五年级奥数题:逆推法(A)
五年级奥数汇总第5讲:逆推法

五讲逆推法有这样一类数学问题,当顺着题目条件的叙述去寻找解法时,往往有一定的困难,但是当我们改变思考的顺序,以问题叙述的终点为起点,一步一步从后向前思考,往回算的过程中按照加减互为逆运算,乘除互为逆运算改变原有的运算,这样问题就容易解决了。
这种解题的方法叫做逆推法。
用这样的方法解决的问题是还原问题。
【预备题】互逆的运算是求解还原问题的知识基础。
(1)某数加上2得8,求某数。
(2)某数减去2得10,求某数。
(3)某数乘以5得45,求某数。
(4)某数除以6得8,求某数。
【典型例题】例1:瓜地里来了一群猴子,第一次吃去了西瓜总数的一半又半个;第二次又吃掉剩下西瓜的一半又半个;第三次又来吃掉剩下西瓜的一半又半个;第四次吃掉剩下西瓜数的一半。
这时瓜地里还有50个西瓜。
那么原来瓜地里有多少个西瓜?试一试:口袋里有若干块糖,老师每次拿出其中的一半再放回一块后分给小朋友,这样共做了五次,口袋里还剩下5块糖。
口袋里原有多少块糖?例2:甲、乙、丙三人各有图书若干,开始时甲先拿出自己藏书的一部分分给乙、丙,使他们的图书数增加了1倍;然后乙也这样做了一次,使甲、丙的图书数增加了1倍;最后丙也这样做了一次,使甲、乙的图书数增加了1倍。
这时三人的藏书数都是32本。
甲、乙、丙三人原来各有多少图书?试一试:有甲、乙、丙三个粮仓,总共存有576吨粮食。
从甲粮仓运出与乙粮仓同样多的粮食放到乙粮仓中,再从乙粮仓中运出与丙粮仓同样多的粮食放到丙粮仓,最后从丙粮仓运出与甲粮仓现有的同样多的粮食放到甲粮仓中,这时三个粮仓的粮食恰好一样多。
原来甲粮仓比乙粮仓的粮食多多少吨?例3:有一筐苹果,爷爷把它分成三等份后还多一个苹果,爷爷留下其中的一份和多出的一个苹果,其余的分给了爸爸;爸爸把所得的苹果分成三等份后也多出了一个苹果,爸爸也留下其中的一份和多出的一个苹果,又把其余的给了大儿子;大儿子把所得的苹果分成三等份后也多出了一个苹果,他也留下其中的一份和多出的一个苹果,又把其余的给了弟弟;弟弟发现他得到的苹果分成三份后还是多了一个。
逆推法

逆推法解题(A卷)一、填空题1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.那么这个数是 .2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有斗酒.3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,那么原来至少有个桔子.7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,那么,袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,那么,这四个数依次是 .10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .二、解答题11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池塘的 ?12.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米?13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元?14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个?逆推法解题(A卷)答案一、填空题1. (100×4+20-112)÷4=772. 斗第三次见花前应有一斗;第三次遇店前应有 (斗);第二次见花前应有 (斗);第二次遇店前应有 (斗);第一次见花前应有 (斗);第一次遇店前应有 (斗).3. 甲:45辆;乙:90辆.把后来甲站所停汽车的辆数看为"1"的倍数,那么乙站所停的是1.5倍,那么"135"辆就是2.5倍,这样甲站后来有:135÷2.5=54(辆)乙站后来有:54×1.5=81(辆)甲原有:54+36-45=45(辆)乙原有:81+45-36=90(辆)4. 782吨.