初中数学七年级(下)期末复习华师版
华师大版七年级下册数学练习课件-期末复习1一元一次方程

▪ 16.(12分)已知:线段AB=40 cm.
▪ (1)如图1,点P沿线段AB自A点向B点以3 cm/s运动,同时点 Q沿线段BA自B点向A点以5 cm/s运动,问经过几秒后P、Q 相遇?
▪ (2)几秒后,P、Q相距16 cm?
▪ (3)如图2,AO=PO=8 cm,∠POB=40°,点P绕着点O以 20°/s的速度顺时针旋转一周停止,同时点Q沿直线AB自B 点向A点运动,假若点P、Q两点能相遇,求点Q运动的速 度.
阅后面的答案得知这个方程的解是 x=-2,那么“□”处应该是( A )
A.+2
B.-2
C.+3
D.-3
7.若“△”是新规定的某种运算符号,设 x△y=xy+x+y,则 2△m=-16 中,
m 的值为( D )
A.8
B.-8
C.6
D.-6
22
▪ 8.一轮船往返A、B两港之间,逆水航行需要3小时,顺水航 行需2小时,水速是3千米/小时B,则轮船在静水中的速度是 ()
▪ A.18千米/小时 B.15千米/小时 ▪ C.12千米/小时 D.20千米/小时
23
▪ 二、填空题(每小题5分,共20分) ▪ 9. 下面的框图表示解这个方程的流程:其中,“移项”这一
步等式骤的性的质1依据是_________________.
24
▪ 10.若3x4n-7+5=0是一元一次方程,2则n=__________. ▪ 11. 五个完全相同的小长方形拼成如图所示的大长方形,若
(2)-x=12(x-4); 解:去分母,得-2x=x-4;移项,得-2x-x=-4;合并同类项,得-3x= -4;系数化为 1,得 x=43.
11
(3)x-2 3-2x+3 1=1. 解:去分母,得 3(x-3)-2(2x+1)=6;去括号,得 3x-9-4x-2=6;移项、 合并同类项,得-x=17;系数化为 1,得 x=-17.
华师版初中数学七年级下册期末测试题及答案(3套)

华师版初中数学七年级下册期末测试题(一)一、选择题:本大题共小题,在每小题给出的四个选项中,只有一项是符合题目要求的.下列方程中,解为x=的是()A x=B x﹣=C x﹣=D x-=不等式x£在数轴上表示正确的是()A B C D小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,瓷砖形状可以是()A正五边形B正六边形C正八边形D正十边形下列图形分别是等边三角形、正方形、正五边形、等腰直角三角形,其中既是轴对称又是中心对称图形的是()A. B.C D.一个三角形的两边长分别是和,则它的第三边长可能是()A B C D下列不等式组中,无解的是()Axx<ìí<-îBxx<ìí>-îCxx>ìí>-îDxx>ìí<-î若xy=-ìí=î是关于x,y的二元一次方程k=x y的一个解,则k的值()A B C D明代数学家程大位的《算法统宗》中有这样一个问题:“隔墙听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”其大意为:有一群人分银子,如果每人分七两,则剩余四两,如果每人分九两,则还差半斤(注:明代时斤=两,故有“半斤八两”这个成语).设总共有x两银子,根据题意所列方程正确的是()A x﹣=x﹣B x x+-=C x=x Dx x-+=如右图,五边形A B C D E的一个内角∠A D,则∠∠∠∠等于A DB DCD D D若关于x,y的二元一次方程组a xb ya xb y+=-ìí-=î的解为xy=-ìí=î则方程组a xb ya xb y+=-ìí-=î的解为()Axy=-ìí=îBxy=-ìí=îCxyì=ïïíï=ïîDxyì=-ïïíï=ïî二、填空题:本大题共个小题已知a>b,则﹣a___﹣b(填“>”、“<”或“=”号).由x y=,得到用x表示y的式子为y=________.为建设书香校园,某中学的图书馆藏书量增加后达到万册,则该校图书馆原来图书有_____万册.如图,A B C E D C△≌△,∠C=D,点D在线段A C上,点E在线段C B延长线上,则∠∠E=_____D.如图,A B C沿着射线B C的方向平移到D E F的位置,若点E是B C的中点,B F=c m,则平移的距离为___c m.如图,在A B C中,点D在B C边上,∠B A C=D,∠A B C=D,射线D C绕点D逆时针旋转一定角度α,交A C于点E,∠A B C的平分线与∠A D E的平分线交于点P.下列结论:①∠C=D;②∠P=∠B A D;③α=∠P﹣∠B A D;④若∠A D E=∠A E D,则∠B A D=α.其中正确的是______.(写出所有正确结论的序号)三、解答题:本大题共个小题,解答应写出文字说明、证明过程或演算步骤.解方程组:x yx y+=ìí+=î.解不等式组:xx x->-ìï+-í-£ïî.若代数式x﹣与x﹣的值互为相反数,求x的值.作图:在如图所示的方格纸中,每个小方格都是边长为个单位的正方形.按要求画出下列图形:()将△A B C向右平移个单位得到△A′B′C′;()将△A′B′C′绕点A′顺时针旋转D得到△A′D E;()连结E C′,则△A′E C′是三角形.如图,在A B C中,∠A=D,∠A B C=D.()求∠C的度数;()若B D是A C边上的高,D E∥B C交A B于点E,求∠B D E的度数.如图,在四边形A B C D中,∠D=D,E是B C边上一点,E F⊥A E,交C D于点F.()若∠E A D=D,求∠D F E的度数;()若∠A E B=∠C E F,A E平分∠B A D,试说明:∠B=∠C.红星商场购进A,B两种型号空调,A型空调每台进价为m元,B型空调每台进价为n元,月份购进台A型空调和台B型空调共元;月份购进台A型空调和台B型空调共元.()求m,n的值;()月份该商场计划购进这两种型号空调共元,其中B型空调的数量不少于台,试问有哪几种进货方案?已知x,y同时满足x y=﹣a,x﹣y=a.()当a=时,求x﹣y的值;()试说明对于任意给定的数a,x y的值始终不变;()若y>﹣m,x﹣6m,且x只能取两个整数,求m的取值范围.阅读理解:如图,在A B C 中,D 是B C 边上一点,且B D m D C n=,试说明A B D A C D S m S n =△△.解:过点A 作B C 边上的高A H ,∵A B D S B D A H =×△,A C D S D C A H =×△,∴A B D A C D B D A HS B DS C D D C A H×==×△△,又∵B D m D C n=,∴A B D A C D Sm S n =△△.根据以上结论解决下列问题:如图,在A B C 中,D 是A B 边上一点,且C D ⊥A B ,将A C D 沿直线A C 翻折得到A C E ,点D 的对应点为E ,A E ,B C 的延长线交于点F ,A B =,A F =.()若C D =,求A C F 的面积;()设△A B F 的面积为m ,点P ,M 分别在线段A C ,A F 上.①求P F P M 的最小值(用含m 的代数式表示);②已知A M M F =,当P F P M 取得最小值时,求四边形P C F M 的面积(用含m 的代数式表示).参考答案一、选择题:C D B B C:D A D B D二、填空题<﹣x ①③④三、解答题x y x y +=ìí+=î①②,①﹣②,得y =,把y =代入②,得x =,解得x =﹣,故方程组的解为:x y =-ìí=î.xx x ->-ìïí+--£ïî①②,解不等式①,得x >﹣,解不等式②,得x 5,故不等式组的解集为:﹣<x 5.