2012年山东省高考数学试卷(理科)
2012高考数学理科试题精校版山东卷

2012年普通高等学校招生全国统一考试数学理工农医类(山东卷)本试卷分第Ⅰ卷和第Ⅱ卷两部分.满分150分.考试用时120分钟.参考公式:锥体的体积公式:V=13Sh,其中S是锥体的底面积,h是锥体的高.如果事件A,B互斥,那么P(A+B)=P(A)+P(B).第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z满足z(2-i)=11+7i(i为虚数单位),则z为()A.3+5i B.3-5i C.-3+5i D.-3-5i2.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则(U A)∪B为()A.{1,2,4} B.{2,3,4}C.{0,2,4} D.{0,2,3,4}3.设a>0,且a≠1,则“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9 C.10 D.155.设变量x,y满足约束条件222441x yx yx y+≥⎧⎪+≤⎨⎪-≥-⎩,,,则目标函数z=3x-y的取值范围是()A.[32-,6]B.[32-,-1]C.[-1,6]D.[-6,32]6.执行下面的程序框图,如果输入a=4,那么输出的n的值为() A.2 B.3 C.4 D.57.若θ∈[π4,π2],sin2θsin θ=( )A .35B .45CD .348.定义在R 上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x .则f (1)+f (2)+f (3)+…+f (2 012)=( )A .335B .338C .1 678D .2 0129.函数cos622x xxy -=-的图象大致为( )10.已知椭圆C :22221x y a b +=(a >b >0)双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A .22182x y +=B .221126x y += C .221164x y += D .221205x y += 11.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )A .232B .252C .472D .48412.设函数1()f x x=,g (x )=ax 2+bx (a ,b ∈R ,a ≠0).若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =__________.14.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为__________.15.设a >0.若曲线y x =a ,y =0所围成封闭图形的面积为a 2,则a =__________.16.如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP的坐标为__________.三、解答题:本大题共6小题,共74分.17.已知向量m =(sin x,1),n =cos x ,2Acos2x )(A >0),函数f (x )=m ·n 的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在[0,5π24]上的值域. 18.在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.19.现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分,该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX . 20.在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈N *,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .21.在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(3)若点M l :y =kx +14与抛物线C 有两个不同的交点A ,B ,l与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值. 22.已知函数ln ()exx kf x +=(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.1.A 由已知得2117i (117i)(2i)227i 14i 11i 1525i 35i 2i (2i)(2i)55z +++++++=====+--+.2.C 由题知U A ={0,4},所以(U A )∪B ={0,2,4},故选C 项. 3. A 由函数f (x )=a x 在R 上是减函数可得0<a <1,由函数g (x )=(2-a )x 3在R 上是增函数可得a <2,因为0<a <1a <2,a <20<a <1,所以题干中前者为后者的充分不必要条件,故选A 项.4. C 由题意可得,抽样间隔为30,区间[451,750]恰好为10个完整的组,所以做问卷B 的有10人,故选C 项.5. A 作出可行区域如图所示.