0),EA ⃗⃗⃗⃗⃗ =(-a ,0,√3a ),BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0). 设平面AEB 的法向量为n =(x ,y ,z ),则{n ·EA ⃗⃗⃗⃗⃗ =0,n ·BE⃗⃗⃗⃗⃗ =0,即{-ax +√3az =0,(a -2)x +√3(a -2)y =0.令z=1,则x=√3,y=-1.于是n =(√3,-1,1).平面AEF 的法向量为p =(0,1,0).所以cos <n,p >=n ·p |n ||p |=-√55.由题知二面角F-AE-B 为钝角,所以它的余弦值为-√55.(3)解因为BE ⊥平面AOC ,所以BE ⊥OC ,即BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0. 因为BE⃗⃗⃗⃗⃗ =(a-2,√3(a-2),0),OC ⃗⃗⃗⃗⃗ =(-2,√3(2-a ),0), 所以BE⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =-2(a-2)-3(a-2)2. 由BE ⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗ =0及0<a<2,解得a=43. 32.(2015·浙江·理T17)如图,在三棱柱ABC-A 1B 1C 1中,∠BAC=90°,AB=AC=2,A 1A=4,A 1在底面ABC 的射影为BC 的中点,D 是B 1C 1的中点.(1)证明:A 1D ⊥平面A 1BC ;(2)求二面角A 1-BD-B 1的平面角的余弦值.【解析】(1)证明设E 为BC 的中点,由题意得A 1E ⊥平面ABC ,所以A 1E ⊥AE.因为AB=AC ,所以AE ⊥BC.故AE ⊥平面A 1BC.由D ,E 分别为B 1C 1,BC 的中点,得DE ∥B 1B 且DE=B 1B ,从而DE ∥A 1A 且DE=A 1A ,所以A 1AED 为平行四边形.故A 1D ∥AE.又因为AE ⊥平面A 1BC ,所以A 1D ⊥平面A 1BC.(2)解以CB 的中点E 为原点,分别以射线EA ,EB 为x ,y 轴的正半轴,建立空间直角坐标系E-xyz ,如图所示. 由题意知各点坐标如下:A 1(0,0,√14),B (0,√2,0),D (-√2,0,√14),B 1(-√2,√2,√14).因此A 1B ⃗⃗⃗⃗⃗⃗⃗ =(0,√2,-√14),BD ⃗⃗⃗⃗⃗⃗ =(-√2,-√2,√14),DB 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,√2,0).。

(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)

(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)