根据题意得:x ﹣x ﹣=,移项合并得:x =,解得:x =.()如图,将A 、B 、C 三点向右平移个单位,得到A ′、B ′、C ′,连接A ′、B ′、C ′,△A ′B ′C ′为所作;()如图,将△A′B′C′绕点A′顺时针旋转D得到△A′D E,△A′D E为所作;()连结E C′,如图,∵△A′B′C′绕点A′顺时针旋转D得到△A′D E,∴A′E=A′C′,∠E A′C′=D,∴△A′E C′是等腰直角三角形.故答案为:等腰直角()∵∠A∠A B C∠C=D,∴∠C=D﹣D﹣D=D.()∵B D⊥A C,∴∠B D C=D,∴∠D B C=D﹣∠C=D,∵D E∥B C,∴∠B D E=∠C B D=D.()解:∵E F⊥A E,∴∠A E F=°,四边形A E F D的内角和是°,∵∠D=°,∠E A D=°,∴∠D F E=°﹣∠D﹣∠E A D﹣∠A E F=°;()证明:∵四边形A E F D的内角和是°,∠A E F=°,∠D=°,∴∠E A D∠D F E=°,∵∠D F E∠C F E=°,∴∠E A D=∠C F E,∵A E平分∠B A D,∴∠B A E=∠E A D,∴∠B A E=∠C F E,∵∠B∠B A E∠A E B=°,∠C∠C F E∠C E F=°,∠A E B=∠C E F,∴∠B=∠C.()依题意得:m nm n+=ìí+=î,解得:mn=ìí=î.答:m的值为,n的值为.()设购进B型空调x台,则购进A型空调x-=(﹣x)台,依题意得:xx³ìïí->ïî,解得:5x<.又∵x,(﹣x)均为整数,∴x为的倍数,∴x可以取,,,∴该商场共有种进货方案,方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台;方案:购进A型空调台,B型空调台.()∵x,y同时满足x y=﹣a,x﹣y=a.∴两式相加得:x﹣y=+a,∴x﹣y=+a,当a=时,x﹣y的值为;()若x y=﹣a①,x﹣y=a②.则①’②得到:x y=,∴x y=,∴不论a取什么实数,x y的值始终不变.()∵x y=,∴y=﹣x,∵y>﹣m,x﹣6m,∴x mx m->-ìí->î整理得x mmx+ìï+í³ïî<,∵x只能取两个整数,故令整数的值为n,n,有:n﹣<m+5n,n<m5n.故n m nn m n-£ìí-£-î<<,∴n﹣<n﹣且n﹣<n,∴<n<,∴n=,∴mm£ìí£î<<,∴<m5.()∵C D⊥A B,∴∠A D C=D,由翻折得,C E=C D=,∠A E C=∠A D C=D,∴C E⊥A F,∵A F=,∴S△A C F=A F•C E=’’=.()①如图,作M N⊥A C于点O,交A B于点N,连接F N、P N ,,由翻折得,∠O A M=∠O A N,∵A O =A O ,∠A O M =∠A O N =D ,∴△A O M ≌△A O N (A S A ),∴O M =O N ,A M =A N ,∴A C 垂直平分M N ,∴P M =P N ,∴P F P M =P F P N 6F N ,∴当点P 落在F N 上且F N ⊥A B 时,P F P M 的值最小,为此时F N 的长;如图,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,由S △A B F =A B •F N =m ,得’F N =m ,解得,F N =m ,此时P F P M =F N =m ,∴P F P M 的最小值为m .②如图,当P F P M 取最小值时,F N ⊥A B 于点N ,交A C 于点P ,P M ⊥A F,设C D =C E =a ,P M =P N =x ,∵A B =,A F =,∴A B C A F Ca S Sa´==´,∴S △A F C =S △A B F =m ;∵A M M F =,∴A M =A F =’=,∴A N =A M =,∴B N ===,∴A F NB F NS S==,∴S △A F N =S △A B F =m ,由S △A P M =’x ,S △A P N =’x ,得S △A P M =S △A P N ,设S △A P M =S △A P N =n ,∵A P M F P MS A M SM F ==,∴S △F P M =n ,由S △A P N S △A P M S △F P M =S △A F N =m ,得n n n =m ,∴n =m ,∴S △A P M =n =m ,∴S 四边形P C F M =m m =m .华师版初中数学七年级下册期末测试题(二)一、选择题(每小题只有一个正确答案,请将你所选择的答案所对应的序号填入下面答题表内.本大题共个小题,每小题分,共分)下列方程中,是一元一次方程的是()A x +B a b +=C x x-=D x -=下列交通标志中,既是轴对称图形,又是中心对称图形的是()A B C D 若方程(a )x y 是二元一次方程,则a 必须满足()A a ¹B a ¹-C a =D a ¹语句“x 的与x 的和不超过”可以表示为()A xx +£B xx +³C x £+D xx +=已知三条线段长分别为c m 、c m 、a ,若这三条线段首尾顺次联结能围成一个三角形,那么a 的取值可以是()A c mB c mC c mD c m一份数学试卷共道选择题,每道题都给出了个答案,其中只有一个正确选项,每道题选对得分,不选或错选倒扣分,已知小丽得了分,设小丽做对了x 道题,则下列所列方程正确的是.()A x x --=B x x +-=C x x+-=D x x-+=已知x y x y +=ìí+=î,则x y +等于()AB C D 已知实数a ,b 满足a +>b +,则下列选项错误的为()A a >bB a +>b +C ﹣a <﹣bD a >b《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文为:现有一些人共同购买一个物品,每人出元,还盈余元;每人出元,还差元,问共有多少人?这个物品的价格是多少?设共同购买物品的有x 人,该物品的价格为y 元,则根据题意,列出的方程组为()Ax yx y-=ìí-=-îBx yx y-=ìí-=îCy xy x-=ìí-=îDy xy x-=-ìí-=-î如图,已知△A B C≌△C D E,其中A B=C D,那么下列结论中,不正确的是()A A C=C E B∠B A C=∠EC DC∠A C B=∠E C D D∠B=∠D小明要从甲地到乙地,两地相距千米.已知他步行的平均速度为米分,跑步的平均速度为米分,若他要在不超过分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A x(﹣x)6B x(﹣x)5C x(﹣x)6D x(﹣x)5如图,∠A B C=∠A C B,B D、C D分别平分△A B C的内角∠A B C、外角∠A C P,B E平分外角∠M B C 交D C的延长线于点E.以下结论:①∠B D E=∠B A C;②D B⊥B E;③∠B D C+∠A B C=D;④∠B A C +∠B E C=D.其中正确的结论有()A个B个C个D个二、填空题(本大题共个小题,每小题分,共分)若单项式x m﹣y与单项式x y n是同类项,则m﹣n=___.已知xy=ìí=î是关于x,y的二元一次方程m x y+=-的一个解,则m的值为__________.内角和为°的多边形是__________边形.大桥钢架、索道支架、人字梁等为了坚固,都采用三角形结构,这是根据____.若一个正多边形的每个外角都等于D,则用这种多边形能铺满地面吗?