[(180+8)×2+15]×2=782(吨)5. 甲38粒;乙42粒,丙45粒,丁43粒. 现各有168÷4=42(粒).甲:42-6+2=38乙:42-6+6=42丙:42-3+6=45丁:42-2+3=436. 85个.1×4+1=5(个)5×4+1=21(个)21×4+1=85(个)7. 34个.(3-1)×2=4(个)(4-1)×2=6(个)(6-1)×2=10(个)(10-1)×2=18(个) (18-1)×2=34(个)8. 43÷7=0.42857142……6位1999÷6=333 (1)所以是4.9. 设C数为M,则A=2M-2B=2M+2C=MD=4M9M=45,M=5∴A=8;B=12;C=5;D=20.10. 1994由于质数除2以外便都是奇数,奇数×奇数=奇数.所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994二、解答题11. 第14天占 ;第13天占 .12. 39天长:40÷2=20(厘米);38天长:20÷2=10(厘米);37天长:10÷2=5(厘米);36天长:5÷2=2.5(厘米).13. [(125+10)×2+5]×2=550(元)14. 第七个人:0个;第六个人:(0.5+0)×2=1(个);第五个人:(1+0.5)×2=3(个);第四个人:(3+0.5)×2=7(个);第三个人:(7+0.5)×2=15(个);第二个人:(15+0.5)×2=31(个);第一个人:(31+0.5)×2=63(个);一共有:(63+0.5)×2=127(个).。
小学奥数逆推法练习题及答案

小学奥数逆推法解题及答案(上)一、填空题1.某数加7,乘以5,再减去9,得51.这个数是 .2.篮中有许多李子,如果将其中的一半又1个给第一个人,将余下的一半又2个给第二个人,然后将剩下的一半又3个给第三个人,篮中刚好一个也不剩,篮中原来有个李.3.一个箱子里放着一些茶杯,几个小朋友从箱里往外拿茶杯,规则是每次总要拿出箱里的一半,然后又放回一个.按这样规则他拿了597次后,箱里剩2个杯,他原有个杯.4.蜗牛沿着10米高的柱子往上爬,每天从清晨到傍晚向上共爬5米,夜间下滑4米,像这样,从某天清晨开始,它天才能爬上柱的顶端.5.小明在一次数学考试时,把一个数除以3.75计算成乘以3.75,结果得337.5.则,这题的正确结果是 .6.一个数扩大3倍,再增加70,然后减少50,得80.这个数是 .7.学生问陈老师今年几岁,他笑着说:“把我的年龄减去4后,被7除,加上6后乘以5,刚好是半百,”则陈老师今年岁.8.冰柜里的鸡蛋,第一天拿走了一半多两个,第二天拿走了余下的一半多4个,这时刚好拿完,求原来有个.9.在做一道加法题时,小马虎把个位上的5看作3,把十位上的6看成了9,得出结果是210,正确的结果是 .10.一捆电线,第一次用去全长一半多3米,第二次用去余下的一半少10米,第三次用去15米,最后还剩7米,这捆电线原来总长米.二、解答题11.池塘的水面上生长着浮萍,浮萍所占面积每天增加一倍,经过15天把池溏占满了,求它几天占池1塘的412.一条幼虫长成成虫,每天长大一倍,40天长到20厘米,问第36天长多少厘米13.某人去银行取款,第一次取了存款的一半多5元,第二次取了余下的一半多10元,最后剩下125元,求他原来有多少元14.王大爷把他所有西瓜的一半又半个卖给第一个顾客,把余下的一半又半个卖给第二个顾客,……这样一直到他卖给第六个人以后,他一个西瓜也没有,求他原来有西瓜多少个———————————————答案——————————————————————一、填空题1. (51+9)÷5-7=52. 最后剩下的一半:0+3=3(个);第二次余下的:3×2=6(个);第一次余下的一半:6+2=8(个);第一次余下的:8×2=16(个);篮中数的一半:16+1=17(个);篮中原有:17×2=34(个).3. 2个.(不管怎样拿多少次)4. 6天.只要前5米爬到即可,最后一天爬上5米.(10-5)÷(5-4)=5(天)5+1=6(天)5. 24.337.5÷3.73÷3.75=24.6. 20.[(80+50)-70]÷3=207. (50÷5-6)×7+4=32(岁)8. (2+4×2)×2=20(个)9. 