(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)1.(2019·全国2·文T3)已知向量a=(2,3),b=(3,2),则|a-b|=( ) A.√2 B.2 C.5√2 D.50【答案】A【解析】由题意,得a-b=(-1,1),则|a-b|=√(-1)2+12=√2,故选A.2.(2019·全国·1理T7文T8)已知非零向量a ,b 满足|a|=2|b|,且(a-b)⊥b ,则a 与b 的夹角为( ) A.π6 B.π3C.2π3D.5π6【答案】B【解析】因为(a-b)⊥b , 所以(a-b )·b=a ·b-b 2=0, 所以a ·b=b 2.所以cos<a ,b>=a ·b|a |·|b |=|b |22|b |2=12,所以a 与b 的夹角为π3,故选B.3.(2018·全国1·理T6文T7)在△ABC 中,AD 为BC 边上的中线,E 为AD 的中点,则EB ⃗⃗⃗⃗⃗ =( ) A.34AB ⃗⃗⃗⃗⃗ −14AC ⃗⃗⃗⃗⃗ B.14AB ⃗⃗⃗⃗⃗ −34AC⃗⃗⃗⃗⃗ C.34AB ⃗⃗⃗⃗⃗ +14AC ⃗⃗⃗⃗⃗ D.14AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ 【答案】A【解析】如图,EB ⃗⃗⃗⃗⃗ =-BE⃗⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −14BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ −14(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=3 4AB⃗⃗⃗⃗⃗ −14AC⃗⃗⃗⃗⃗ .4.(2018·全国2·T4)已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=( )A.4B.3C.2D.0【答案】B【解析】a·(2a-b)=2a2-a·b=2-(-1)=3.5.(2018·北京·理T6)设a,b均为单位向量,则“|a-3b|=|3a+b|”是“a⊥b”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】C【解析】由|a-3b|=|3a+b|,得(a-3b)2=(3a+b)2.∵a,b均为单位向量,∴1-6a·b+9=9+6a·b+1.∴a·b=0,故a⊥b,反之也成立.故选C.6.(2018·浙江·T9)已知a,b,e是平面向量,e是单位向量.若非零向量a与e的夹角为π3,向量b满足b2-4e·b+3=0,则|a-b|的最小值是( )A.√3-1B.√3+1C.2D.2-√3【答案】A【解析】∵b2-4e·b+3=0,∴(b-2e)2=1,∴|b-2e|=1.如图所示,平移a,b,e,使它们有相同的起点O,以O为原点,向量e所在直线为x轴建立平面直角坐标系,则b的终点在以点(2,0)为圆心,半径为1的圆上,|a-b|就是线段AB的长度.要求|AB|的最小值,就是求圆上动点到定直线的距离的最小值,也就是圆心M到直线OA的距离减去圆的半径长,因此|a-b|的最小值为-1.7.(2018·天津·理T8)如图,在平面四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,∠BAD=120°,AB=AD=1.若点E 为边CD 上的动点,则 A.2116 B.32C.2516D.3【答案】A【解析】如图,以D 为坐标原点建立直角坐标系.连接AC ,由题意知∠CAD=∠CAB =60°,∠ACD=∠ACB =30°,则D(0,0),A(1,0),B (32,√32),C(0,√3).设E(0,y)(0≤y≤√3),则AE⃗⃗⃗⃗⃗ =(-1,y),BE ⃗⃗⃗⃗⃗ =(-32,y-√32),∴AE ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =32+y 2-√32y=(y-√34)2+2116,∴当y=√34时,AE ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ 有最小值2116.8.(2018·天津·文T8)在如图的平面图形中,已知OM=1,ON=2,∠MON=120°,BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,则BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ 的值为( ) A.-15 B.-9 C.-6D.0【答案】C【解析】连接MN ,∵BM ⃗⃗⃗⃗⃗⃗ =2MA ⃗⃗⃗⃗⃗⃗ ,CN ⃗⃗⃗⃗⃗ =2NA ⃗⃗⃗⃗⃗ ,∴AC ⃗⃗⃗⃗⃗ =3AN ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =3AM⃗⃗⃗⃗⃗⃗ .∴MN ∥BC ,且MN BC =13,∴BC ⃗⃗⃗⃗⃗ =3MN ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ ),∴BC ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ −OM ⃗⃗⃗⃗⃗⃗ )·OM ⃗⃗⃗⃗⃗⃗ =3(ON ⃗⃗⃗⃗⃗ ·OM ⃗⃗⃗⃗⃗⃗ -|OM ⃗⃗⃗⃗⃗⃗ |2)=3[2×1×(-12)-1]=-6.9.(2017·全国2·理T12)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )的最小值是( ) A.-2 B.-32 C.-43 D.-1【答案】B【解析】以BC 所在的直线为x 轴,BC 的垂直平分线AD 为y 轴,D 为坐标原点建立平面直角坐标系,如图.可知A(0,√3),B(-1,0),C(1,0).设P(x ,y),则PA ⃗⃗⃗⃗ =(-x ,√3-y),PB ⃗⃗⃗⃗⃗ =(-1-x ,-y),PC ⃗⃗⃗⃗ =(1-x ,-y).所以PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ =(-2x ,-2y).所以PA ⃗⃗⃗⃗ ·(PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )=2x 2-2y(√3-y)=2x 2+2(y -√32)2−32≥-32. 当点P 的坐标为(0,√32)时,PA ⃗⃗⃗⃗ ·(PB⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗ )取得最小值为-32,故选10.(2017·全国3·理T12)在矩形ABCD 中,AB=1,AD=2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ ,则λ+μ的最大值为( ) A.3 B.2√2C.√5D.2【答案】A【解析】建立如图所示的平面直角坐标系, 则A(0,1),B(0,0),D(2,1).设P(x ,y),由|BC|·|CD|=|BD|·r ,得r=|BC |·|CD ||BD |=5=2√55,即圆的方程是(x-2)2+y 2=45. 易知AP ⃗⃗⃗⃗⃗ =(x ,y-1),AB ⃗⃗⃗⃗⃗ =(0,-1),AD ⃗⃗⃗⃗⃗ =(2,0).由AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAD ⃗⃗⃗⃗⃗ , 得{x =2μ,y -1=-λ,所以μ=x2,λ=1-y ,所以λ+μ=12x-y+1. 设z=12x-y+1,即12x-y+1-z=0. 因为点P(x ,y)在圆(x-2)2+y 2=45上, 所以圆心C 到直线12x-y+1-z=0的距离d≤r,即√14+1≤2√55,解得1≤z≤3,11.(2017·全国2·文T4)设非零向量a ,b 满足|a+b|=|a-b|,则( ) A.a ⊥b B.|a|=|b| C.a ∥b D.|a|>|b| 【答案】A【解析】由|a+b|=|a-b|,平方得a 2+2a ·b+b 2=a 2-2a ·b+b 2,即a ·b=0.又a ,b 为非零向量,故a ⊥b ,故选A.12.(2016·四川·文T9)已知正三角形ABC 的边长为2√3,平面ABC 内的动点P ,M 满足|AP ⃗⃗⃗⃗⃗ |=1,PM ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ ,则|BM ⃗⃗⃗⃗⃗⃗ |2的最大值是( ) A.434 B.494 C.37+6√34 D.37+2√334【答案】B【解析】设△ABC 的外心为D ,则|DA ⃗⃗⃗⃗⃗ |=|DB ⃗⃗⃗⃗⃗ |=|DC ⃗⃗⃗⃗⃗ |=2. 以D 为原点,直线DA 为x 轴,过D 点的DA 的垂线 为y 轴,建立平面直角坐标系, 则A(2,0),B(-1,-√3),C(-1,√3). 设P(x ,y),由已知|AP⃗⃗⃗⃗⃗ |=1,得(x-2)2+y 2=1,∵PM ⃗⃗⃗⃗⃗⃗ =MC⃗⃗⃗⃗⃗⃗ ,∴M (x -12,y+√32). ∴BM ⃗⃗⃗⃗⃗⃗ =(x+12,y+3√32). ∴BM ⃗⃗⃗⃗⃗⃗ 2=(x+1)2+(y+3√3)24,它表示圆(x-2)2+y 2=1上点(x ,y)与点(-1,-3√3)距离平方的14,∴(|BM⃗⃗⃗⃗⃗⃗ |2)max =14[√32+(0+3√3)22=494, 故选B.13.(2016·天津·文T7)已知△ABC 是边长为1的等边三角形,点D ,E 分别是边AB ,BC 的中点,连接DE 并延长到点F ,使得DE=2EF ,则AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ 的值为 ( ) A.-58 B.18C.14D.118【答案】B【解析】方法1(基向量法):如图所示,选取AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 为基底,则AF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ +EF ⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =AC⃗⃗⃗⃗⃗ −12BC ⃗⃗⃗⃗⃗ +12DE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ )+12×12AC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +34AC⃗⃗⃗⃗⃗ ,AB⃗⃗⃗⃗⃗ . 故AF ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +34AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =34AC ⃗⃗⃗⃗⃗ 2−14AC ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ −12AB⃗⃗⃗⃗⃗ 2 =34−14×1×1×12−12=18.14.(2016·全国2·理T3)已知向量a=(1,m),b=(3,-2),且(a+b)⊥b ,则m=( ) A.-8B.-6C.6D.8【答案】D【解析】由题意可知,向量a+b=(4,m-2).由(a+b)⊥b ,得4×3+(m-2)×(-2)=0,解得m=8.故选D.15.(2015·全国2·文T4)向量a=(1,-1),b=(-1,2),则(2a+b )·a=( ) A.-1B.0C.1D.2【答案】C【解析】由已知2a+b=(1,0), 所以(2a+b )·a=1×1+0×(-1)=1.故选C.16.(2015·福建·文T7)设a=(1,2),b=(1,1),c=a+kb.若b ⊥c ,则实数k 的值等于( )A.-32 B.-53C.53D.32【答案】A【解析】∵a=(1,2),b=(1,1),∴c=(1+k ,2+k). ∵b ⊥c ,∴b ·c=1+k+2+k=0.∴k=-3217.(2015·广东·文T9)在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB ⃗⃗⃗⃗⃗ =(1,-2),AD ⃗⃗⃗⃗⃗ =(2,1),则AD ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =( ) A.5 B.4 C.3 D.2 【答案】A【解析】AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ =(3,-1),所以AD⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =(2,1)·(3,-1)=2×3+1×(-1)=5. 