(填“能”或“不能”)答:________.关于x的不等式组x b ax a b-ìí-î><的解集为﹣<x<,则a b=___.三、解答题(本大题共个小题,共分)解方程:x x---=-.解方程组:x y x y-=ìí+=î解不等式组:xx x-£ìï-íïî<,把它的解集在数轴上表示出来,并求出它的所有整数解的和.按下列要求在网格中作图:()将图①中的图形先向右平移格,再向上平移格,画出两次平移后的图形;()将图②中的图形绕点O旋转D,画出旋转后的图形;()画出图③关于直线A B的轴对称图形.列一元一次方程解应用题:随着天气寒冷,为预防新冠病毒卷土重来,某社区组织志愿者到各个街道进行“少出门,少聚集”的安全知识宣传.原计划在甲街道安排个志愿者,在乙街道安排个志愿者,但到现场后发现任务较重,决定增派名志愿者去支援两个街道,增派后甲街道的志愿者人数是乙街道志愿者人数的倍,请问新增派的志愿者中有多少名去支援甲街道?如图,A D为△A B C的中线,B E为△A B D的中线,过点E作E F⊥B C,垂足为点F.()∠A B C=D,∠E B D=D,∠B A D=D,求∠B E D的度数;()若△A B C的面积为,E F=,求C D.某商店需要购进甲、乙两种商品共件其进价和售价如表:(注:获利售价进价)()若商店计划销售完这批商品后能获利元,问甲、乙两种商品应分别购进多少件?()若商店计划投入资金少于元,且销售完这批商品后获利多于元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案已知A B∥C D,点E、F分别在直线A B、C D上,P F交A B于点G.()如图,直接写出∠P、∠P E B与∠P F D之间的数量关系:;()如图,E Q、F Q分别为∠P E B与∠P F D的平分线,且交于点Q,试说明∠P=∠Q;()如图,若∠Q E B=∠P E B,∠Q F D=∠P F D,()中的结论还成立吗?若成立,请说明理由;若不成立,请求出∠P与∠Q的数量关系;()在()的条件下,若∠C F P=D,当点E在A、B之间运动时,是否存在P E∥F Q?若存在,请求出∠Q的度数;若不存在,请说明理由.参考答案一、选择题:D D A A CA B D A CA D二、填空题七三角形具有稳定性不能三、解答题去分母,得:(x ﹣)﹣(x ﹣)﹣,去括号:x ﹣﹣x ﹣,移项、合并,得:﹣x ﹣,解得:x ,∴原方程的解为x .x y x y -=ìí+=î①②由①得:x y =+③把③代入②得:()y y ++=y \=-y \=-把y =-代入③得:x =所以方程组的解是:x y =ìí=-î.不等式组x x x -£ìïí-ïî①<②,解①得:x ≤,解②得:x >,∴不等式组的解集为<x ≤,解集表示在数轴上为:它的整数解为和,所有整数解的和为.()如图①即为两次平移后的图形;()如图②即为旋转后的图形;()如图③即为关于直线A B的轴对称图形.设新增派的志愿者中有x 名去支援甲街道,则有(x 名去支援乙街道.根据题意可列方程:x x+=´+-,解得:x =.故新增派的志愿者中有名去支援甲街道.()∵∠A B C =D ,∠B A D =D ,∠A B C ∠B A D ∠A D B =D ,∴∠A D B D ﹣D ﹣D D ,∵∠E B D ∠A D B ∠B E D °,∠E B D D ,∴∠B E D D ﹣D ﹣D D ;()∵A D 为△A B C 的中线,B E 为△A B D 的中线,△A B C 的面积为,∴A B DS=´=,B D ES =,B D C D ,∵E F ⊥B C ,E F ,∴B D E S B D =´×,解得:B D ,即C D .()设甲种商品应购进x 件,乙种商品应购进y 件根据题意得:x y x y +=ìí+=î,解得:x y=ìí=î答:甲种商品购进件,乙种商品购进件;()设甲种商品购进a 件,则乙种商品购进()a -件根据题意得:a a a a +-<ìí+->î解不等式组,得:a <<∵a 为非负整数,∴a 取,,∴a -相应取,,方案一:甲种商品购进件,乙种商品购进件方案二:甲种商品购进件,乙种商品购进件方案三:甲种商品购进件,乙种商品购进件答:有三种购货方案,其中获利最大的是方案一故答案为()甲种商品购进件,乙种商品购进件()有三种购货方案,见解析,其中获利最大的是方案一()如图,∵A B ∥C D ,∴∠P F D ∠A G F ,∵∠A G F ∠P ∠P E B ,∴∠P ∠P E B ∠P F D ;()如图,∵A B ∥C D ,∴∠Q F D ∠A K F ,∵∠A K F ∠Q ∠Q E B ,∴∠Q ∠Q E B ∠Q F D ,∵E Q 、F Q 分别为∠P E B 与∠P F D 的平分线,∴∠Q E B =∠P E B ,∠Q F D =∠P F D∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知,∠P∠P E B∠P F D,∴∠P∠Q;()()中的结论不成立,∠P∠Q,理由为:由()中知,∠Q∠Q E B∠Q F D,∵∠Q E B=∠P E B,∠Q F D=∠P F D,∴∠Q∠P E B∠P F D,即∠Q∠P E B∠P F D,由()知∠P∠P E B∠P F D,∴∠P∠Q;()存在P E F Q,此时∠P∠P F Q,∵∠C F P D,∴∠P F D D﹣∠C F P D﹣D D,∵∠D F Q=∠P F D,∴∠D F Q’D D,∴∠P F Q∠P F D﹣∠D F Q D﹣D°,∴∠P D,由()知∠P∠Q,∴∠Q’D D.华师版初中数学七年级下册期末测试题(三)一、选择题(每小题分,共分)若x y =ìí=î是方程a x y -=的一个解,则a 的值是()A B C -D -我国已经进入G 时代,自动驾驶技术和远程外科手术技术得以进一步发展.下列通信公司标志中,是中心对称图形,但不是轴对称图形的是()A BC D 若a >b ,则下列不等式变形不正确的是()A ﹣a <﹣b B a m <b mC a ﹣>b ﹣D a >b 方程x y =有几组正整数解?()A 组B 组C 组D 组《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《磁不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,赢三;人出七,不足四,问人数、物价各几何?”译文:“今有人合伙购物,每人出钱,会多出钱;每人出钱,又差钱,问人数,物价各多少?”设人数为x 人,物价为y 钱,根据题意,下面所列方程组正确的是()A.xy x y +=ìí-=î B.xy x y -=ìí+=î C.xy x y +=ìí+=î D.xy x y-=ìí-=î如图,将△A O B绕点O按逆时针方向旋转D后得到△C O D,若∠A O B=D,则∠A O D的度数是()A DB DCD D D若关于x的不等式x﹣a5只有个正整数解,则a的取值范围是()A<a<B5a<C5a5D<a5多边形的边数由增加到时,其外角和的度数()A增加B减少C不变D不能确定商店出售下列形状的地砖:①长方形;②正方形;③正五边形;④正六边形.若只选购其中某一种地砖镶嵌地面,可供选择的地砖共有()A.种B.种C.种D.种如图,△A B C的面积为.第一次操作:分别延长A B,B C,C A至点A,B,C,使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C.