182.210-30+2=18210. 54米.15+8-10=12(米)12×2=24(米)全半:24+3=27(米)全长:27×2=54(米)二、解答题11. 第14天占21;第13天占41. 12. 39天长:40÷2=20(厘米);38天长:20÷2=10(厘米);37天长:10÷2=5(厘米);36天长:5÷2=2.5(厘米).13. [(125+10)×2+5]×2=550(元)14. 第七个人:0个;第六个人:(0.5+0)×2=1(个);第五个人:(1+0.5)×2=3(个);第四个人:(3+0.5)×2=7(个);第三个人:(7+0.5)×2=15(个);第二个人:(15+0.5)×2=31(个);第一个人:(31+0.5)×2=63(个);一共有:(63+0.5)×2=127(个).递推法解题(下)一、填空题1.将一个数做如下运算:乘以4,再加上112,减去20,最后除以4,这时得100.则这个数是 .2.李白提壶去买酒,遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒,壶中原有斗酒.3.甲、乙两个车站共停135辆汽车,如果从甲站开36辆到乙站,从乙站开45辆到甲站,这时乙站车是甲站的1.5倍.乙原来停辆车.4.农业站有一批化肥,第一天卖出一半又多15吨,第二次卖出余下的一半多8吨,第三次卖出180吨,正好卖完,这批化肥原来有吨.5.四个袋子共有168粒棋子,小红过来一看,把棋子作如下的调整,把丁袋调3粒到丙袋,丙调6粒到乙袋,乙又调6粒到甲袋,甲袋调2粒到丁袋,这时,四个袋子的棋子一样多,乙袋原来有粒棋子.6.一筐桔子,把它四等分后多一个,取走3份又一个,剩下的四等分后又剩一个,再取走3份又一个,剩下的四等分又剩一个,则原来至少有个桔子.7.袋子里有若干个球,小华每次拿出其中的一半再放回一个球,这样共操作了5次,袋中还有3个球,则,袋中原来共有个球.8.3÷7的小数点后面第1999位上的数是 .9.已知A,B,C,D四数之和为45,且A+2=B-2=C×2=D÷2,则,这四个数依次是 .10.两个小于1000的质数之积是一个偶数,这个偶数最大可能是 .二、解答题11.有26块砖,兄弟俩拿去挑,弟弟抢在前,刚摆好姿势,哥哥赶到了.哥哥看到弟弟挑得太多,从弟弟那里抢过了一半,弟弟不服,又从哥哥那里抢回一半,哥哥不肯,弟弟只好给哥哥5块,此时哥哥比弟弟多挑2块,问最初弟弟准备挑多少块12.批发站有若干筐苹果,第一天卖出一半,第二天运进450筐,第三天又卖出现有苹果的一半又50筐,还剩600筐,这个批发站原有多少筐.13.三人共有糖72粒,若甲给乙、丙各一些,使他们增加1倍.接着乙又给甲、丙各一些,使它们翻倍.最后丙也给甲、乙各一些,使他们翻倍.这时三人糖数相等,求三人原来各几粒14.袋子里有若干个球,小明每次拿出其中的一半,再放回一个,一共做了5次,袋中还有3个球,问原来袋中有几个球———————————————答 案——————————————————————一、填空题1. (100×4+20-112)÷4=772. 87斗第三次见花前应有一斗; 第三次遇店前应有2121=÷(斗); 第二次见花前应有211121=+(斗); 第二次遇店前应有432211=÷(斗); 第一次见花前应有431141=+(斗); 第一次遇店前应有872431=÷(斗). 3. 甲:45辆;乙:90辆.把后来甲站所停汽车的辆数看为“1”的倍数,则乙站所停的是1.5倍,则“135”辆就是2.5倍,这样甲站后来有:135÷2.5=54(辆)乙站后来有:54×1.5=81(辆)甲原有:54+36-45=45(辆)乙原有:81+45-36=90(辆)4. 782吨.[(180+8)×2+15]×2=782(吨)5. 甲38粒;乙42粒,丙45粒,丁43粒.现各有168÷4=42(粒).甲:42-6+2=38乙:42-6+6=42丙:42-3+6=45丁:42-2+3=436. 85个.1×4+1=5(个)5×4+1=21(个)21×4+1=85(个)7. 34个.(3-1)×2=4(个)(4-1)×2=6(个)(6-1)×2=10(个)(10-1)×2=18(个)(18-1)×2=34(个)8. 