18.(2015·山东·理T4)已知菱形ABCD 的边长为a ,∠ABC =60°,则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =( ) A.-32a 2 B.-34a 2 C.34a 2 D.32a 2【答案】D【解析】如图,设BA ⃗⃗⃗⃗⃗ =a ,BC⃗⃗⃗⃗⃗ =b. 则BD ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )·BA⃗⃗⃗⃗⃗ =(a+b)·a=a 2+a ·b=a 2+a ·a ·c os 60°=a 2+12a 2=32a 2.19.(2015·四川·理T7)设四边形ABCD 为平行四边形,|AB ⃗⃗⃗⃗⃗ |=6,|AD ⃗⃗⃗⃗⃗ |=4.若点M ,N 满足BM ⃗⃗⃗⃗⃗⃗ =3MC ⃗⃗⃗⃗⃗⃗ ,DN ⃗⃗⃗⃗⃗ =2NC ⃗⃗⃗⃗⃗ ,则AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =( ) A.20B.15C.9D.6【答案】C【解析】如图所示,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ ,NM ⃗⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ,所以AM ⃗⃗⃗⃗⃗⃗ ·NM ⃗⃗⃗⃗⃗⃗ =(AB⃗⃗⃗⃗⃗ +34AD ⃗⃗⃗⃗⃗ )·(13AB ⃗⃗⃗⃗⃗ −14AD ⃗⃗⃗⃗⃗ ) =13|AB ⃗⃗⃗⃗⃗ |2-316|AD ⃗⃗⃗⃗⃗ |2+14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ −14AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗=13×36-316×16=9.20.(2015·福建·理T9)已知AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,|AB ⃗⃗⃗⃗⃗ |=1t ,|AC⃗⃗⃗⃗⃗ |=t.若点P 是△ABC 所在平面内的一点,且AP ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |,则PB⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值等于( )A.13B.15C.19D.21【答案】A【解析】以点A 为原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 所在直线分别为x 轴、y 轴建立平面直角坐标系,如图. 则A(0,0),B (1t ,0),C(0,t), ∴AB ⃗⃗⃗⃗⃗⃗ |AB ⃗⃗⃗⃗⃗⃗ |=(1,0),AC⃗⃗⃗⃗⃗ |AC ⃗⃗⃗⃗⃗ |=(0,1). ∴AP⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗⃗ |AB⃗⃗⃗⃗⃗⃗ |+4AC⃗⃗⃗⃗⃗ |AC⃗⃗⃗⃗⃗ |=(1,0)+4(0,1)=(1,4). ∴点P 的坐标为(1,4),PB⃗⃗⃗⃗⃗ =(1t-1,-4),PC ⃗⃗⃗⃗ =(-1,t-4). ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ =1-1t -4t+16=-(1t +4t)+17≤-4+17=13,当且仅当1t =4t ,即t=12时取“=”. ∴PB ⃗⃗⃗⃗⃗ ·PC ⃗⃗⃗⃗ 的最大值为13.21.(2015·全国1·文T2)已知点A(0,1),B(3,2),向量AC ⃗⃗⃗⃗⃗ =(-4,-3),则向量BC ⃗⃗⃗⃗⃗ =( ) A.(-7,-4) B.(7,4) C.(-1,4) D.(1,4) 【答案】A【解析】∵AB ⃗⃗⃗⃗⃗ =OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =(3,1),AC ⃗⃗⃗⃗⃗ =(-4,-3), ∴BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =(-4,-3)-(3,1)=(-7,-4). 22.(2015·重庆·理T6)若非零向量a ,b 满足|a|=2√23|b|,且(a-b)⊥(3a+2b),则a 与b 的夹角为 ( )A.π4B.π2C.3π4D .π【答案】A【解析】由(a-b)⊥(3a+2b)知(a-b)·(3a+2b)=0,即3|a|2-a ·b-2|b|2=0.设a 与b 的夹角为θ,则3|a|2-|a||b|cos θ-2|b|2=0,即3·(2√23|b |)2−2√23|b|2cos θ-2|b|2=0,整理,得cos θ=√22.故θ=π4.23.(2015·重庆·文T7)已知非零向量a ,b 满足|b|=4|a|,且a ⊥(2a+b),则a 与b 的夹角为( ) A.π3 B.π2C.2π3D.5π6【答案】C【解析】因为a ⊥(2a+b),所以a ·(2a+b)=0, 即2|a|2+a ·b=0.设a 与b 的夹角为θ,则有2|a|2+|a||b|cos θ=0. 又|b|=4|a|,所以2|a|2+4|a|2cos θ=0, 则cos θ=-12,从而θ=2π3.24.(2015·全国1·理T7)设D 为△ABC 所在平面内一点,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ ,则( ) A.AD ⃗⃗⃗⃗⃗ =-13AB ⃗⃗⃗⃗⃗ +43AC⃗⃗⃗⃗⃗ B.AD ⃗⃗⃗⃗⃗ =13AB ⃗⃗⃗⃗⃗ −43AC⃗⃗⃗⃗⃗ C.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ +13AC⃗⃗⃗⃗⃗ D.AD ⃗⃗⃗⃗⃗ =43AB ⃗⃗⃗⃗⃗ −13AC⃗⃗⃗⃗⃗ 【答案】A 【解析】如图,∵AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ ,BC ⃗⃗⃗⃗⃗ =3CD ⃗⃗⃗⃗⃗ , ∴AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +43(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =-13AB ⃗⃗⃗⃗⃗ +43AC ⃗⃗⃗⃗⃗ . 25.(2014·全国1·文T6)设D ,E ,F 分别为△ABC 的三边BC ,CA ,AB 的中点,则EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =( ) A.AD ⃗⃗⃗⃗⃗B.12AD ⃗⃗⃗⃗⃗C.BC ⃗⃗⃗⃗⃗D.12BC⃗⃗⃗⃗⃗ 【答案】A【解析】EB ⃗⃗⃗⃗⃗ +FC ⃗⃗⃗⃗ =-12(BA ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ )-12(CA ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ )=-12(BA ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ )=12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=12×2AD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ ,故选A.26.(2014·山东·文T7)已知向量a=(1,√3),b=(3,m),若向量a ,b 的夹角为π6,则实数m=( ) A.2√3 B.√3 C.0 D.-√3【答案】B【解析】∵cos<a ,b>=a ·b|a ||b |, ∴cos π6=√3m 2×√32+m 2,解得m=√3.27.(2014·北京·文T3)已知向量a=(2,4),b=(-1,1),则2a-b=( ) A.(5,7) B.(5,9) C.(3,7) D.(3,9) 【答案】A【解析】2a-b=(4-(-1),8-1)=(5,7).故选A.28.(2014·广东·文T3)已知向量a=(1,2),b=(3,1),则b-a=( ) A.(-2,1) B.(2,-1) C.(2,0) D.(4,3) 【答案】B【解析】由题意得b-a=(3,1)-(1,2)=(2,-1),故选B.29.(2014·福建·理T8)在下列向量组中,可以把向量a=(3,2)表示出来的是( ) A.e 1=(0,0),e 2=(1,2)B.e 1=(-1,2),e 2=(5,-2)C.e 1=(3,5),e 2=(6,10)D.e 1=(2,-3),e 2=(-2,3) 【答案】B【解析】对于A ,C ,D ,都有e 1∥e 2,故选B.30.(2014·全国2·理T3文T4)设向量a ,b 满足|a+b|=√10,|a-b|=√6,则a ·b=( ) A.1 B.2 C.3 D.5 【答案】A【解析】∵|a+b|=√10,∴(a+b)2=10.∴|a|2+|b|2+2a·b=10,①∵|a-b|=√6,∴(a-b)2=6,∴|a|2+|b|2-2a·b=6,②由①-②得a·b=1,故选A.31.(2014·大纲全国·文T6)已知a,b为单位向量,其夹角为60°,则(2a-b)·b=( )A.-1B.0C.1D.2【答案】B【解析】由已知得|a|=|b|=1,<a,b>=60°,∴(2a-b)·b=2a·b-b2=2|a||b|cos<a,b>-|b|2=2×1×1×c os 60°-12=0,故选B.32.(2014·大纲全国·理T4)若向量a,b满足:|a|=1,(a+b)⊥a,(2a+b)⊥b,则|b|=( )A.2B.√2C.1D.√22【答案】B【解析】∵(a+b)⊥a,|a|=1,∴(a+b)·a=0.∴|a|2+a·b=0.∴a·b=-1.又(2a+b)⊥b,∴(2a+b)·b=0.∴2a·b+|b|2=0.∴|b|2=2.∴|b|=√2.故选B.33.(2014·重庆·理T4)已知向量a=(k,3),b=(1,4),c=(2,1),且(2a-3b)⊥c,则实数k=( )A.-92B.0 C.3 D.152【答案】C【解析】由已知(2a-3b)⊥c,可得(2a-3b)·c=0,即(2k-3,-6)·(2,1)=0,展开化简,得4k-12=0,所以k=3.故选C.34.(2012·陕西·文T7)设向量a=(1,cos θ)与b=(-1,2cos θ)垂直,则cos 2θ等于( )A.√22B.12C.0D.-1【答案】C【解析】∵a ⊥b ,∴a ·b=0, ∴-1+2cos 2θ=0,即cos 2θ=0.35.(2012·重庆·理T6)设x ,y ∈R ,向量a=(x ,1),b=(1,y),c=(2,-4),且a ⊥c ,b ∥c ,则|a+b|= ( ) A.√5 B.√10 C.2√5 D.10【答案】B【解析】由a ⊥c ,得a ·c=2x-4=0,解得x=2.由b ∥c 得12=y-4,解得y=-2,所以a=(2,1),b=(1,-2),a+b=(3,-1),|a+b|=√10.故选B.36.(2010·全国·文T2)a ,b 为平面向量,已知a=(4,3),2a+b=(3,18),则a ,b 夹角的余弦值等于( ) A.865 B.-865C.1665D.-1665【答案】C【解析】b=(2a+b)-2a=(3,18)-(8,6)=(-5,12), 因此cos<a ,b>=a ·b |a ||b |=165×13=1665.37.(2019·全国3·文T13)已知向量a=(2,2),b=(-8,6),则cos<a ,b>= . 【答案】−√210【解析】cos<a ,b>=a ·b|a ||b |=√22+22×√(-8)+62=2√2×10=-√210. 38.(2019·北京·文T9)已知向量a=(-4,3),b=(6,m),且a ⊥b ,则m= . 【答案】8【解析】∵a=(-4,3),b=(6,m),a ⊥b , ∴a ·b=0,即-4×6+3m=0,即m=8.39.(2019·天津·T14)在四边形ABCD 中,AD ∥BC ,AB=2√3,AD=5,∠A=30°,点E 在线段CB 的延长线上,且AE=BE ,则BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ = . 【答案】-1【解析】∵AD ∥BC ,且∠DAB=30°,∴∠ABE=30°. ∵EA=EB ,∴∠EAB=30°.∠AEB=120°.