第二次操作:分别延长A B,B C,C A至点A,B,C;使A B=A B,B C=B C,C A=C A,顺次连接A,B,C,得到△A B C,…按此规律,要使得到的三角形的面积超过,最少经过()次操作.A. B. C. D.二、填空题(每小题分,共分)三角形三边长分别为,a,,则a的取值范围是_____.如果一个多边形的内角和等于它的外角和的倍,那么这个多边形是___边形.如图,将透明直尺叠放在正五边形之上,若正五边形有两个顶点在直尺的边上,且有一边与直尺的边垂直.则a Ð=_______°.规定一种新运算:a b =a ﹣b ,若[(﹣x )]=,则x 的值为_____.在一个三角形中,如果一个角是另一个角的倍,这样的三角形我们称之为“灵动三角形”.例如,三个内角分别为D ,D ,D 的三角形是“灵动三角形”.如图,∠M O N =D ,在射线O M 上找一点A ,过点A 作A B ⊥O M 交O N 于点B ,以A 为端点作射线A D ,交线段O B 于点C (规定D <∠O A C <D ).当△A B C 为“灵动三角形”时,则∠O A C的度数为____________.三、解答题(共个小题,满分分)解不等式组x x x x -£-ìí>-î①②,请按照下列步骤完成解答:()解不等式①,得;()解不等式②,得;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为.如图,已知△A B C≌△D E F,∠A=D,∠B=D,B F=.求∠D F E的度数和E C的长.如图,在正方形网格中,△A B C是格点三角形.()画出△A B C,使得△A B C和△A B C关于直线l对称;()过点C画线段C D,使得C D A B,且C D=A B;()直接写出以A、B、C、D为顶点的四边形的面积为.整式m x n的值随x的取值不同而不同,下表是当x取不同值时对应的整式的值:x﹣﹣m x n﹣﹣﹣求关于x的方程﹣m x n=的解.已知关于x、y的二元一次方程组x y mx y m-=ìí+=-+î的解满足x y>﹣,求m的取值范围.如图,在A B C 中,A D 是角平分线,E 为边A B 上一点,连接D E ,E A D E D A Ð=Ð,过点E 作E F B C ^,垂足为F .()D E 与A C 平行吗?请说明理由;()若B A C Ð=°,B Ð=°,求D E F Ð的度数.为进一步提升摩托车、电动自行车骑乘人员和汽车驾乘人员安全防护水平,公安部交通管理局部署在全国开展“一盔一带”安全守护行动.某商店销售A ,B 两种头盔,批发价和零售价格如表所示,请解答下列问题.名称A 种头盔B 种头盔批发价(元个)零售价(元个)()第一次,该商店批发A ,B 两种头盔共个,用去元钱,求A ,B 两种头盔各批发了多少个?()第二次,该商店用元钱仍然批发这两种头盔(批发价和零售价不变),要想将第二次批发的两种头盔全部售完后,所获利润不低于元,则该超市第二次至少批发A 种头盔多少个?如图,将一副直角三角板放在同一条直线A B上,其中∠O N M=D,∠O C D=D()观察猜想将图中的三角尺O C D沿A B的方向平移至图②的位置,使得点O与点N重合,C D与M N相交于点E,则∠C E N=度.()操作探究将图中的三角尺O C D绕点O按顺时针方向旋转,使一边O D在∠M O N的内部,如图,且O D恰好平分∠M O N,C D与N M相交于点E,求∠C E N的度数;()深化拓展将图中的三角尺O C D绕点O按沿顺时针方向旋转一周,在旋转的过程中,若边C D恰好与边M N平行,请你求出此时旋转的角度.参考答案一、选择题:B C B B B:B B C C C二、填空题<a<六DD或D三、解答题-£-()解不等式①,x x-£-去括号:x x移项,合并同类项:x£得:x5;>-()解不等式②,x x移项,合并同类项得:x>﹣得:x>﹣;()把不等式①和②的解集在数轴上表示出来;()原不等式组的解集为﹣<x5.故答案为:x5,x>﹣,﹣<x5.∵∠A=D,∠B=D,∴∠A C B=D﹣∠A﹣∠B=D﹣D﹣D=D,∵△A B C≌△D E F,∴∠D F E=∠A C B=D,E F=B C,∴E F﹣C F=B C﹣C F,即E C=B F=.()如图,△A B C为所作;()如图,C D或C D′为所作;()以A、B、C、D为顶点的四边形的面积=´-´´-´´-´´-´´=.故答案为.由题意可得:当x=时,m x n=﹣,∴m’n=﹣,解得:n=﹣,当x=时,m x n=,∴m’﹣=,解得:m=,∴关于x的方程﹣m x n=为﹣x﹣=,解得:x=﹣.方程组x y mx y m-=ìí+=-+î①②,①②得:x=m,解得:x=m,把x=m代入①得:m﹣y=m,解得:y=﹣m,∴方程组的解为x my m=+ìí=-+î,代入x y>﹣得:﹣m>﹣,解得:m<.()D E A C,理由如下:A D 是B AC Ð的角平分线B A DC A D\Ð=ÐE A D E D AÐ=Ð E D A C A D\Ð=ÐD E A C \;(2) B A C Ð=°,B Ð=°C B A C B \Ð=°-Ð-Ð=°D E A CE DF C \Ð=Ð=°E F B C^ D E F E D F \Ð=°-Ð=°.()设第一次A 种头盔批发了x 个,B 种头盔批发了y 个.根据题意,得x y x y +ìí+î==,解得:x yìíî==,答:第一次A 种头盔批发了个,B 种头盔批发了个.()设第二次批发A 种头盔a 个,则批发B 种头盔a -个.由题意,得()()a a --+-´³,解得:a ³,答:第二次该商店至少批发个A 种头盔.()∵∠E C N =D ,∠E N C =D ,∴∠C E N =o o D .故答案为D .()∵O D 平分∠M O N ,∴∠D O N =∠M P N =’D =D ,∴∠D O N =∠D =D ,∴C D ∥A B ,∴∠C E N =D ﹣∠M N O =D ﹣D =D ;()如图,C D在A B上方时,设O M与C D相交于F,∵C D∥M N,∴∠O F D=∠M=D,在△O D F中,∠M O D=D﹣∠D﹣∠O F D,=D﹣D﹣D,=D,当C D在A B的下方时,设直线O M与C D相交于F,∵C D∥M N,∴∠D F O=∠M=D,在△D O F中,∠D O F=D﹣∠D﹣∠D F O=D﹣D﹣D=D,∴旋转角为D D=D,综上所述,旋转的角度为D或D时,边C D恰好与边M N平行.故答案为o或o.。
华师大版初中数学七年级下册第10章轴对称、平移与旋转章末复习课件

【例1】下列图形中,不是轴对称图形的是
()
【思路点拨】根据定义,如果一个图形沿一条直线折叠,直线 两旁的部分能够互相重合,这个图形叫做轴对称图形. 【自主解答】选C.根据轴对称图形的概念:把一个图形沿着某 条直线折叠,两边能够重合的图形是轴对称图形.A,B,D是 轴对称图形,只有C不是轴对称图形.
【例2】如图,△A′B′C′是由△ABC沿射线AC方向平移2cm得
到,若AC=3cm,则A′C=
cm.
【思路点拨】先根据平移的性质得出AA′=2 cm,再利用AC= 3 cm,即可求出A′C的长.
【自主解答】∵将△ABC沿射线AC方向平移2 cm得到△A′B′C′, ∴AA′=2 cm, 又∵AC=3 cm, ∴A′C=AC-AA′=1 cm. 答案:1
【中考集训】 1.在6×6方格中,将图①中的图形N平移后位置如图②所示, 则图形N的平移方法中,正确的是( )
A.向下移动1格
B.向上移动1格
C.向上移动2格
D.向下移动2格
【解析】选D.由平移的定义知,图形N向下移动2格.