43÷7=0.42857142……6位1999÷6=333 (1)所以是4.9. 设C数为M,则A=2M-2B=2M+2C=MD=4M9M=45,M=5∴A=8;B=12;C=5;D=20.10. 1994由于质数除2以外便都是奇数,奇数×奇数=奇数.所以其中一个质数定是2,1000以最大的质数是:997. 997×2=1994二、解答题11. 16块12+5=17(块)(26-17)×2=18(块)(26-18)×2=16(块)12. 1700筐[(600+50)×2-450]×2=1700(筐)13. 甲:39;乙:21;丙:12.14. 34个.。
小学数学解题方法解题技巧之逆推法

小学数学解题方法解题技巧之逆推法Newly compiled on November 23, 2020小学数学解题方法解题技巧之逆推法小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。
有些聪明的小朋友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。
由于从出口返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果出发,从后往前逐步推理,问题就很容易得到解决了。
这种从条件或问题反过去想而寻求解题途径的方法,叫做逆推法。
用逆推法解应用题列算式时,经常要根据加减互逆,乘除互逆的关系,把原题中的加用减算,减用加算;把原题中的乘用除算,除用乘算。
(一)从结果出发逐步逆推例1一个数除以4,再乘以2,得16,求这个数。
(适于四年级程度)解:由最后再乘以2得16,可看出,在没乘以2之前的数是:16÷2=8在没除以4之前的数是:8×4=32答:这个数是32。
*例2 粮库存有一批大米,第一天运走450千克,第二天运进720千克,第三天又运走610千克,粮库现有大米1500千克。
问粮库原来有大米多少千克(适于四年级程度)解:由现有大米1500千克,第三天运走610千克,可以看出,在没运走610千克之前,粮库中有大米:1500+610=2110(千克)在没运进720千克之前,粮库里有大米:2110-720=1390(千克)在没运走450千克之前,粮库里有大米:1390+450=1840(千克)答:粮库里原来有大米1840千克。
*例3 某数加上9后,再乘以9,然后减去9,最后再除以9,得9。
问这个数原来是多少(适于四年级程度)解:由最后除以9,得9,看得出在除以9之前的数是:9×9=81在减去9之前的数是:81+9=90在乘以9之前的数是:90÷9=10在加上9之前,原来的数是:10-9=1答:这个数原来是1。
第二讲:逆推法

奥数题目第二波:逆推法
平时我们做题的时候,经常会感觉到这道题目怎么这么麻烦,怎么这么不好计算。
其实这时候很可能你走错了方向!在数学中,只要保持清醒的头脑,你就成功一半了。
今天我们隆重介绍一种不仅仅在数学界使用的方法:逆推法。
大侦探福尔摩斯经常就运用这一方法,完成了一些看似不可能的推理,并且侦破案件的。
下面我们来学习学习这种方法。
首先我们来玩一个游戏,我心中想了一个数,对你说:“给这个数加上9,再取和的一半应是5.”如果要你把这个数算出来.你会算吗?
可以这样想:因为我想的数加上9后之和的一半是5,那么和就应是 5×2=10;再往前逆推,在没有加上9之前应是10-9=1,这就是我心中想的数.
这只是一个小游戏,准备好了吗?正式开始:
1.费常鹅吃蛋糕,第一次吃掉篮子里的一半又1个,第二次吃掉剩下的一半又1个,第三次再吃掉剩下的一半又1个,这时候还剩下1个,那么原来有个蛋糕。
如果我们使用逆推法,那么就应该这样算:最后剩下的1个,加上1个再乘以2,得到4,这个4就是第二次吃以后剩下给第三次吃的;然后4加1再乘以2,得到10,这个10就是第一次吃完以后剩下给第二次吃的;10加1再乘以2,得到22,就是原来的蛋糕了。
明白了吗?我们再来看一道题:
2.如果一个数减去8,再乘以8,再加上8,再除以8,最终得到8,那么原来的数是多少?
典型的逆推法:只要把除号变成乘号,加号变成减号。
(8×8-8)÷8+8=15
答案就是15.
明白了吗?