在△AEB 中,EA=EB=2, BD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AB ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ ) =-BA ⃗⃗⃗⃗⃗ 2+BA ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ·BE⃗⃗⃗⃗⃗ =-12+2√3×2×c os 30°+5×2√3×c os 30°+5×2×c os 180°=-22+6+15=-1.40.(2019·全国3·理T13)已知a ,b 为单位向量,且a ·b=0,若c=2a-√5b ,则cos<a ,c>= . 【答案】23【解析】∵a ,b 为单位向量, ∴|a|=|b|=1.又a ·b=0,c=2a-√5b ,∴|c|2=4|a|2+5|b|2-4√5a ·b=9,∴|c|=3. 又a ·c=2|a|2-√5a ·b=2, ∴cos<a ,c>=a ·c|a |·|c |=21×3=23.41.(2019·浙江·T17)已知正方形ABCD 的边长为1.当每个λi (i=1,2,3,4,5,6)取遍±1时,|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小值是 ,最大值是 . 【答案】0 2√5 【解析】(基向量处理)λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+λ5-λ6)AB ⃗⃗⃗⃗⃗ +(λ2-λ4+λ5+λ6)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最小,只需要|λ1-λ3+λ5-λ6|=|λ2-λ4+λ5+λ6|=0,此时只需要取λ1=1,λ2=-1,λ3=1,λ4=1,λ5=1,λ6=1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |min =0,由于λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =±2AB ⃗⃗⃗⃗⃗ 或±2AD ⃗⃗⃗⃗⃗ ,取其中的一种λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =2AB⃗⃗⃗⃗⃗ 讨论(其他三种类同),此时λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ =(λ1-λ3+2)AB ⃗⃗⃗⃗⃗ +(λ2-λ4)AD ⃗⃗⃗⃗⃗ ,要使|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |的最大,只需要使|λ1-λ3+2|,|λ2-λ4|最大,取λ1=1,λ2=1,λ3=-1,λ4=-1,此时|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD ⃗⃗⃗⃗⃗ |=|4AB ⃗⃗⃗⃗⃗ +2AD ⃗⃗⃗⃗⃗ |=2√5,综合几种情况可得|λ1AB ⃗⃗⃗⃗⃗ +λ2BC ⃗⃗⃗⃗⃗ +λ3CD ⃗⃗⃗⃗⃗ +λ4DA ⃗⃗⃗⃗⃗ +λ5AC ⃗⃗⃗⃗⃗ +λ6BD⃗⃗⃗⃗⃗ |max =2√42.(2019·江苏·T12)如图,在△ABC 中,D 是BC 的中点,E 在边AB 上,BE=2EA ,AD 与CE 交于点O.若AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ ,则ABAC 的值是 .【答案】√3【解析】如图,过点D 作DF ∥CE ,交AB 于点F , 由BE=2EA ,D 为BC 中点,知BF=FE=EA ,AO=OD.又AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ =6AO ⃗⃗⃗⃗⃗ ·EC ⃗⃗⃗⃗ =3AD ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −AE⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )·(AC ⃗⃗⃗⃗⃗ -13AB⃗⃗⃗⃗⃗ ) =32(AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−13AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ ) =32(23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+AC⃗⃗⃗⃗⃗ 2) =AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −12AB ⃗⃗⃗⃗⃗ 2+32AC⃗⃗⃗⃗⃗ 2, 得12AB ⃗⃗⃗⃗⃗ 2=32AC ⃗⃗⃗⃗⃗ 2,即|AB⃗⃗⃗⃗⃗ |=√3|AC ⃗⃗⃗⃗⃗ |,故AB AC=√3. 43.(2018·北京·文T9)设向量a=(1,0),b=(-1,m).若a ⊥(ma-b),则m= . 【答案】-1【解析】由题意,得ma-b=(m+1,-m). ∵a ⊥(ma-b),∴a ·(ma-b)=0,即m+1=0, ∴m=-1.44.(2018·上海·T8)在平面直角坐标系中,已知点A(-1,0),B(2,0),E ,F 是y 轴上的两个动点,且|EF ⃗⃗⃗⃗ |=2,则AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ 的最小值为 . 【答案】-3【解析】依题意,设E(0,a),F(0,b),不妨设a>b ,则 a-b=2,AE ⃗⃗⃗⃗⃗ =(1,a),BF ⃗⃗⃗⃗ =(-2,b),a=b+2,所以AE ⃗⃗⃗⃗⃗ ·BF ⃗⃗⃗⃗ =(1,a)·(-2,b)=-2+ab=-2+(b+2)b=b 2+2b-2=(b+1)2-3, 故所求最小值为-3.45.(2018·江苏·T2)在平面直角坐标系xOy 中,A 为直线l:y=2x 上在第一象限内的点,B(5,0),以AB 为直径的圆C 与直线l 交于另一点D.若AB ⃗⃗⃗⃗⃗ ·CD ⃗⃗⃗⃗⃗ =0,则点A 的横坐标为 . 【答案】3【解析】设A(a ,2a)(a>0),则由圆心C 为AB 的中点得C (a+52,a),☉C:(x-5)(x-a)+y(y-2a)=0.将其与y=2x 联立解得x D =1,D(1,2).因为AB ⃗⃗⃗⃗⃗ =(5-a ,-2a),CD ⃗⃗⃗⃗⃗ =(1-a+52,2-a),AB ⃗⃗⃗⃗⃗ ·CD⃗⃗⃗⃗⃗ =0,所以(5-a)·(1-a+52)+(-2a)(2-a)=0,即a 2-2a-3=0,解得a=3或a=-1.因为a>0,所以a=3.46.(2018·全国3·T13)已知向量a=(1,2),b=(2,-2),c=(1,λ).若c ∥(2a+b),则λ= . 【答案】12【解析】2a+b=(4,2),c=(1,λ), 由c ∥(2a+b),得4λ-2=0,得λ=12.47.(2017·全国1·文T13)已知向量a=(-1,2),b=(m ,1),若向量a+b 与a 垂直,则m= . 【答案】7【解析】因为a=(-1,2),b=(m ,1), 所以a+b=(m-1,3).因为a+b 与a 垂直,所以(a+b )·a=0,即-(m-1)+2×3=0,解得m=7.48.(2017·山东·文T11)已知向量a=(2,6),b=(-1,λ).若a ∥b ,则λ= . 【答案】-3【解析】∵a ∥b ,∴2λ-6×(-1)=0,∴λ=-3.49.(2017·全国1·理T13)已知向量a ,b 的夹角为60°,|a|=2,|b|=1,则|a+2b|= . 【答案】2【解析】因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·c os 60°+4|b|2=22+4×2×1×12+4×1=12, 所以|a+2b|=√12=2√3.50.(2017·天津,理13文14)在△ABC 中,∠A =60°,AB=3,AC=2.若BD ⃗⃗⃗⃗⃗ =2DC ⃗⃗⃗⃗⃗ ,AE ⃗⃗⃗⃗⃗ =λAC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ (λ∈R),且AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =-4,则λ的值为 . 【答案】311【解析】由题意,知|AB ⃗⃗⃗⃗⃗ |=3,|AC ⃗⃗⃗⃗⃗ |=2, AB ⃗⃗⃗⃗⃗ ·AC⃗⃗⃗⃗⃗ =3×2×c os 60°=3, AD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=13AB ⃗⃗⃗⃗⃗ +23AC⃗⃗⃗⃗⃗ , 所以AD ⃗⃗⃗⃗⃗ ·AE ⃗⃗⃗⃗⃗ =(13AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ )·(λAC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =λ-23AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ −13AB ⃗⃗⃗⃗⃗ 2+2λ3AC ⃗⃗⃗⃗⃗ 2 =λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.51.(2017·江苏·T12)如图,在同一个平面内,向量OA ⃗⃗⃗⃗⃗ ,OB ⃗⃗⃗⃗⃗ ,OC ⃗⃗⃗⃗⃗ 的模分别为1,1,√2,OA ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为α,且tan α=7,OB ⃗⃗⃗⃗⃗ 与OC ⃗⃗⃗⃗⃗ 的夹角为45°.若OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R),则m+n= . 【答案】3【解析】由tan α=7可得cos α=5√2,sin α=5√2,则5√2=OA⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OA⃗⃗⃗⃗⃗⃗ |·|OC ⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,由cos ∠BOC=√22可得√22=OB ⃗⃗⃗⃗⃗⃗ ·OC ⃗⃗⃗⃗⃗⃗ |OB ⃗⃗⃗⃗⃗⃗ |·|OC⃗⃗⃗⃗⃗⃗ |=⃗⃗⃗⃗⃗⃗ ⃗⃗⃗⃗⃗⃗ √2,因为cos ∠AOB=cos (α+45°)=cos αc os 45°-sin αsin45°=5√2×√22−5√2×√22=-35,所以OA ⃗⃗⃗⃗⃗ ·OB⃗⃗⃗⃗⃗ =-35,所以m-35n=15,-35m+n=1, 所以25m+25n=65,所以m+n=3.52.(2017·山东·理T12)已知e 1,e 2是互相垂直的单位向量,若√3 e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是 . 【答案】√33【解析】∵e 1,e 2是互相垂直的单位向量, ∴可设a=√3e 1-e 2=(√3,-1),b=e 1+λe 2=(1,λ). 则<a ,b >=60°.∴cos<a ,b>=c os 60°=a ·b|a ||b |=√3-2=12,即√3-λ=2+1,解得λ=√33.53.(2017·江苏·理T13)在平面直角坐标系xOy 中,A(-12,0),B(0,6),点P 在圆O:x 2+y 2=50上.若PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是 . 【答案】[-5√2,1]【解析】设P(x ,y),由PA ⃗⃗⃗⃗ ·PB ⃗⃗⃗⃗⃗ ≤20,易得x 2+y 2+12x-6y≤20.把x 2+y 2=50代入x 2+y 2+12x-6y≤20得2x-y+5≤0. 由{2x -y +5=0,x 2+y 2=50,可得{x =-5,y =-5或{x =1,y =7.由2x-y+5≤0表示的平面区域及P 点在圆上,可得点P 在圆弧EPF 上,所以点P 横坐标的取值范围为[-5√2,1].54.(2017·北京·文T12)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为 .【答案】6【解析】方法1:设P(cos α,sin α),α∈R ,则AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(cos α+2,sin α),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2cos α+4.