2.如图,将面积为5的△ABC沿BC方向平移至△DEF的位置,平
移的距离是边BC长的两倍,那么图中的四边形ACED的面积
章末复习
第 10 章
请写出框图中数字处的内容: ①_把__一__个__图__形__沿__着__某__一__条__直__线__翻__折__过__去__,__如__果__它__能__够__与__另__一__ _个__图__形__重__合__,__那__么__就__说__这__两__个__图__形__成__轴__对__称__; ②_关__于__轴__对__称__的__两__个__图__形__全__等__;__对__称__点__的__连__线__垂__直__于__对__称__轴__,__ _并__且__被__对__称__轴__平__分__;__对__应__边__(_或__延__长__线__)_的__交__点__在__对__称__轴__上__; ③_平__面__图__形__在__它__所__在__的__平__面__上__的__平__行__移__动__; ④_平__移__前__后__的__两__个__图__形__全__等__;__对__应__边__平__行__(_或__在__一__条__直__线__上__)_ _且__相__等__;__对__应__点__的__连__线__平__行__(_或__在__同__一__条__直__线__上__)_且__相__等__;
华师大版七年级下册数学知识点总结

七年级数学下期期末复习提纲第六章 一元一次方程一、基本概念(一)方程的变形法则法则1:方程两边都或同一个数或同一个,方程的解不变。
例如:在方程7-3x=4左右两边都减去7,得到新方程:-3x+3=4-7。
在方程6x=-2x-6左右两边都加上4x ,得到新方程:8x=-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号。
例如:(1)将方程x -5=7移项得:x =7+5即 x =12(2)将方程4x =3x -4移项得:4x -3x =-4即 x =-4法则2:方程两边都除以或同一个的数,方程的解不变。
例如: (1)将方程-5x =2两边都除以-5得:x=-52 (2)将方程32 x =13 两边都乘以32得:x=92 这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数;如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.定义:只含有一个未知数,并且含有未知数的式子都是,未知数的次数是,这样的方程叫做一元一次方程。
例如:方程7-3x=4、6x=-2x-6都是一元一次方程。
而这些方程5x 2-3x+1=0、2x+y =l -3y 、1x-1=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b=0(其中a 、b 为常数,且a ≠0)一元一次方程的一般式为:ax=b (其中a 、b 为常数,且a ≠0)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版数学2023年七年级下册第二学期期末复习检测卷【含答案】

华师大版数学2023年七年级下册第二学期期末复习检测卷一、选择题(每题3分,共30分)1.下列图形中,是轴对称图形的有( )(第1题)A .4个B .3个C .2个D .1个2.若x =1是方程ax +2x =1的解,则a 的值是( )A .-1B .1C .2D .-123.下列等式变形不一定正确的是( )A .若x =y ,则x -5=y -5B .若x =y ,则ax =ayC .若x =y ,则3-2x =3-2yD .若x =y ,则=xc yc4.若关于x 的方程x +k =2x -1的解是负数,则k 的取值范围是( )A .k >-1B .k <-1C .k ≥-1D .k ≤-15.已知三角形三边为a 、b 、c ,其中a 、b 两边满足|a -3|+(b -7)2=0,那么这个三角形的最大边c 的取值范围是( )A .c >7 B .7<c <10 C .3<c <7D .4<c <106.如图,已知长方形的长为10 cm ,宽为4 cm ,则图中阴影部分的面积为( )A .20 cm 2B .15 cm 2C .10 cm 2D .25 cm2(第6题) (第7题) (第8题)7.如图,将△ABC 绕点A 逆时针旋转90°能与△ADE 重合,点D 在线段BC 的延长线上,若∠BAC =20°,则∠AED 的大小为( )A .135°B .125°C .120°D .115°8.如图,桐桐从A 点出发,前进3 m 到点B 处后向右转20°,再前进3 m 到点C 处后又向右转20°,…,这样一直走下去,她第一次回到出发点A 时,一共走了( )A .100 mB .90 mC .54 mD .60m9.小虎、大壮和明明三人玩飞镖游戏,各投5支镖,规定在同一环内得分相同,中靶和得分情况如图,则大壮的得分是( )A .20分B .22分C .23分D .25分(第9题) (第10题)10.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCED 的外面时,此时测得∠1=112°,∠A =40°,则∠2的度数为( )A .32°B .33°C .34°D .38°二、填空题(每题3分,共15分)11.若一个正多边形的每个外角都等于45°,则用这种多边形能铺满地面吗?答:________.(填“能”或“不能”)12.如图,在△ABC 中,点D 在BC 的延长线上,点F 是AB 边上一点,延长CA 到E ,连结EF ,则∠1、∠2、∠3的大小关系是________.(第12题) (第15题)13.若代数式3x +2与代数式x -10的值互为相反数,则x =________.14.二元一次方程组的解x ,y 的值相等,则k =________.{3x +2y =10,kx +(k +2)y =6)15.如图,l 1∥l 2,五边形ABCDE 是正五边形,那么∠1-∠2的度数为________.三、解答题(共75分)316.(8分)解方程(组):(1)-+=1; (2)2x -12x -24{34 x +y =12,4x -2y =10.)17.(9分)解不等式组:然后把它的解集在数轴上表示出来,{2x +3≥x +11,3x -105<4,)并求出x 的整数解.18.(8分)在图①,图②的网格纸中,△ABC 与△DEF 的三个顶点都在格点上.(1)在图①中,以点A 为对称中心画一个与△ABC 成中心对称的图形;(2)在图②中,将△DEF 绕点D 顺时针方向旋转90°,画出旋转后的图形.(第18题)19.(9分)如图,一条直线分别交△ABC的边及延长线于点D、E、F,∠A=20°,∠CED=100°,∠D=35°,求∠B的度数.(第19题)20.(9分)如图,∠1、∠2、∠3、∠4是四边形ABCD的四个外角.用两种方法说明∠1+∠2+∠3+∠4=360°.(第20题)21.(10分)如图,将△ABC沿射线AB的方向移动2 cm到△DEF的位置.5(1)找出图中所有平行的直线;(2)找出图中与AD 相等的线段,并写出其长度;(3)若∠ABC =65°,求∠BCF的度数.(第21题)22.(11分)如图,在△ABC 中,∠C =40°.将△ABC 绕点A 按逆时针方向旋转得到△ADE ,连结BD .当DE ∥AC 时,求∠ABD 的度数.(提示:在一个三角形中,若两条边相等,则它们所对的角也相等)(第22题)23.(11分)夕阳红街道办事处为给社区干净整洁的社区环境,加入环境保洁队伍,需要购置一批保洁用具,已知1把扫帚和3把拖把共需26元;3把扫帚和2把拖把共需29元.(1)求一把扫帚和一把拖把的售价各是多少元;(2)办事处准备购进这两种保洁工具共50把,并且扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,哪种方案最省钱?请说明理由.7答案一、1.C 2.A 3.D 4.B 5.B 6.A 7.D 8.C 9.C 10.A 点拨:设A ′D 与AC 交于点O .