目标函数z =3x -y 可变为y =3x -z ,作l 0:3x -y =0,在可行域内平移l 0,可知在A 点处z 取得最小值为32-,在B 点处z 取得最大值6,故选A 项.6. B 由程序框图知,当n =0时,P =1,Q =3;当n =1时,P =5,Q =7;当n =2时,P =21,Q =15,此时n 增加1变为3,满足P >Q ,循环结束,输出n =3,故选B 项.7. D 由θ∈[π4,π2],得2θ∈[π2,π].又sin2θ=,故1cos28θ=-.故3sin 4θ==.8. B 由f (x +6)=f (x )得f (x )的周期为6,所以f (1)+f (2)+…+f (2 012)=335[f (1)+f (2)+…+f (6)]+f (1)+f (2),而f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=0,f (5)=f (-1)=-1,f (6)=f (0)=0,f (1)+f (2)+f (3)+…+f (6)=1,所以f (1)+f (2)+…+f (2 012)=338,故选B 项.9.D 令cos6()22x xxf x -=-,则f (x )的定义域为(-∞,0)∪(0,+∞),而()c o s 6()()22x xx f x f x ---==--,所以f (x )为奇函数,故排除A 项.又因为当x ∈(0,16)时,cos6x >0,2x -2-x >0,即f (x )>0,故排除B 项,而f (x )=0有无数个根,所以排除C 项,D项正确.10. D 双曲线x 2-y 2=1的渐近线为y =±x ,与椭圆C 有四个交点,以这四个交点为顶点的四边形面积为16,可得四边形为正方形,其边长为4,双曲线的渐近线与椭圆C 的一个交点为(2,2),所以有22441a b +=,又因为c e a ==,a 2=b 2+c 2,联立解方程组得a 2=20,b 2=5,故选D 项.11. C 完成这件事可分为两类,第一类3张卡片颜色各不相同共有31114444C C C C 256=种;第二类3张卡片有两张同色且不是红色卡片共有21213344C C C C 216=种,由分类加法计数原理得共有472种,故选C 项.12. B 由题意知函数1()f x x=,g (x )=ax 2+bx (a ,b ∈R ,a ≠0)的图象有且仅有两个公共点A (x 1,y 1),B (x 2,y 2),等价于方程1x=ax 2+bx (a ,b ∈R ,a ≠0)有两个不同的根x 1,x 2,即方程ax 3+bx 2-1=0有两个不同的实根x 1,x 2,因而可设ax 3+bx 2-1=a (x -x 1)2(x -x 2),即ax 3+bx 2-1=a (x 3-2x 1x 2+x 12x -x 2x 2+2x 1x 2x -x 2x 12),∴b =a (-2x 1-x 2),x 12+2x 1x 2=0,-ax 2x 12=-1,x 1+2x 2=0,ax 2>0, 当a >0时,x 2>0,∴x 1+x 2=-x 2<0,x 1<0,∴y 1+y 2=121212110x x x x x x ++=>. 当a <0时,x 2<0,∴x 1+x 2=-x 2>0,x 1>0, ∴y 1+y 2=121212110x x x x x x ++=<. 13.答案:2解析:不等式|kx -4|≤2可化为-2≤kx -4≤2,即2≤kx ≤6,而不等式的解集为{x |1≤x ≤3},所以k =2.14.答案:16解析:三棱锥D 1-EDF 的体积即为三棱锥F -DD 1E 的体积.因为E ,F 分别为AA 1,B 1C 上的点,所以在正方体ABCD -A 1B 1C 1D 1中△EDD 1的面积为定值12,F 到平面AA 1D 1D 的距离为定值1,所以11111326F DD E V -=⨯⨯=. 15.答案:49解析:由题意可得曲线y 与直线x =a ,y =0所围成封闭图形的面积33222022033a S x x a a ====⎰,解得49a =.16.(2-sin2,1-cos2)解析:因为圆心由(0,1)平移到了(2,1),所以在此过程中P 点所经过的弧长为2,其所对圆心角为2.如图所示,过P 点作x 轴的垂线,垂足为A ,圆心为C ,与x 轴相切于点B ,过C 作P A 的垂线,垂足为D ,则π22PCD ∠=-,|PD |=sin(2-π2)=-cos2,|CD |=cos(2-π2)=sin2,所以P 点坐标为(2-sin2,1-cos2),即OP 的坐标为(2-sin2,1-cos2).17.解:(1)f (x )=m ·n sin x cos x +2Acos2x=A sin2x +12cos2x )=A sin(2x +π6).因为A >0,由题意知A =6.(2)由(1)知f (x )=6sin(2x +π6). 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin [2(x +π12)+π6]=6sin(2x +π3)的图象;再将图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin(4x +π3)的图象.因此g (x )=6sin(4x +π3).因为x ∈[0,5π24],所以4x +π3∈[π3,7π6].故g (x )在[0,5π24]上的值域为[-3,6].18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°, 所以∠ADC =∠BCD =120°. 