当α=2k π,k ∈Z 时,2cos α+4取得最大值,最大值为6. 故AO ⃗⃗⃗⃗⃗ ·AP⃗⃗⃗⃗⃗ 的最大值为6. 方法2:设P(x ,y),x 2+y 2=1,-1≤x≤1,AO ⃗⃗⃗⃗⃗ =(2,0),AP ⃗⃗⃗⃗⃗ =(x+2,y),AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ =2x+4,故AO ⃗⃗⃗⃗⃗ ·AP ⃗⃗⃗⃗⃗ 的最大值为6.55.(2016·北京·文T9)已知向量a=(1,√3),b=(√3,1),则a 与b 夹角的大小为 . 【答案】π6【解析】设a 与b 的夹角为θ,则cos θ=a ·b|a ||b |=2√32×2=√32,且两个向量夹角范围是[0,π],∴所求的夹角为π6.56.(2016·全国1·文T13)设向量a=(x ,x+1),b=(1,2),且a ⊥b ,则x= . 【答案】−23【解析】∵a ⊥b ,∴a ·b=x+2(x+1)=0, 解得x=-23.57.(2016·山东·文T13)已知向量a=(1,-1),b=(6,-4).若a ⊥(ta+b),则实数t 的值为 . 【答案】-5【解析】由a ⊥(ta+b)可得a ·(ta+b)=0, 所以ta 2+a ·b=0,而a 2=12+(-1)2=2,a ·b=1×6+(-1)×(-4)=10,所以有t×2+10=0,解得t=-5. 58.(2016·全国2·文T13)已知向量a=(m ,4),b=(3,-2),且a ∥b ,则m= . 【答案】-6【解析】因为a ∥b ,所以-2m-4×3=0,解得m=-6.59.(2016·全国1·理T13)设向量a=(m ,1),b=(1,2),且|a+b|2=|a|2+|b|2,则m= . 【答案】-2【解析】∵|a+b|2=|a|2+|b|2, ∴(m+1)2+32=m 2+1+5,解得m=-2.60.(2015·浙江·文T13)已知e 1,e 2是平面单位向量,且e 1·e 2=12.若平面向量b 满足b ·e 1=b ·e 2=1,则|b|= . 【答案】2√33【解析】因为b ·e 1=b ·e 2=1,|e 1|=|e 2|=1,由数量积的几何意义,知b 在e 1,e 2方向上的投影相等,且都为1,所以b 与e 1,e 2所成的角相等.由e 1·e 2=12知e 1与e 2的夹角为60°,所以b 与e 1,e 2所成的角均为30°,即|b|c os 30°=1,所以|b|=1cos30°=2√33. 61.(2015·全国2·理T13)设向量a ,b 不平行,向量λa+b 与a+2b 平行,则实数λ= . 【答案】12【解析】由题意知存在实数t ∈R ,使λa+b=t(a+2b),得{λ=t ,1=2t ,解得λ=12.62.(2015·北京·理T13)在△ABC 中,点M ,N 满足AM ⃗⃗⃗⃗⃗⃗ =2MC ⃗⃗⃗⃗⃗⃗ ,BN ⃗⃗⃗⃗⃗ =NC ⃗⃗⃗⃗⃗ .若MN ⃗⃗⃗⃗⃗⃗ =x AB ⃗⃗⃗⃗⃗ +y AC ⃗⃗⃗⃗⃗ ,则x= ,y= . 【答案】12−16【解析】如图,∵MN ⃗⃗⃗⃗⃗⃗ =MC ⃗⃗⃗⃗⃗⃗ +CN ⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12BC⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ −12(AC ⃗⃗⃗⃗⃗ −AB⃗⃗⃗⃗⃗ ) =12AB ⃗⃗⃗⃗⃗ −16AC⃗⃗⃗⃗⃗ , ∴x=12,y=-16.63.(2014·湖北·理T11)设向量a=(3,3),b=(1,-1).若(a +λb)⊥(a-λb),则实数λ= . 【答案】±3【解析】由题意得(a+λb)·(a-λb)=0,即a 2-λ2b 2=0,则a 2=λ2b 2, λ2=a 2b 2=(√32+32)2[√12+(-1)]=182=9.故λ=±3.64.(2014·陕西·理T3)设0<θ<π2,向量a=(sin 2θ,cos θ),b=(cos θ,1),若a ∥b ,则tan θ= .【答案】12【解析】由a ∥b ,得sin 2θ=cos 2θ,即2sin θcos θ=cos 2θ, 因为0<θ<π2,所以cos θ≠0,所以2sin θ=cos θ. 所以tan θ=12.65.(2014·重庆·文T12)已知向量a 与b 的夹角为60°,且a=(-2,-6),|b|=√10,则a ·b= . 【答案】10【解析】由题意得|a|=2√10,所以a ·b=|a||b|cos<a ,b>=2√10×√10×12=10.66.(2014·全国1·理T15)已知A ,B ,C 为圆O 上的三点,若AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),则AB ⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为 . 【答案】90°【解析】由AO ⃗⃗⃗⃗⃗ =12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ),可得O 为BC 的中点,则BC 为圆O 的直径,即∠BAC =90°.故AB⃗⃗⃗⃗⃗ 与AC⃗⃗⃗⃗⃗ 的夹角为90°. 67.(2014·湖北·文T12)若向量OA ⃗⃗⃗⃗⃗ =(1,-3),|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,OA ⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =0,则|AB ⃗⃗⃗⃗⃗ |= . 【答案】2√5【解析】设B(x ,y),由|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |,可得√10=√x 2+y 2, ① OA⃗⃗⃗⃗⃗ ·OB ⃗⃗⃗⃗⃗ =x-3y=0, ② 由①②得x=3,y=1或x=-3,y=-1, 所以B(3,1)或B(-3,-1),故AB ⃗⃗⃗⃗⃗ =(2,4)或AB ⃗⃗⃗⃗⃗ =(-4,2),|AB⃗⃗⃗⃗⃗ |=2√5, 68.(2013·江苏·T10)设D ,E 分别是△ABC 的边AB ,BC 上的点,AD=12AB ,BE=23BC.若DE ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ (λ1,λ2为实数),则λ1+λ2的值为 . 【答案】12【解析】由题意作图如图.∵在△ABC 中,DE ⃗⃗⃗⃗⃗ =DB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23BC ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +23(AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=-16AB ⃗⃗⃗⃗⃗ +23AC ⃗⃗⃗⃗⃗ =λ1AB ⃗⃗⃗⃗⃗ +λ2AC ⃗⃗⃗⃗⃗ ,∴λ1=-16,λ2=23.故λ1+λ2=12.69.(2013·北京·理T13)向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb(λ,μ∈R),则λμ= .【答案】4【解析】可设a=-i+j ,i ,j 为单位向量且i ⊥j ,则b=6i+2j ,c=-i-3j.∵c =λa +μb=(6μ-λ)i+(λ+2μ)j ,∴{6μ-λ=-1,λ+2μ=-3,解得{λ=-2,μ=-12.∴λμ=4. 70.(2013·全国1·T13)已知两个单位向量a ,b 的夹角为60°,c=ta+(1-t)b.若b ·c=0,则t= .【答案】2【解析】b ·c=ta ·b+(1-t)|b|2.又|a|=|b|=1,且a 与b 的夹角为60°,b ·c=0,∴0=t|a||b|c os 60°+(1-t),0=12t+1-t.∴t=2.71.(2013·全国2·理T13文T14)已知正方形ABCD 的边长为2,E 为CD 的中点,则AE⃗⃗⃗⃗⃗ ·BD⃗⃗⃗⃗⃗ = .【答案】2【解析】以{AB ⃗⃗⃗⃗⃗ ,AD ⃗⃗⃗⃗⃗ }为基底,则AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =0,而AE ⃗⃗⃗⃗⃗ =12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ , ∴AE ⃗⃗⃗⃗⃗ ·BD ⃗⃗⃗⃗⃗ =(12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(AD ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ) =-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2=-12×22+22=2.72.(2013·天津·理T12)在平行四边形ABCD 中,AD=1,∠BA D=60°,E 为CD 的中点.若AC⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =1,则AB 的长为 .【答案】12【解析】如图所示,在平行四边形ABCD 中,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ ,BE ⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗ =-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ . 所以AC ⃗⃗⃗⃗⃗ ·BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )·(-12AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗ )=-12|AB ⃗⃗⃗⃗⃗ |2+|AD ⃗⃗⃗⃗⃗ |2+12AB ⃗⃗⃗⃗⃗ ·AD ⃗⃗⃗⃗⃗ =-12|AB ⃗⃗⃗⃗⃗ |2+14|AB ⃗⃗⃗⃗⃗ |+1=1,解方程得|AB ⃗⃗⃗⃗⃗ |=12(舍去|AB ⃗⃗⃗⃗⃗ |=0).所以线段AB 的长为12.73.(2013·北京·文T14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D 由所有满足AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC⃗⃗⃗⃗⃗ (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为 . 【答案】3【解析】AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAC ⃗⃗⃗⃗⃗ ,AB ⃗⃗⃗⃗⃗ =(2,1),AC⃗⃗⃗⃗⃗ =(1,2). 设P(x ,y),则AP⃗⃗⃗⃗⃗ =(x-1,y+1). ∴{x -1=2λ+μ,y +1=λ+2μ,得{λ=2x -y -33,μ=2y -x+33,∵1≤λ≤2,0≤μ≤1,可得{6≤2x -y ≤9,0≤x -2y ≤3,如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A1B1|=√(4-3)2+22=√5,两直线间距离d=√22+1=√5,∴D的面积S=|A1B1|·d=3.74.(2012·全国·理T13文T15)已知向量a,b夹角为45°,且|a|=1,|2a-b|=√10,则|b|= .【答案】3√2【解析】∵a,b的夹角为45°,|a|=1,∴a·b=|a|×|b|c os 45°=√22|b|,|2a-b|2=4-4×√22|b|+|b|2=10,∴|b|=3√2.75.(2012·安徽·文T11)设向量a=(1,2m),b=(m+1,1),c=(2,m),若(a+c)⊥b,则|a|= . 【答案】√2【解析】由题意,可得a+c=(3,3m).由(a+c)⊥b,得(a+c)·b=0,即(3,3m)·(m+1,1)=3(m+1)+3m=0,解之,得m=-12.∴a=(1,-1),|a|=√2.76.(2011·全国·文T13)已知a与b为两个不共线的单位向量,k为实数,若向量a+b与向量ka-b垂直,则k= .【答案】1【解析】由已知可得|a|=|b|=1,且a与b不共线,所以a·b≠1,a·b≠-1.由已知向量a+b与向量ka-b垂直,所以(a+b)·(ka-b)=0,即ka2-b2+(k-1)a·b=0,即k-1+(k-1)a·b=0,所以(k-1)(1+a·b)=0.因为a·b≠-1,即a·b+1≠0,所以k-1=0,即k=1.(2010-2019)十年高考数学真题分类汇编:平面向量(含解析)。