∵∠A =40°,∴∠A ′=∠A =40°.∵∠1=∠DOA +∠A ,∠1=112°,∴∠DOA =∠1-∠A =112°-40°=72°.∵∠DOA =∠2+∠A ′,∴∠2=∠DOA -∠A ′=72°-40°=32°.二、11.不能 12.∠1>∠2>∠3 13.2 14.1215.72° 点拨:如图,延长AB 交l 2于点M.(第15题)∵五边形ABCDE ∴正五边形ABCDE 的每个外角相等.∴∠MBC ==72°.360°5∵l 1∥l 2,∴∠2=∠BMD .∵∠1=∠BMD +∠MBC ,∴∠1-∠2=∠1-∠BMD =∠MBC =72°.三、16.解:(1)-+=1,2x -12x -24去分母,得-2(2x -1)+(x -2)=4,去括号,得-4x +2+x -2=4,移项,得-4x +x =4+2-2,合并同类项,得-3x =4,系数化为1,得x =-.43(2){34x +y =12,①4x -2y =10.②)①×2+②,得x =11,解得x =2.112把x =2代入②,得8-2y =10,解得y =-1,故方程组的解为{x =2,y =-1.)17.解:解2x +3≥x +11,得x ≥8;解<4,得x <10,3x -105∴不等式组的解集是8≤x <10.在数轴上表示为:(第17题)∴x 的整数解是8、9.18.解:(1)如图①,△AB ′C ′即为所求;(第18题)(2)如图②,△DE ′F ′即为所求.19.解:∵∠CED =100°,∠D =35°,∴∠BCD =180°-∠CED -∠D =180°-100°-35°=45°.∵∠BCD 是△ABC 的外角,∴∠B =∠BCD -∠A =45°-20°=25°.920.解:方法1:∵∠1+∠BAD =180°,∠2+∠ABC =180°,∠3+∠BCD =180°,∠4+∠CDA =180°,∴∠1+∠BAD +∠2+∠ABC +∠3+∠BCD +∠4+∠CDA =180°×4=720°.∵∠BAD +∠ABC +∠BCD +∠CDA =360°,∴∠1+∠2+∠3+∠4=360°.方法2:如图,连结BD,(第20题)∵∠1=∠ABD +∠ADB ,∠3=∠CBD +∠CDB ,∴∠1+∠2+∠3+∠4=∠ABD +∠ADB +∠2+∠CBD +∠CDB +∠4=180°×2=360°.21.解:(1)AE ∥CF ,AC ∥DF ,BC ∥EF .(2)AD =CF =BE =2 cm.(3)∵AE ∥CF ,∠ABC =65°,∴∠BCF =∠ABC =65°.22.解:∵将△ABC 绕点A 按逆时针方向旋转得到△ADE ,∴∠BAD =∠EAC ,△ADE ≌△ABC ,∴∠C =∠E =40°,AB =AD .∵DE ∥AC ,∴∠E =∠EAC .∴∠BAD =∠C =40°.∵AB =AD ,∴∠ABD =∠ADB ,∴∠ABD =(180°-∠BAD )=70°.1223.解:(1)设一把扫帚的售价是x 元,一把拖把的售价是y 元.由题意,可得解得{x +3y =26,3x +2y =29,){x =5,y =7.)答:一把扫帚的售价是5元,一把拖把的售价是7元.(2)设扫帚买了m 把,共花费W 元,则拖把买了(50-m )把.由题意得,W =5m +7(50-m )=-2m +350.∵扫帚的数量不多于拖把数量的3倍,不少于拖把数量的2倍,∴2(50-m )≤m ≤3(50-m ),解得≤m ≤.1003752∵m 为正整数,∴m 可以取34,35,36,37,∴共有四种方案:方案一:扫帚34把,拖把16把,共花费:-2×34+350=282(元).方案二:扫帚35把,拖把15把,共花费:-2×35+350=280(元).方案三:扫帚36把,拖把14把,共花费:-2×36+350=278(元).方案四:扫帚37把,拖把13把,共花费:-2×37+350=276(元).∵282>280>278>276,∴方案四最省钱.11。
华东师大版数学七年级下册期末复习综合练习题

期末复习综合练习题一.选择题1.下列方程:①y=x﹣7;②2x2﹣x=6;③m﹣5=m;④=1;⑤=1,其中是一元一次方程的有()A.2个B.3个C.4个D.以上答案都不对2.若x>y,则下列式子中正确的是()A.x﹣2>y﹣2 B.x+2<y+2 C.﹣2x>﹣2y D.3.下列图案中是中心对称图形但不是轴对称图形的是()A.B.C.D.4.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°5.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且△ABC的面积是32,则图中阴影部分面积等于()A .16B .8C .4D .26.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=( )A .90°B .120°C .135°D .150°7.如图,在△ABC 中,∠CAB =65°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )A .25°B .30°C .50°D .55°8.等腰三角形的两边长分别为3cm 和7cm ,则周长为( ) A .13cmB .17cmC .13cm 或17cmD .11cm 或17cm9.某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种边长相同、形状不同的正多边形地砖,与正三角形地砖作平面镶嵌,则该学校不应该购买的地砖是( ) A .正方形B .正六边形C .正八边形D .正十二边形10.如图,将△ABC 绕点A 按逆时针方向旋转100°,得到△AB 1C 1,若点B 1在线段BC 的延长线上,则∠BB 1C 1的大小为( )A .70°B .80°C .84°D .86°二.填空题11.若|x﹣y﹣5|与|2x+3y﹣15|互为相反数,则x+y=.12.如图,将直角三角形ABC沿AB方向平移AD长的距离得到直角三角形DEF,已知BE=5,EF=8,CG=3.则图中阴影部分面积.13.不等式组有2个整数解,则实数a的取值范围是.14.如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.15.如图,将∠ACB沿EF折叠,点C落在C'处.若∠BFE=65°.则∠BFC'的度数为.三.解答题16.m为何值时,代数式的值与代数式的值的和等于5?17.解方程组:①②.18.解不等式组,并把它们的解在数轴上表示出来.19.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (1,3),B (2,5),C (4,2)(每个方格的边长均为1个单位长度)(1)将△ABC 平移,使点A 移动到点A 1,请画出△A 1B 1C 1;(2)作出△ABC 关于O 点成中心对称的△A 2B 2C 2,并直接写出A 2,B 2,C 2的坐标; (3)△A 1B 1C 1与△A 2B 2C 2是否成中心对称?若是,请写出对称中心的坐标;若不是,请说明理由.20.如图,在平面直角坐标系xOy 中,点A (3,3),点B (4,0),点C (0,﹣1). (1)以点C 为中心,把△ABC 逆时针旋转90°,画出旋转后的图形△A ′B ′C ; (2)在(1)中的条件下, ①点A 经过的路径的长为 (结果保留π);②写出点B ′的坐标为 .21.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC中,∠ABC与∠ACB的平分线交于点P,∠A=64°,则∠BPC=;(2)如图2,△ABC的内角∠ACB的平分线与△ABC的外角∠ABD的平分线交于点E.其中∠A=α,求∠BEC.(用α表示∠BEC);(3)如图3,∠CBM、∠BCN为△ABC的外角,∠CBM、∠BCN的平分线交于点Q,请你写出∠BQC与∠A的数量关系,并证明.22.某校为丰富学生的校园生活,准备从某体育用品商店一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),若购买3个足球和2个篮球共需310元,购买2个足球和5个篮球共需500元.