今天就讲到这里,明天继续。
解题方法与技巧之逆推法_

(一)从结果出发逐步逆推 例 1 一个数除以 4,再乘以 2,得 16,求这个数。(适于三年级程度) 解:由最后再乘以 2 得 16,可看出,在没乘以 2 之前的数是:
让每个家庭都为自己的孩子感到骄傲
解题方法与技巧之逆推法
小朋友在玩“迷宫”游戏时,在纵横交错的道路中常常找不到出口。有些聪明的小朋 友,反其道而行之,从出口倒回去找入口,然后再沿着自己走过的路返回来。由于从出口 返回时,途径单一,很快就会找到入口,然后再由原路退回,走出“迷宫”自然就不难了。
解应用题也是这样,有些应用题用顺向推理的方法很难解答,如果从问题的结果 出 发,从后往前逐步推理,问题就很容易得到解决了。
让每个家庭都为自己的孩子感到骄傲
答略。
例 5 仓库里原有化肥若干吨。第一次取出全部化肥的一半多 30 吨,第二次取出余下 的一半少 100 吨,第三次取出 150 吨,最后剩下 70 吨。这批化肥原来是多少吨?(适于 四年级程度)
解:从“第三次取出 150 吨,最后剩下 70 吨”可看出,在第三次取出之前仓库里有化 肥:
1500+610=2110(千克) 在没运进 720 千克之前,粮库里有大米:
2110-720=1390(千克) 在没运走 450 千克之前,粮库里有大米:
1390+450=1840(千克) 答:粮库里原来有大米 1840 千克。
行动感召行动、灵魂唤醒灵魂
1
让每个家庭都为自己的孩子感到骄傲
例 3 某数加上 9 后,再乘以 9,然后减去 9,最后再除以 9,得 9。问这个数原来是 多少?(适于三年级程度)
逆推还原

一个数,经过一些列的运算,可以得到一个新的数。
反过来,从最后得到的数,倒推回去,可以得出原来的数。
这种求原来数的问题,称为逆推问题。
逆推问题的解法就是倒推。
必要时还可以借助图的表示使解法更加清楚。
逆推法又叫还原法,实际上就是倒过来思考。
在倒着想时,要根据题目的特点,首先要理解题中数量运算的顺序,再从所给的结果出发,按它变化的相反方向,用与原来相反的运算方法,一步一步地向已知条件靠拢,直到问题解决为止,必要时可利用线段图帮助理解题意。
例1、幼儿园将一批苹果分给大、中、小三个班,大班分得总个数的一半多20个,中班分得余下的一半多20个,最后把剩下的60个全部给了小班,求这批苹果一共有多少个?例2、甲、乙、丙三人各有连环画若干本。
如果甲给乙5本,乙给丙10本,丙给甲15本,那么三人所有的连环画都是35本,他们原来各有多少本?例3、有一位老人,把他今年的年龄加上16,用5除,再减去10,最后用10乘,恰巧100岁,这位老人今年多少岁?例4、某数加上6,乘6,减去6,除以6,其结果等于6,求某数例5、某数加上5然后再乘4的题,由于算错,某数先乘5然后再加上4结果是34.正确的答案应该是多少?(韩国小学数学奥林匹克试题)例6、张军在做一道加法时,把一个加数个位上的9看作6,把十位上的3看作8,结果和是115。
正确的和应该是多少?例7、一个数减去2487,小明在计算时错把被减数百位和十位上的数交换了,结果得8439,正确的结果是多少?例8、甲在加工一批零件,第一天加工了这堆零件的一半又10个,第二天又加工了剩下的一半又10个,还剩下25个没有加工。
问:这批零件有多少个?强化训练1、三只金鱼缸里共有15条金鱼,如果从第一缸里取出12只放入第二盒,再从第二缸取出3条金鱼放入第三缸,那么三只金鱼缸里的金鱼就一样多。
求原来每只金鱼缸里各有多少条金鱼?15÷3=5(条)5+2=7(条)5-2+3=6(条)5-3=2(条)答:原来第一缸有金鱼7条,第二缸有6条,第三缸有2条2、学校乒乓球队有三盒乒乓球。
小学奥数:逆推问题复习过程

小学奥数:逆推问题第五讲倒推法的妙用在分析应用题的过程中,倒推法是一种常用的思考方法.这种方法是从所叙述应用题或文字题的结果出发,利用已知条件一步一步倒着分析、推理,直到解决问题. 例1 一次数学考试后,李军问于昆数学考试得多少分.于昆说:“用我得的分数减去8加上10,再除以7,最后乘以4,得56.”小朋友,你知道于昆得多少分吗?分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?把一个数用□来表示,根据题目已知条件可得到这样的等式:{[(□-8)+10]÷7}×4=56.如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.