2010年江苏高考数学试题(含答案详解

2010年江苏高考数学试题(含答案详解

2010年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题参考公式:锥体的体积公式: V 锥体=13Sh ,其中S 是锥体的底面积,h 是高。

一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位.......置上...1、设集合A={-1,1,3},B={a+2,a 2+4},A ∩B={3},则实数a =______▲_____. [解析] 考查集合的运算推理。

3∈B, a+2=3, a=1.2、设复数z 满足z(2-3i)=6+4i (其中i 为虚数单位),则z 的模为______▲_____. [解析] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i 与3+2 i 的模相等,z 的模为2。

3、盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ ▲__.[解析]考查古典概型知识。

3162p ==4、某棉纺厂为了了解一批棉花的质量,从中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40]中,其频率分布直方图如图所示,则其抽样的100根中,有_▲___根在棉花纤维的长度小于20mm 。

[解析]考查频率分布直方图的知识。

注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求 1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

2010年高考全国数学卷(全国Ⅰ.文)(含详解答案)

2010年高考全国数学卷(全国Ⅰ.文)(含详解答案)

2010年普通高等学校招生全国统一考试文科数学(必修+选修)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B = 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k k n kn n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)2-12 (C)12 (D) 21.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos 602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力. 【解析】画出可行域(如右图),11222z x y y x z =-⇒=-,由图可知,当直线l 经过点A(1,-1)时,z 最大,且最大值为max 12(1)3z =-⨯-=.(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 4.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a === ,37897988()a a a a a a a === 10,所以132850a a =,所以133364564655()(50)a a a a a a a =====(5)43(1)(1x -的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(11464133x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭x +y20y -=2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°6.C 【命题意图】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.【解析】延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=(7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞7.C 【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a+≥,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+b=1a a+ 又0<a<b,所以0<a<1<b ,令()f a a a=+1由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b 的取值范围是(2,+∞).【解析2】由0<a<b,且f (a )=f (b )得:0111a b ab <<⎧⎪<⎨⎪=⎩,利用线性规划得:0111x y xy <<⎧⎪<⎨⎪=⎩,化为求z x y =+的取值范围问题,z x y y x z =+⇒=-+,2111y y x x'=⇒=-<-⇒过点()1,1时z 最小为2,∴(C) (2,)+∞(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则 12||||PF PF =(A)2 (B)4 (C) 6 (D) 8AB C DA 1B 1C 1D 1 O8.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +- ()(22221212121212122221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF = 4【解析2】由焦点三角形面积公式得:1202201216011cot 1cot sin 602222F PF S b PF PF PF PF θ∆===== 12||||PF PF = 4(9)正方体ABCD -1111A B C D中,1BB 与平面1ACD 所成角的余弦值为(A )(B(C )23 (D 9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO S DD∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯= ,21122ACD SAD CD a ∆== . 所以131A C D A C D S D D D O a S ∆∆= ,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos θ=. 【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D所成角,1111cos O O O OD OD ∠=== (10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用. 【解析1】 a=3log 2=21log 3, b=In2=21log e,而22log 3log 1e >>,所以a<b, c=125-222log 4log 3>=>,所以c<a,综上c<a<b. 【解析2】a =3log 2=321log ,b =ln2=21log e, 3221log log 2e <<< ,32211112log log e <<<; c=12152-=<=,∴c<a<b(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA PB ∙的最小值为(A) 4-+3-(C) 4-+3-+11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,,sin α=||||cos2PA PB PA PB α∙=⋅=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y ∙= ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得3y ≤--3y ≥-+.故min ()3PA PB ∙=-+此时x =【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫∙== ⎪⎝⎭ 2222221sin 12sin cos 22212sin 2sin sin 22θθθθθθ⎛⎫⎛⎫-- ⎪⎪⎛⎫⎝⎭⎝⎭=⋅-= ⎪⎝⎭换元:2sin ,012x x θ=<≤,()()1121233x x PA PB x x x--∙==+-≥ 【解析3】建系:园的方程为221x y +=,设11110(,),(,),(,0)A x y B x y P x -,()()2211101110110,,001AO PA x y x x y x x x y x x ⊥⇒⋅-=⇒-+=⇒=()222222221100110110221233PA PB x x x x y x x x x x ∙=-+-=-+--=+-≥(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为12.B 【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max V =.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考 证号填写清楚,然后贴好条形码。

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年高考全国数学卷(全国Ⅱ.理)(含详解答案)

2010年普通高等学校招生全国统一考试(全国卷II )数学(理科)【教师简评】按照“保持整体稳定,推动改革创新,立足基础考查,突出能力立意”命题指导思想,本套试卷的总体印象是:题目以常规题为主,难度较前两年困难,得高分需要扎扎实实的数学功底.1.纵观试题,小题起步较低,难度缓缓上升,除了选择题11、12、16题有一定的难度之外,其他题目难度都比较平和.2.解答题中三角函数题较去年容易,立体几何难度和去年持平,数列题的难度较去年有所提升,由去年常见的递推数列题型转变为今年的数列求极限、数列不等式的证明,不易拿满分,概率题由去年背景是“人员调配”问题,转变为今年的与物理相关的电路问题,更体现了学科之间的联系.两道压轴题以解析几何和导数知识命制,和去年比较更有利于分步得分.3.要求考生有比较强的计算能力,例如立体几何问题,题目不难,但需要一定的计算技巧和能力.不管题目难度如何变化,“夯实双基(基础知识、基本方法)”,对大多数考生来说,是以不变应万变的硬道理.(1)复数231i i -⎛⎫= ⎪+⎝⎭(A )34i -- (B )34i -+ (C )34i - (D )34i + 【答案】A【命题意图】本试题主要考查复数的运算.【解析】231i i -⎛⎫= ⎪+⎝⎭22(3)(1)(12)342i i i i --⎡⎤=-=--⎢⎥⎣⎦. (2).函数1ln(1)(1)2x y x +-=>的反函数是(A ) 211(0)x y e x +=-> (B )211(0)x y e x +=+> (C )211(R)x y e x +=-∈ (D )211(R)x y e x +=+∈【答案】D【命题意图】本试题主要考察反函数的求法及指数函数与对数函数的互化。

【解析】由原函数解得,即,又;∴在反函数中,故选D.(3).若变量,x y 满足约束条件1,,325x y x x y -⎧⎪⎨⎪+⎩≥≥≤,则2z x y =+的最大值为(A )1 (B )2 (C )3 (D )4 【答案】C【命题意图】本试题主要考查简单的线性规划问题.【解析】可行域是由A(1,1),B(1,4),C(1,1)---构成的三角形,可知目标函数过C 时最大,最大值为3,故选C.(4).如果等差数列{}n a 中,34512a a a ++=,那么127...a a a +++= (A )14 (B )21 (C )28 (D )35 【答案】C【命题意图】本试题主要考查等差数列的基本公式和性质. 【解析】173454412747()312,4,7282a a a a a a a a a a a +++===∴+++=== (5)不等式2601x x x --->的解集为 (A ){}2,3x x x -<或> (B ){}213x x x -<,或<<(C ) {}213x x x -<<,或> (D ){}2113x x x -<<,或<<【答案】C【命题意图】本试题主要考察分式不等式与高次不等式的解法.【解析】利用数轴穿根法解得-2<x <1或x >3,故选C(6)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种 (D )54种【答案】B【命题意图】本试题主要考察排列组合知识,考察考生分析问题的能力.【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.(7)为了得到函数sin(2)3y x π=-的图像,只需把函数sin(2)6y x π=+的图像(A )向左平移4π个长度单位 (B )向右平移4π个长度单位 (C )向左平移2π个长度单位 (D )向右平移2π个长度单位【答案】B【命题意图】本试题主要考查三角函数图像的平移.【解析】s i n (2)6y x π=+=sin 2()12x π+,sin(2)3y x π=-=sin 2()6x π=-,所以将s i n (2)6y x π=+的图像向右平移4π个长度单位得到sin(2)3y x π=-的图像,故选B.(8)ABC V 中,点D 在AB 上,CD 平方ACB ∠.若C B a =u u r ,CA b =uu r,1a =,2b =,则CD =u u u r(A )1233a b +(B )2133a b + (C )3455a b + (D )4355a b + 【答案】B【命题意图】本试题主要考查向量的基本运算,考查角平分线定理. 【解析】因为CD 平分ACB ∠,由角平分线定理得AD CA2=DBCB 1=,所以D 为AB 的三等分点,且22AD AB (CB CA)33==- ,所以2121CD CA+AD CB CA a b 3333==+=+,故选B.(9)已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为(A )1 (B (C )2 (D )3【答案】C【命题意图】本试题主要考察椎体的体积,考察告辞函数的最值问题.【解析】设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.(10)若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a =(A )64 (B )32 (C )16 (D )8【答案】A【命题意图】本试题主要考查求导法则、导数的几何意义、切线的求法和三角形的面积公式,考查考生的计算能力..【解析】332211',22y x k a --=-∴=-,切线方程是13221()2y a a x a ---=--,令0x =,1232y a -=,令0y =,3x a =,∴三角形的面积是121331822s a a -=⋅⋅=,解得64a =.故选A.(11)与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点 (A )有且只有1个 (B )有且只有2个 (C )有且只有3个 (D )有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.(12)已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =(A )1 (B (C (D )2【答案】B【命题意图】本试题主要考察椭圆的性质与第二定义.【解析】设直线l 为椭圆的有准线,e 为离心率,过A ,B 分别作AA 1,BB 1垂直于l ,A 1,B 为垂足,过B 作BE 垂直于AA 1与E ,由第二定义得,,由,得,∴即k=,故选B.第Ⅱ卷注意事项:1.用0.5毫米的黑色字迹签字笔在答题卡上作答。

2010年江苏高考数学试题(含答案详解

2010年江苏高考数学试题(含答案详解

2010 年普通高等学校招生全国统一考试江苏卷数学全解全析数学Ⅰ试题注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题——第14 题)、解答题(第15 题——第20 题)。

本卷满分160 分,考试时间为120 分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

参考公式:锥体的体积公式 : V1h 是高。

锥体= Sh,其中 S 是锥体的底面积,3一、填空题:本大题共14 小题,每小题 5 分,共 70分。

请把答案填写在答题卡相应的位.......置上 ...1、设集合 A={-1,1,3},B={a+2,a 2+4},A ∩ B={3} ,则实数 a=______▲ _____.[ 解析 ] 考查集合的运算推理。