(1)购买一个足球,一个篮球各需多少元?(2)根据学校的实际情况,需从该体育用品商店一次性购买足球和篮球共96个,要求购买足球和篮球的总费用不超过5720元,这所中学最多可以购买多少个篮球?23.已知,在△ABC中,∠A=∠C,点F和E分别为射线CA和射线BC上一点,连接BF和FE,且∠BFE=∠FEB.(1)如图1,当点F在线段AC上时,若∠FBE=2∠ABF,则∠EFC与∠FBE的数量关系为.(2)如图2,当点F在CA延长线上时,探究∠EFC与∠FBA的数量关系,并说明理由.(3)如图3在(2)的条件下,过C作CH⊥AB于点H,CN平分∠BCH,CN交AB于N,由N作NM⊥NC交CF于M,若∠BFE=5∠FBA,MN∥FB时,求∠ABC的度数.参考答案一.选择题1. A.2. A.3. C.4. C.5. B.6. C.7. C.8.B.9.C.10. B.二.填空11. 712..13. 8≤a<13.14. 115. 50°三.解答题16.解:根据题意得:+=5,去分母得:12m﹣2(5m﹣1)+3(7﹣m)=30,去括号得:12m﹣10m+2+21﹣3m=30,移项合并同类项得:﹣m=7,系数化1得:m=﹣7.17.解:①,①+②得:4x=8,解得:x=2,将x=2代入①得:2+2y=9,解得:y=,则方程组的解为;②方程组整理得:,①﹣②得:6y=27,解得:y=,将y=代入②得:3x﹣9=9,解得:x =6, 则方程组的解为.18.解:∵解不等式①得:x ≥﹣2, 解不等式②得:x <2,∴原不等式组的解为:﹣2≤x <2, 在数轴上表示为:.19.解:(1)如图,△A 1B 1C 1为所作;(2)如图,△A 2B 2C 2为所作;点A 2,B 2,C 2的坐标分别为(﹣1,﹣3),(﹣2,﹣5),(﹣4,﹣2);(3)△A 1B 1C 1与△A 2B 2C 2关于点P 中心对称,如图, 对称中心的坐标的坐标为(﹣2,﹣1). 20.解:(1)如图所示,△A ′B ′C 即为所求;(2)①②(﹣1,3).21.解:(1)∵BP、CP分别平分∠ABC和∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣(∠ABC+∠ACB),=180°﹣(∠ABC+∠ACB),=180°﹣(180°﹣∠A),=180°﹣90°+∠A,=90°+32°=122°,故答案为:122°;(2)∵CE和BE分别是∠ACB和∠ABD的角平分线,∴∠1=∠ACB,∠2=∠ABD,又∵∠ABD是△ABC的一外角,∴∠ABD=∠A+∠ACB,∴∠2=(∠A+∠ABC)=∠A+∠1,∵∠2是△BEC的一外角,∴∠BEC=∠2﹣∠1=∠A+∠1﹣∠1=∠A=;(3)∠QBC=(∠A+∠ACB),∠QCB=(∠A+∠ABC),∠BQC=180°﹣∠QBC﹣∠QCB,=180°﹣(∠A+∠ACB)﹣(∠A+∠ABC),=180°﹣∠A﹣(∠A+∠ABC+∠ACB),结论∠BQC=90°﹣∠A.22.解:(1)设购买一个足球需要x元,购买一个篮球需要y元,列方程得:,解得:,答:购买一个足球需要50元,购买一个篮球需要80元.(2)设购买了a个篮球,则购买了(96﹣a)个足球.列不等式得:80a+50(96﹣a)≤5720,解得a≤30.∵a为正整数,∴a最多可以购买30个篮球.∴这所学校最多可以购买30个篮球.23.解:(1)如图1中,设∠EFC=z,∠ABF=x,∠A=∠C=y,∵∠BEF=∠BFE,∠BEF=y+z,∴∠BFE=y+z,∵∠BFC=∠A+∠ABF,∴y+z+z=x+y,∴x=2z,∴∠ABF=2∠EFC.∵∠FBE=2∠ABF,∴∠EBF=4∠CFE故答案为∠EBF=4∠EFC.(2)结论:∠ABF=2∠EFC.理由;如图2中,设∠EFC=z,∠ABF=x,∠BAC=∠BCA=y,∵∠BAC=∠ABF+∠BFA,∠ACB=∠EFC+∠E,∴∠BFA=y﹣x,∠E=y﹣z,∵∠E=∠BFE,∴y﹣x+z=y﹣z,∴x=2z,∴∠ABF=2∠EFC.(3)如图3中,设∠EFC=x,则∠ABF=2x,∵∠BFE=5∠ABF,∴∠E=∠BFE=10x,∵MN∥BF,∴∠MNA=∠ABF=2x,∵∠ANM+∠ANC=90°,∠ANC+∠NCH=90°,∴∠HCN=∠ANM=∠BCN=2x,∴∠BCH=4x,∠CBH=90°﹣4x,在△BEF中,∵∠EBF+∠E+∠BFE=180°,∴2x+90°﹣4x+10x+10x=180°,∴x=5,∴∠ABC=90°﹣4x=70°.。
七年级数学(下册)-期末复习提纲-华东师大版

七年级数学下期期末复习提纲第六章元一次方程一、基本概念(-)方程的变形法则法则1:方程两边都________ 或____ 同一个数或同一个 ______ ,方程的解不变。
例如:在方程7-3x二4左右两边都减去7,得到新方程:-3时3二4-7。
在方程6x=-2x-6左右两边都加上4x,得到新方程:8x二-6。
移项:将方程中的某些项改变符号后,从方程的一边移动到另一边,这样的变形叫做移项,注意移项要变号.例如:(1)将方程x-5=7移项得:x=7+5 即x=12(2)将方程4x=3x—4 移项得:4x—3x=—4 即x= —4法则2:方程两边都除以或 _______ 同一个 _________ 的数,方程的解不变。
2例如:(1)将方程一5x = 2两边都除以-5得:x=--53 1 2 2(2)将方程专x=^两边都乘以土得:x=-2 3 3 9这里的变形通常称为“将未知数的系数化为1”。
注意:(1)如遇未知数的系数为整数,“系数化为1”时,就要除以这个整数:如遇到未知数的系数为分数,“系数化为1”时,就要乘以这个分数的倒数。
(2)不论上一乘以或除以数时,都要注意结果的符号。
方程的解的概念:能够使方程左右两边都相等的未知数的值,叫做方程的解。
求不方程的解的过程,叫做解方程。
(二)一元一次方程的概念及其解法1.泄义:只含屯一个未知数、并且含有未知数的式子都是_________ ,未知数的次数是一,这样的方程叫做一元一次方程。
例如:方程7-3x二4、6x=-2x-6都是一元一次方程。
而这些方程5x:-3x+l=0. 2x+y=l-3y.占=5就不是一元一次方程。
2.一元一次方程的一般式为:ax+b二0 (英中a、b为常数,且aHO)一元一次方程的一般式为:ax二b (其中a、b为常数,且aHO)3.解一元一次方程的一般步骤步骤:去分母,去括号,移项,合并同类项,未知数的系数化为1。
注意:(1)方程中有多重括号时,一般应按先去小括号,再去中括号,最后去大括号的方法去括号,每去一层括号合并同类项一次,以简便运算。
华师大版七年级数学下册总复习

华师大版七年级数学下册总复习按住ctrl键点击查看更多初中七年级资源第1课时一元一次方程(复习1)教学目的:1.知识与技能:(1)了解一元一次方程的概念,根据方程的特点灵活运用一元一次方程的解法解一元一次方程。
(2)进一步提高学生运用方程解决实际问题的能力。
2.过程与方法:(1)通过复习一元一次方程的解法,进一步渗透“转化”的思想方法。
(2)进一步了解用方程解决实际问题的基本过程,体会数学的应用价值。
3.情感态度与价值观:(1)鼓励学生大胆尝试,从中获得成功的体验,激发学生学习数学的热情。
(2)通过学习,更加关注生活,增强用数学的意识。
教学重点与难点:1.一元一次方程的解法和列出一元一次方程解应用题。
2.根据具体问题中的数量关系列出一元一次方程解决实际问题。
课型:复习课教学方法:转化归纳教学过程:一、知识结构图:二、重要知识与方法规律总结:1.一元一次方程的概念。
2.方程的基本变形。
3.移项法则。
4.解一元一次方程的一般步骤。
5.列出一元一次方程解应用题的步骤。
三、典型例题。
1.当a为何值时,x -1=0是一元一次方程?2.已知2是关于x的方程x -2a=0的一个解,则2a-1的值是_______。
3.5(x+2)=2a+3与的解相同,那么a的值是_______4.已知=0,则=________5.已知=5 ,且ax-2a=6,求a的值。