解:{[(□-8)+10]÷7}×4=56[(□-8)+10〕÷7=56÷4答:于昆这次数学考试成绩是96分.通过以上例题说明,用倒推法解题时要注意:①从结果出发,逐步向前一步一步推理.②在向前推理的过程中,每一步运算都是原来运算的逆运算.③列式时注意运算顺序,正确使用括号.例2 马小虎做一道整数减法题时,把减数个位上的1看成7,把减数十位上的7看成1,结果得出差是111.问正确答案应是几?分析马小虎错把减数个位上1看成7,使差减少7—1=6,而把十位上的7看成1,使差增加70—10=60.因此这道题归结为某数减6,加60得111,求某数是几的问题.解:111-(70—10)+(7—1)=57答:正确的答案是57.例3 树林中的三棵树上共落着48只鸟.如果从第一棵树上飞走8只落到第二棵树上;从第二棵树上飞走6只落到第三棵树上,这时三棵树上鸟的只数相等.问:原来每棵树上各落多少只鸟?分析倒推时以“三棵树上鸟的只数相等”入手分析,可得出现在每棵树上鸟的只数48÷3=16(只).第三棵树上现有的鸟16只是从第二棵树上飞来的6只后得到的,所以第三棵树上原落鸟16—6=10(只).同理,第二棵树上原有鸟16+6—8=14(只).第一棵树上原落鸟16+8=24(只),使问题得解.解:①现在三棵树上各有鸟多少只?48÷3=16(只)②第一棵树上原有鸟只数. 16+8=24(只)③第二棵树上原有鸟只数.16+6—8=14(只)④第三棵树上原有鸟只数.16—6=10(只)答:第一、二、三棵树上原来各落鸟24只、14只和10只.例4 篮子里有一些梨.小刚取走总数的一半多一个.小明取走余下的一半多1个.小军取走了小明取走后剩下一半多一个.这时篮子里还剩梨1个.问:篮子里原有梨多少个?分析依题意,画图进行分析.解:列综合算式:{[(1+1)×2+1]×2+1}×2=22(个)答:篮子里原有梨22个.例5 甲乙两个油桶各装了15千克油.售货员卖了14千克.后来,售货员从剩下较多油的甲桶倒一部分给乙桶使乙桶油增加一倍;然后从乙桶倒一部分给甲桶,使甲桶油也增加一倍,这时甲桶油恰好是乙桶油的3倍.问:售货员从两个桶里各卖了多少千克油?分析解题关键是求出甲、乙两个油桶最后各有油多少千克.已知“甲、乙两个油桶各装油15千克.售货员卖了14千克”.可以求出甲、乙两个油桶共剩油15×2-14=16(千克).又已知“甲、乙两个油桶所剩油”及“这时甲桶油恰是乙桶油的3倍”.就可以求出甲、乙两个油桶最后有油多少千克.求出甲、乙两个油桶最后各有油的千克数后,再用倒推法并画图求甲桶往乙桶倒油前甲、乙两桶各有油多少千克,从而求出从两个油桶各卖出多少千克.解:①甲乙两桶油共剩多少千克?15×2-14=16(千克)②乙桶油剩多少千克?16÷(3+1)=4(千克)③甲桶油剩多少千克?4×3=12(千克)用倒推法画图如下:④从甲桶卖出油多少千克? 15-11=4(千克)⑤从乙桶卖出油多少千克? 15—5=10(千克)答:从甲桶卖出油4千克,从乙桶卖出油10千克.例6 菜站原有冬贮大白菜若干千克.第一天卖出原有大白菜的一半.第二天运进200千克.第三天卖出现有白菜的一半又30千克,结果剩余白菜的3倍是1800千克.求原有冬贮大白菜多少千克?分析解题时用倒推法进行分析.根据题目的已知条件画线段图(见下图),使数量关系清晰的展现出来.解:①剩余的白菜是多少千克?1800÷3=600(千克)②第二天运进200千克后的一半是多少千克?600+30=630(千克)③第二天运进200千克后有白菜多少千克?630×2=1260(千克)④原来的一半是多少千克?1260—200=1060(千克)⑤原有贮存多少千克?1060×2=2120(千克)答:菜站原来贮存大白菜2120千克.综合算式:[(1800÷3+30)×2—200]×2=2120(千克)答:菜站原有冬贮大白菜2120千克.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
十九 逆推法(A ) 年级 班 姓名 得分
一、填空题
1. 已知:[135÷(11+O
-141
2
)-1÷7]611⨯=1.则○=_____. 2. 已知:x
151********+++++ =718501,则x =_____. 3. 将某数的3倍减5,计算出答案,将答案再3倍后减5,计算出答案,这样反复经过4次,最后计算的结果为691,那么原数是_____.