3B, a+2=3, a=1.2、设复数 z 满足 z(2-3i)=6+4i (其中 i 为虚数单位),则 z 的模为 ______ ▲_____.[ 解析 ] 考查复数运算、模的性质。

z(2-3i)=2(3+2 i), 2-3i与 3+2 i 的模相等, z 的模为 2。

3、盒子中有大小相同的 3 只白球, 1 只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是 _ ▲ __.[ 解析 ] 考查古典概型知识。

p316 24、某棉纺厂为了了解一批棉花的质量,从中随机抽取了 100 根棉花纤维的长度(棉花纤维的长度是棉花质量的重要指标),所得数据都在区间[5,40] 中,其频率分布直方图如图所示,则其抽样的100 根中,有 _▲ ___根在棉花纤维的长度小于20mm。

十年高考数学山东卷精校版含详解——8导数与积分部分

十年高考数学山东卷精校版含详解——8导数与积分部分

十年高考数学山东卷精校版含详解——8导数与积分部分十年高考数学山东卷精校版含详解——8导数与积分部分一、选择题(共11小题;共55分)1. 直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为A. 22B. 42C. 2D. 42. 由曲线y=x2,y=x3围成的封闭图形面积为A. 112B. 14C. 13D. 7123. 直线y=4x与曲线y=x3在第一象限内围成的封闭图形的面积为A. 2B. 4C. 2D. 44. 曲线y=x3+11在点P1,12处的切线与y轴交点的纵坐标是A. ?9B. ?3C. 9D. 155. 若函数y=f x的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f x具有T性质.下列函数中具有T性质的是A. y=sin xB. y=ln xC. y=e xD. y=x36. 观察x2?=2x,x4?=4x3,cos x?=?sin x,由归纳推理可得:若定义在R上的函数f x满足f?x=f x,记g x为f x的导函数,则g?x=A. f xB. ?f xC. g xD. ?g x7. 抛物线C1:y=12p x2p>0的焦点与双曲线C2:x23y2=1的右焦点的连线交C1于第一象限的点M.若C1在点M处的切线平行于C2的一条渐近线,则p=A. 316B. 38C. 233D. 4338. 函数y=x22sin x的图象大致是A. B.C. D.9. 已知f x是R上最小正周期为2的周期函数,且当0≤x<2时,f x=x3?x,则函数y=f x的图象在区间0,6上与x轴的交点的个数为A. 6B. 7C. 8D. 910. 抛物线 C 1:y =12px 2 p >0 的焦点与双曲线 C 2:x 23y 2=1 的右焦点的连线交 C 1 于第一象限的点 M .若 C 1 在点 M 处的切线平行于 C 2 的一条渐近线,则 p = A. 316B. 38C. 2 33D. 4 3311. 设函数 f x =1x ,g x =?x 2+bx .若 y =f x 的图象与 y =g x 的图象有且仅有两个不同的公共点 A x 1,y 1 ,B x 2,y 2 ,则下列判断正确的是A. x 1+x 2>0,y 1+y 2>0B. x 1+x 2>0,y 1+y 2<0C. x 1+x 2<0,y 1+y 2>0D. x 1+x 2<0,y 1+y 2<0二、填空题(共6小题;共30分) 12. 设 a >0,若曲线 y = x 与直线 x =a ,y =0 所围成封闭图形的面积为 a 2,则 a = . 13.1+tan 75°1?tan 75= .14. 若 limn n +a? n=1 ,则常数 a = .15. 设函数f x =ax 2+c a ≠0 .若 f x d x 10=f x 0 ,0≤x 0≤1 ,则 x 0 的值为.16. 若函数 e x f x (e ≈2.71828? 是自然对数的底数)在 f x 的定义域上单调递增,则称函数f x 具有 M 性质.下列函数中所有具有 M 性质的函数的序号为.①f x =2?x ②f x =3?x ③f x =x 3④f x =x 2+2.17. 若函数 f x =a x ?x ?a (a >0,且a ≠1)有两个零点,则实数 a 的取值范围是.三、解答题(共26小题;共338分)18. 设函数 f x =2x 3?3 a ?1 x 2+1,其中a ≥1.(1)求 f x 的单调区间;(2)讨论 f x 的极值.19. 在平面直角坐标系 xOy 中,已知椭圆 C :x 2a +y 2b =1 a >b >0 的离心率为 22,椭圆 C 截直线y =1 所得线段的长度为 2 2.(1)求椭圆 C 的方程;(2)动直线l :y =kx +m m ≠0 交椭圆 C 于 A ,B 两点,交 y 轴于点 M .点 N 是 M 关于 O的对称点,⊙N 的半径为∣NO ∣.设 D 为 AB 的中点,DE ,DF 与⊙N 分别相切于点 E ,F ,求∠EDF 的最小值.20. 两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧AB上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的距离有关,对城A和城B的总影响度为对城A 与城B的影响度之和,记C点到城A的距离为x km,建在C处的垃圾处理厂对城A和城B的总影响度为y.统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k,当垃圾处理厂建在弧AB的中点时,对城A和城B的总影响度为0.065.(1)将y表示成x的函数;(2)讨论(1)中函数的单调性,并判断弧AB上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由.21. 设函数f x=ax?a+1ln x+1,其中a≥?1,求f x的单调区间.22. 已知x=1是函数f x=mx3?3m+1x2+nx+1的一个极值点,其中m,n∈R,m<0.(1)求m与n的关系表达式;(2)求f x的单调区间;(3)当x∈?1,1时,函数y=f x的图象上任意一点的切线斜率恒大于3m,求m的取值范围.23. 设函数f x=e xx ?k2x+ln x (k为常数,e=2.71828?是自然对数的底数).(1)当k≤0时,求函数f x的单调区间;(2)若函数f x在0,2内存在两个极值点,求k的取值范围.24. 设f x=x ln x?ax2+2a?1x,a∈R.(1)令g x=f?x,求g x的单调区间;(2)已知f x在x=1处取得极大值,求实数a的取值范围.25. 已知函数f x=x2+2cos x,g x=e x cos x?sin x+2x?2,其中e≈2.17828?是自然对数的底数.(1)求曲线y=f x在点π,fπ处的切线方程;(2)令x=g x?af x a∈R,讨论 x的单调性并判断有无极值,有极值时求出极值.26. 已知函数f x=13x3?12ax2,a∈R,(1)当a=2时,求曲线y=f x在点3,f3处的切线方程;(2)设函数g x=f x+x?a cos x?sin x,讨论g x的单调性并判断有无极值,有极值时求出极值.27. 已知f x=a x?ln x+2x?1x2,a∈R.(1)讨论f x的单调性;(2)当a=1时,证明f x>f?x+32对于任意的x∈1,2成立.28. 设函数f x=a ln x+x?1,其中a为常数.x+1(1)若a=0,求曲线y=f x在点1,f1处的切线方程;(2)讨论函数f x的单调性.29. 设函数f x=x ln x?ax2+2a?1x,a∈R.(1)令g x=f?x,求函数g x的单调区间;(2)已知f x在x=1处取得极大值,求实数a的取值范围.+c(e=2.71828?是自然对数的底数,c∈R).30. 设函数f x=xe(1)求f x的单调区间、最大值;(2)讨论关于x的方程∣ln x∣=f x根的个数.31. 设函数f x=x+a ln x,g x=x2.已知曲线y=f x在点1,f1处的切线与直线2x?y=0平行.(1)求a的值;(2)是否存在自然数k,使得方程f x=g x在k,k+1内存在唯一的根? 如果存在,求出k;如果不存在,请说明理由;(3)设函数m x=min f x,g x(min p,q表示p,q中的较小值),求m x的最大值.32. 某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右立方米,且l≥2r.假设该容器的建造费用仅两端均为半球形,按照设计要求容器的容积为80π3与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c c>3千元.设该容器的建造费用为y 千元.(1)写出y关于r的函数表达式,并求该函数的定义域;(2)求该容器的建造费用最小时的r.33. 设函数f x=ax2+b ln x,其中ab≠0.证明:当ab>0时,函数f x没有极值点;当ab<0时,函数f x有且只有一个极值点,并求出极值.1a∈R.34. 已知函数f x=ln x?ax+1?ax(1)当a=?1时,求曲线y=f x在点2,f2处的切线方程;(2)当a≤1时,讨论f x的单调性.2ax3+bx2+x+3,其中a≠0.35. 已知函数f x=1(1)当a,b满足什么条件时,f x取得极值?(2)已知a>0,且f x在区间0,1上单调递增,试用a表示出b 的取值范围.36. 已知x=1是函数f x=mx3?3m+1x2+nx+1的一个极值点,其中m,n∈R,m≠0.(1)求m与n的关系式;(2)求f x的单调区间.37. 已知函数f x=ln x+ke x(k为常数,e=2.71828?是自然对数的底数),曲线y=f x在点1,f1处的切线与x轴平行.(1)求k的值;(2)求f x的单调区间;(3)设g x=xf?x,其中f?x为f x的导函数.证明:对任意x>0,g x<1+e?2.38. 已知数列a n的首项a1=5,前n项和为S n,且S n+1=2S n+n+5n∈N?.(1)证明数列a n+1是等比数列;(2)令f x=a1x+a2x+?+a n x n,求函数f x在点x=1处的导数f?1并比较2f?1与23n2?13n的大小.39. 已知数列a n的首项a1=5,前n项和为S n,且S n+1=2S n+n+5n∈N?.(1)证明数列a n+1是等比数列;(2)令f x=a1x+a2x2+?+a n x n,求函数f x在点x=1处的导数f?1.40. 已知函数f x=ln x?ax+1?ax1a∈R.(1)当a≤12时,讨论f x的单调性;(2)设g x=x2?2bx+4,当a=14时,若对任意x1∈0,2,存在x2∈1,2,使f x1≥g x2,求实数b的取值范围.41. 设函数f x=ln x+1+a x2?x,其中a∈R.(1)讨论函数f x极值点的个数,并说明理由;(2)若?x>0,f x≥0成立,求a的取值范围.42. 设函数f x=x2+b ln x+1,其中b≠0.(1)当b>12时,判断函数f x在定义域上的单调性;(2)求函数f x的极值点;(3)证明对任意的正整数n,不等式ln1n +1>1n1n都成立.43. 如图,设抛物线方程为x2=2py p>0,M为直线y=?2p上任意一点,过M引抛物线的切线,切点分别为A,B.(1)求证:A,M,B三点的横坐标成等差数列;(2)已知当M点的坐标为2,?2p时,∣AB∣=410.求此时抛物线的方程;(3)是否存在点M,使得点C关于直线AB的对称点D在抛物线x2=2py p>0上,其中,点C满足OC=OA+OB(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.答案第一部分 1. D【解析】由 y =4x ,y =x 3得 x =0 或 x =2 或 x =2 (舍).所以 S = 4x ?x 3 d x 20= 2x 2?14x 4 ∣∣02=4.2. A 【解析】题中所表示阴影部分如图:利用积分即得答案. 3. D 4. C 【解析】因为 y?=3x 2,切点为 P 1,12 ,所以切线的斜率为 3,故切线方程为3x ?y +9=0,令 x =0,得 y =9.5. A【解析】当 y =sin x 时,y?=cos x ,cos0?cos π=?1,所以在函数 y =sin x 图象存在两点 x =0,x =π 使条件成立,则 A 正确;函数 y =ln x ,y =e x ,y =x 3 的导数值均非负,不符合题意. 6. D【解析】由观察可知,偶函数 f x 的导函数 g x 都是奇函数,所以有 g ?x =?g x .7. D 【解析】由题可知,双曲线右焦点为 F 2,0 ,渐近线方程为 y =± 33x ;抛物线焦点为 F? 0,p 2.设 M x 0,y 0 ,则 y 0=12p x 02.∵k MF?=k FF?,∴12p x 02?p 2x 0=p 22①.又 y?=xp,∴y?∣x =x 0=x 0p=33②.由①②得 p =4 33.8. C【解析】据已知解析式可得 f 0 =0 ,即图象经过坐标原点,故排除 A ;又当x >2π 时, x2>π ,2sin x ≤2 ,即当x >2π 时, f x =x2?2sin x >0 ,故排除 D ;又当x >2π 时, f? x =122cos x 的符号不确定,即函数在区间2π,+∞ 上不单调,故排除B . 9. B【解析】当0≤x <2 时,由 f x =x 3?x =0 得 x =0 或 x =1,故 f x 在 0,2 上有两个零点.结合函数的周期性,可得函数在0,6 上共有7 个零点,即函数在区间 0,6 内的图象与 x 轴共有 7 个交点. 10. D【解析】设抛物线 C 1 的焦点为 F ,则 F 0,p2 .设双曲线 C 2 的右焦点为 F 1,则 F 1 2,0 .直线 FF 1 的方程为 y =?p 4x +p2,设 M x 0,x 022p,因为 M 在直线 FF 1 上,所以 x 022p =?p 4x 0+p2.①因为 y =12p x 2,所以 y?=1p x ,所以 C 1 在 M 点处的切线斜率为 1p x 0,又 x 23?y 2=1 的渐近线方程为y =± 33x ,故由题意得 1p x 0=33,② 将① 、② 联立可得 p =4 33.11. B 【解析】由 f x =g x 得 x 3?bx 2+1=0.因为两个函数图象有且仅有两个不同的公共点,所以不妨设x 3?bx 2+1= x ?x 1 2 x ?x 2 .展开看对应项系数得 x 12x 2=?1,2x 1x 2+x 12 =0,故 x 2<0,x 1=?2x 2>0.于是有x 1+x 2=?x 2>0,y 1+y 2=1x 1+1x 2=x 1+x 2x 1x 2<0. 第二部分 12. 49【解析】封闭图形如图所示,则0a x d x =23x 32∣0a =23a 32?0=a 2,解得 a =49. 13. ? 3 14. 2 15. 33【解析】由已知,得 a3+c =ax 02+c ,于是有 x 02=13 ,又0≤x 0≤1 ,故 x 0=33.16. ①④。