6.解方程7.解方程8.实践与探索P14―――15问题四、课堂练习:教材19面A 1.(2)(4)(6)2―――7五、课堂小结:在解一元一次方程时要注意选择合理的解方程步骤,解方程的方法、步骤可以灵活多样,但基本思路都是把“复杂”转化为“简单”,把“新”转化为“旧”,求出解后,要自觉反思求解过程和检验方程的解是否正确。
方程是刻画现实世界的有效数学模型,列方程解实际问题的关键是找出“相等关系”,在寻找相等关系时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级(下)期末考试数学试题
一、 耐心填一填!(每空2分,共24分)
1.若2x+5=7,则2x= 。
2.已知x=-3是方程(2m+1)x-3=0的解,则m= 。
3.一个三角形的内角中,至少有 个锐角。
4.一个多边形的每一个外角为300,那么这个多边形的边数为 。
5.只用一种正多边形可以铺满地板,这样的正多边形有 。
6.已知等腰三角形的一个内角为700,则它的顶角为 度。
7.如图,已知DE 是AC 的垂直平分线,AB=10cm ,BC=11cm ,则ΔABD 的周长为 。
8.如图,∠A=200,∠C=400,∠ADB=800,则∠ABD= ,∠DBC= ,图中共有等腰三角形 个。
9.举一个是不可能事件的例子: ;
10.姜堰人民商场4月份随机抽查了6天的营业额,结果分别如下:
2.8,
3.2,3.4,3.7,3.0,3.1。
(单位:万元)
试估计该商场4月份的总营业额,大约是 万元。
二、 精心选一选!(每题4分,共32分)
11. Wangbei ’computer shows the dates on the screen, Which of these dates are symmetrical (轴对称)? ( )
A 06:01:08
B 16:11:91
C 08:10:13
D 04:08:04
12.若ΔABC 的三边分别为m 、n 、p ,且0)(2=-+-p n n m ,则这个三角形为( )
A. 等腰三角形
B.等边三角形
C.直角三角形
D.等腰直角三角形
13.我国民间流传着许多诗歌形式的数学题,令人耳目一新,你能解决“鸡兔同笼”问题吗? 鸡兔同笼不知数,三十六头笼中露,看来脚有一百只,几多鸡儿几多兔?设鸡为x 只,兔为y 只,则可列方程组( )
A ⎩⎨⎧=+=+1002236y x y x
B ⎩⎨⎧=+=+1002218y x y x
C ⎩⎨⎧=+=+1002436y x y x
D ⎩⎨⎧=+=+100
4236y x y x
14.已知43
22=-
x ,则x 的值是 ( ) A
E D C B (第7题) A B D C 第8题
A. –3
B. 9
C.-3或9
D.以上结论都不对
14.正五边形的对称轴共有( )
A. 2条
B. 4条
C. 5条
D.无数条
15.以下的调查适合作抽样调查的有 ( )
①了解一批灯泡的使用寿命; ②研究某种新式武器的火力;
③了解七年级(5)班同学期中考试的数学成绩; ④审查一篇科学论文的正确性.
A.1种
B.2种
C. 3种
D. 4种
16.一名射击运动员连续射靶10次,命中的环数如下:9.1,8.7,8.8,10,9.7,8.8,9,
9.6,9.9,9.8 那么,这名运动员这10次射击命中环数的平均数为( )
A. 93.4
B.9.34
C. 9.26
D. 9.42
17.已知一组数据为:20,30,40,50,50,60,70,80,50,其平均数a 、中位数b 和众数c 的大小关系是( )
A.a>b>c
B.c>b>a
C.b<c<a
D.a=b=c
三、细心算一算!(每题6分,共24分)
18.解方程或方程组:
(1)
33222+=-x x (2)2.034.13223.02x x -=+
(3)⎩⎨
⎧=++-=7
4382y x x y (4)2x-y=3x+2y=7
四、用心想一想,你一定是生活中的智者!
19.如图所示,要在街道旁修建一个牛奶站,向居民区A、B提供牛奶,牛奶站应建在什么地方,才能使A、B到它的距离之和最短?(本题6分)
居民区A
·
居民区B
·
街道
20.请你在下图的方格内,设计一个轴对称图形,要求有2条对称轴(本题6分)
五、会用你学过的方程知识解决问题吗?
22. (本题8分)现加工一批机器零件,甲单独完成需4天,乙单独完成需6天。
现由乙
先做1天,然后两人合做,完成后共得报酬600元。
若按个人完成的工作量给付报酬,你应如何分配呢?
23. (本题8分)今年春季不少地区爆发“非典”灾害,人民财产损失惨重。
很多师生自发地给灾区人民献爱心。
某校师生捐款购买了大量消毒液,分别装入大小相同的包装箱中,若每箱装25瓶,则余40瓶无处可装,若每箱装40瓶,又余20只空箱。
若每瓶消毒液卖12.5元,则该校共捐了多少元?
六、看谁说得好!
24.在等边三角形ABC中,BD平分∠ABC,延长BC到E,使CE=CD,连接D、E.
(1)成逸同学说:BD=DE,她说得对吗?请你说明道理。
(2)小敏说:把“BD平分∠ABC”改成其它条件,也能得到同样的结论,你认为应该如何改呢?(本题8分)A
B D
E C
25.在ΔABC 中,BO 平分∠ABC ,CO 平分∠ACB ,DE 过O 且平行于BC ,如果ΔADE 的周长为10cm ,BC=5cm ,那么ΔABC 的周长是多少?可要说清理由呀!(本题8分)
七、请你做裁判!
26.甲、乙两人各自投掷一个普通的正方体骰子,如果两者的积为奇数,那么甲得1分;如果两者之积为偶数,那么乙得1分。
连续投掷20次,谁得分高,谁就获胜。
(本题8分)
(1)请你想一想,谁获胜的可能性(机会)大?简要说明理由。
(2)你认为这个游戏公平吗?如果不公平,请为他们设计一个公平的游戏。
A D O E C B
27.(本题8分)世界杯决赛分成八个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分。
请问:
(1)小组共比赛多少场?
(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?
八、其实并不难!
28.小明学习了“一元一次方程”后,联系实际编了这样一道题:我是五月份出生的,我现在的年龄的2倍加上7,正好是我出生那个月的总天数。
你猜我现在几岁?(本题10分)
(1)你求出小明现在的年龄;
(2)你自己的年龄或者是你与家人的年龄也编一道应用题(只编题,不用解答。
但所编的题要简明、合理,能运用已学方程知识解答出来)。
参考答案
一填空:
1. 2 ;
2. –1;
3. 2;
4. 12;
5. 正三角形、正方形、正六边形
6.40或70;
7.21cm ;8.800,400,2;9.略;10. 96;
二、选择
11.C ; 12.C ; 13.B ; 14.D ; 15.C ; 16.B ; 17.B ;18.D ;
三、解方程
19.(1)x=0; (2)x=0.2 (3)⎩⎨⎧-==2
5y x ;(4)⎩⎨⎧-==13y x
四、20.
如图,作A 关于街道的对称点A′连接A′B,交街道于P ,则P 即为牛奶站。
21.略
22.甲得300元,乙得300元。
23.共1440瓶,计18000元。
24.(1)对;求得∠DBC=∠DEB=300
(2)BD 为AC 边上的中线;BD 为AC 边上的高;
25. 略
26.(1)乙获胜的可能性大。
因为两个骰子的点数可能出现4种情况:奇数与奇数、奇数与偶数、偶数与奇数、偶数与偶数。
其中有三种情况,两者的积都是偶数。
(2)这个游戏不公平。
可以这样设计公平游戏:甲、乙两人各自投掷一个普通的正方体骰子,如果两者和为奇数,那么甲得1分;如果两者之和为偶数,那么乙得1分。
连续投掷20次,谁得分高,谁就获胜。
27(1)每小组共比赛6场。
(2)在小组比赛中,现有一队得6分,则该队出线进入16强是一个不确定事件。
因为在小组的6场比赛中,如果每一场都能分胜负,共有3×6=18分,完全可能有3个队,每个队都得到6分。
所以能保证得6分的就一定能出线。
A′ 街道 居民区B · 居民区A · P ·。