4. 小玲问一老爷爷今年多大年龄,老爷爷说:“把我的年龄加上17后用4除,再减去15后用10乘,恰好是100岁”那么,这位老爷爷今年_____岁.
5. 李老师拿着一批书送给36位同学,每到一位同学家里,李老师就将所有的书的一半给他,每位同学也都还她一本,最后李老师还剩下2本书,那么李教师原来拿了_____本书.
6. 从某天起,池塘水面上的浮草,每天增加一倍,50天后整个池塘长满了浮
草,第_____天时浮萍所占面积是池塘的4
1. 7. 一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一,第二天它吃了余下桃子的六分之一,第三天它吃了余下桃子的五分之一,第四天它吃了余下桃子的四分之一,第五天它吃了余下桃子的三分之一,第六天它吃了余下桃子的二分之一,这时还剩12只桃子,那么第一天和第二天猴子所吃桃子的总数是_____.
8. 某孩子付一角钱进入第一家商店,他在店里花了剩余的钱的一半,走出商店时,又付了一角钱.之后,他又付一角钱进入第二家商店,在这里他花了剩余的钱的一半,走出商店时又付了一角钱,接着他又用同样的方式进入第三和第四家商店.当他离开第四家商店后,这时他身上只剩下一角钱.那么他进入第一家商店之前身上有_____钱.
9. 有甲、乙两箱糖果,如果第一次从甲箱拿出和乙箱同样多块糖果放到乙箱里,第二次从乙箱拿出和甲箱剩下的同样多块糖果放入甲箱,这样拿4次后,甲、乙两箱糖果都是16块.甲、乙两箱各有糖果_____块.
10. 甲、乙、丙三人的钱数各不相同,甲最多,他拿出一些给乙和丙,使乙和丙的钱数都比原来增加了两倍,结果乙的最多;乙拿出一些给甲和丙,使甲和丙的钱数都比原来增加了两倍,结果丙的最多;丙又拿出一些给甲和乙,使他们的钱数各增加两倍,结果三人的钱数一样多.如果他们三人共有81元,则三人原有的钱
数分别是____、____、____元.
二、解答题
11. 甲、乙、丙三个小孩分别带了若干块糖,甲带的最多,乙带的较少,丙带的最少.后来进行了重新分配,第一次分配,甲分给乙、丙,各给乙、丙所有数少4块,结果乙有糖块最多;第二次分配,乙给甲、丙、各给甲、丙所有数少4块,结果丙有糖块最多;第三次分配,丙给甲、乙,各给甲、乙所有数少4块,经三次重新分配后,甲、乙、丙三个小孩各有糖块44块,问:最初甲、乙、丙三个小孩各带糖多少块?
12. 一个车间计划用5天完成加工一批零件的任务,第一天加工了这批零件的51多120个,第二天加工了剩下的41少150个,第三天加工了剩下的3
1多80个,第四天加工了剩下的2
1少20个,第五天加工了最后的1800个.这批零件总数有多少个
13. 有甲、乙两堆小球.甲堆小球比乙堆多,而且甲堆球数比560多,但不超过640,从甲堆拿出与乙堆同样多的球放入乙堆中;第二次,从乙堆拿出与甲堆剩下的同样多的球放到甲堆中;….如此继续下去,挪动五次以后,发现甲、乙两堆的小球一样多,那么,甲堆原有小球多少个?
14. 设有甲、乙、丙三个小组,现对这三组人员进行三次调整:第一次丙组不动,甲、乙两组中的一组调出7人给另一组;第二次乙组不动,甲、丙两组中的一组调出7人给另一组;第三次甲组不动,丙、乙两组中的一组调出7人给另一组.经过三次调整后,甲组有5人,乙组有13人,丙组有6人.问原来各组各有多少人
———————————————答 案—————————————————————— 1.
10
1 2. 3 用逆推法解,如设
718501111=+x ,求出5012171=x .事实上,依次由等号右边的数取倒数后减1,得501217;再取倒数后减2,得21767;再取倒数后减3,得67
16;再取倒数后减4,得163;再取倒数后减5,得3
1;再取倒数,求得3=x . 3. 11
从最后的结果往前逆推,结果是691,这是一个数的3倍减5得到的,这个数应该是(691+5)÷3=232,这是经过3次后的结果;同样可知,经过2次后的结果为(232+5)÷3=79;经过1次后的结果为(79+5)÷3=28;因此,原数为(28+5)÷3==11.