高考数学10年真题专题解析—常用逻辑用语

高考数学10年真题专题解析—常用逻辑用语

常用逻辑用语年份题号考点考查内容2011课标卷理10命题及其关系平面向量模与夹角、命题真假判断2012新课标理2命题及其关系复数的概念与运算、命题真假的判定2014卷1理9全称量词与特称量词二元一次不等式表示的平面区域、全称命题与特称命题真假的判定卷2文3充分条件与必要条件导数与极值的关系、充要条件的判定2015卷1理3全称量词与特称量词特称命题的否定2017卷1理2命题及其关系复数的有关概念与运算2019卷2理7充分条件与必要条件面面平行的判定与性质、充要条件判定卷3文111.全称量词与特称量词2.简单逻辑联结词二元一次不等式表示的平面区域、全称命题与特称命题真假判断、含逻辑联结词命题的判定2020卷2文理16简单逻辑联结词含逻辑联结词命题真假的判断卷3理16命题及其关系命题真假的判断,三角函数图象及其性质考点出现频率2021年预测考点5命题及其关系4/102021年仍将与其他知识结合,考查命题及其关系、含简单逻辑连接词的敏体真假判断、特称命题与全称命题真假判断及其否定的书写、充要条件的判定,其中充要条件判定为重点.考点6简单逻辑联结词2/10考点7全称量词与特称量词3/10考点8充分条件与必要条件2/10考点5命题及其关系1.(2020新课标III 理16)关于函数()1sin sin f x x x=+.①()f x 的图像关于y 轴对称;②()f x 的图像关于原点对称;③()f x 的图像关于2x π=对称;④()f x 的最小值为2.其中所有真命题的序号是.【答案】②③【解析】【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论.【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,∴函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭ ,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭,∴函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<,命题④错误,故答案为:②③.2.(2017新课标Ⅰ)设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ;2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数1z ,2z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为A .1p ,3p B .1p ,4p C .2p ,3p D .2p ,4p 【答案】B 【解析】设i z a b =+(,a b ∈R ),则2211i (i)a b z a b a b-==∈++R ,得0b =,所以z ∈R ,1p 正确;2222(i)2i z a b a b ab =+=-+∈R ,则0ab =,即0a =或0b =,不能确定z ∈R ,2p 不正确;若z ∈R ,则0b =,此时i z a b a =-=∈R ,4p 正确.选B .3.(2011新课标)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,3p πθ+>⇔∈a b 2:p ||1+>a b ⇔2(,]3πθπ∈3:||1[0,3p πθ->⇔∈a b 4:p ||1->a b ⇔(,]3πθπ∈其中真命题是A .14,p p B .13,p p C .23,p p D .24,p p【答案】A 【解析】由1a b +==>得,1cos 2θ>-,20,3πθ⎡⎫⇒∈⎪⎢⎣⎭。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年高考数学试题分类汇编——向量 含详解
(2010江苏卷)15、(本小题满分14分)
在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。

(1)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(2)设实数t 满足(OC t AB -)·OC =0,求t 的值。

[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。

满分14分。

(1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则
(2,6),(4,4).AB AC AB AC +=-= 所以||210,||4 2.AB AC AB AC +=-=
故所求的两条对角线的长分别为、
(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:
E 为B 、C 的中点,E (0,1)
又E (0,1)为A 、D 的中点,所以D (1,4)
故所求的两条对角线的长分别为BC=AD=;
(2)由题设知:OC =(-2,-1),(32,5)AB tOC t t -=++。

由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=,
从而511,t =-所以115t =-。

或者:2· AB OC tOC =,(3,5),AB =2115||AB OC t OC ⋅==- (2010江苏卷)15、(本小题满分14分)
在平面直角坐标系xOy 中,点A(-1,-2)、B(2,3)、C(-2,-1)。

(3)求以线段AB 、AC 为邻边的平行四边形两条对角线的长;
(4)设实数t 满足(OC t AB -)·OC =0,求t 的值。

[解析]本小题考查平面向量的几何意义、线性运算、数量积,考查运算求解能力。

满分14分。

(1)(方法一)由题设知(3,5),(1,1)AB AC ==-,则
(2,6),(4,4).AB AC AB AC +=-= 所以||210,||4 2.AB AC AB AC +=-=
故所求的两条对角线的长分别为、
(方法二)设该平行四边形的第四个顶点为D ,两条对角线的交点为E ,则:
E 为B 、C 的中点,E (0,1)
又E (0,1)为A 、D 的中点,所以D (1,4)
故所求的两条对角线的长分别为BC=AD=;
(2)由题设知:OC =(-2,-1),(32,5)AB tOC t t -=++。

由(OC t AB -)·OC =0,得:(32,5)(2,1)0t t ++⋅--=,
从而511,t =-所以115t =-。

或者:2· AB OC tOC =,(3,5),AB =2115||AB OC t OC ⋅==-。

相关文档
最新文档