4. 83
采用逆推法,易知老爷爷的年龄为(100÷10+15)⨯4-17=83(岁)
5. 2
最后李老师还剩2本书,因此,他到第36位同学家之前应有(2-1)⨯2=2本书;同样,他到35位同学家之前应有(2-1) ⨯2=2本书;…;由上此可知,他到每位同学家之前都有2本书,故李老师原来拿了2本书.
6. 48
采用逆推法,第50天后整个池塘长满了浮草,因此,第49天时浮萍所占面积是池塘的21,第48天时浮萍所占面积是池塘的4
1. 7. 24
因为12只桃子占第六天吃去剩下桃子数的2
1,所以,第六天还有桃子12÷(1-2
1)=24(只). 24只桃子占第五天吃去剩下桃子的3
1,所以,第五天还有桃子24÷(1-3
1)=36(只). 以此类推,第四、三、二、一天分别还有桃子36÷(1-4
1)=48(只),48÷(1-51)=60(只),60÷(1-61)=72(只),72÷(1-7
1)=84(只). 猴子共摘了84只桃子,第一天吃了84×71=12(只),第二天吃了84×7
6×6
1=12(只).两天共吃24只. 8. 6.1元
9. 21,11
采用逆推法,列表略
10. 55,19,7
丙给甲、乙后
乙给甲、丙后
甲给乙、丙后 1144块.第三次分配是丙给甲、乙,各给甲、乙所有数少4块,后甲、乙、丙才各有44块糖的,在第三次分配前:
甲有:(44+4)÷2=24(块),
乙有:(44+4)÷2=24(块),
丙有:44+(44-24)⨯2=84(块).
同上,第二次分配前:
甲有:(24+4)÷2=14(块),
丙有:(84+4)÷2=44(块),
乙有:24+(24-14)+(84-44)=74(块).
故原有:
丙有:(44+4)÷2=24(块),
乙有:(74+4)÷2=39(块),
甲有:14+(44-24)+(74-39)=69(块).
12. 第五天加工了最后的1800个,后两天共加工(1800-20)÷(1-21)=3560(个),后三天共加工(3560+80)÷(1-3
1) =5460(个),后四天共加工(5460-150)÷(1-4
1)=7080(个),因此,零件总数为(7080+120)÷(1-51)=9000(个). 13. 设第五次挪动后,甲、乙两堆各有小球x 个,注意到两堆共有2x 个小球,按两堆小球的变化顺序逆推:
第五次挪动前,乙堆有小球21x 个,甲堆有小球2x -21x =2
3x 个; 第四次挪动前,甲堆有小球21×23x =43x 个,乙堆有小球2x -43x =4
5x 个; 第三次挪动前,乙堆有小球21×45x =85x 个,甲堆有小球2x -85x =8
11x 个; 第二次挪动前,甲堆有小球x x 161181121=⨯个,乙堆有小球2x -x x 16
211611=个; 第一次挪动前即原来,乙堆有小球x x 32
21162121=⨯个,甲堆有小球x x x 32
4332212=-个. 设甲堆原有小球y 个,∴,32
43x y =即32y =43x , 又 ∵32与43互质, ∴y 是43的倍数.
令 y =43t (t 为整数)
又560<y ≤640 即560<43t ≤640,
∴ 43
3814436404356043113=≤<=t 因此14=t , 60243==t y .
故甲堆原有小球602个.
14. 本题若按人员调整的先后顺序来推算,其困难是不知道第一次调整时,究竟是从甲组调出7人给乙组,还是从乙组调出7人给甲组,需要分别讨论,我们从最后的结果进行倒推就比较容易.第三次调整(甲组不动)后,各组人数是:5、13、6,由于这时丙组只有6人,所以,一定是从丙组调出7人给乙组,因此第三次调整前各组人数是:5、6、13,这也是第二次调整(乙组不动)后的人数.同理:第二次调整是从甲组调出7人给丙组,所以第二次调整前各组人数是:12、6、6,这也是第一次调整(丙组不动)后的人数.第一次调整必是乙调出7人给甲,所以,原来各组人数是:5、13、6.。