又CB =CD ,所以∠CDB =30°. 因此∠ADB =90°,AD ⊥BD .又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED , 所以BD ⊥平面AED . (2)方法一:由(1)知AD ⊥BD ,所以AC ⊥BC .又FC ⊥平面ABCD ,因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,不妨设CB =1,则C (0,0,0),B (0,1,0),D 12 ,0),F (0,0,1),因此BD ,BF =(0,-1,1).设平面BDF 的一个法向量为m =(x ,y ,z ),则m ·BD =0,m ·BF=0,所以x =,取z =1,则m .由于CF=(0,0,1)是平面BDC 的一个法向量,则cos ,CF CF CF⋅===m m m ,所以二面角F -BD -C 方法二:取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD .又FC ⊥平面ABCD ,BD 平面ABCD , 所以FC ⊥BD .由于FC ∩CG =C ,FC ,CG 平面FCG , 所以BD ⊥平面FCG .故BD ⊥FG . 所以∠FGC 为二面角F -BD -C 的平面角. 在等腰三角形BCD 中,由于∠BCD =120°, 因此12CG CB =. 又CB =CF ,所以GF =,故cos 5FGC ∠=,因此二面角F -BD -C 的余弦值为5. 19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23, 由于A BCD BCD BCD =++,根据事件的独立性和互斥性得()()P A P BCD BCD BCD =++=()()()P BCD P BCD P BCD ++=()()()+()()()()()()P B P C P D P B P C P D P B P C P D + =322322322(1)(1)(1)(1)(1)(1)433433433⨯-⨯-+-⨯⨯-+-⨯-⨯=7 36.(2)根据题意,X的所有可能取值为0,1,2,3,4,5,根据事件的独立性和互斥性得(0)()P X P BCD===[1-P(B)][1-P(C)][1-P(D)]=3221 (1)(1)(1)43336 -⨯-⨯-=,(1)()()()() P X P BCD P B P C P D ====322(1)(1) 433⨯-⨯-=1 12,(2)=()()() P X P BCD BCD P BCD P BCD =+=+=322322 (1)(1)(1)(1)433433 -⨯⨯-+-⨯-⨯=19,(3)()()() P X P BCD BCD P BCD P BCD ==+=+=3223221(1)(1) 4334333⨯⨯-+⨯-⨯=,(4)() P X P BCD===3221 (1)4339 -⨯⨯=,P(X=5)=P(BCD)=3221 4333⨯⨯=.故X的分布列为所以EX=0×136+1×12+2×9+3×3+4×9+5×3=12.20.解:(1)因为{a n}是一个等差数列,所以a3+a4+a5=3a4=84,a4=28.设数列{a n}的公差为d,则5d=a9-a4=73-28=45,故d=9.由a4=a1+3d得28=a1+3×9,即a1=1.所以a n=a1+(n-1)d=1+9(n-1)=9n-8(n∈N*).(2)对m∈N*,若9m<a n<92m,则9m+8<9n<92m+8.因此9m-1+1≤n≤92m-1.故得b m=92m-1-9m-1.于是S m=b1+b2+b3+…+b m=(9+93+…+92m-1)-(1+9+…+9m-1)=9(181)1918119m m⨯-----=219109180m m +-⨯+.21.解:(1)依题意知F (0,2p ),圆心Q 在线段OF 的垂直平分线4py =上, 因为抛物线C 的准线方程为2py =-,所以3344p =,即p =1, 因此抛物线C 的方程为x 2=2y .(2)假设存在点M (x 0,202x )(x 0>0)满足条件,抛物线C 在点M 处的切线斜率为y ′|x =x 0=(22x )′|x =x 0=x 0.所以直线MQ 的方程为y -202x =x 0(x -x 0),令14y =,得00124Q x x x =+,所以Q (00124x x +,14).又|QM |=|OQ |,故2222000001111()()()42424216x x x x x -+-=++,因此22019()4216x -=,又x 0>0,所以0x M1).故存在点M1),使得直线MQ 与抛物线C 相切于点M .(3)当0x =(2)得Q(814).Q的半径为r ==, 所以Q的方程为22127(()8432x y -+-=. 由21214y x y kx ⎧=⎪⎪⎨⎪=+⎪⎩,,整理得2x 2-4kx -1=0. 设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 由于1∆=16k 2+8>0,x 1+x 2=2k ,1212x x =-, 所以|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(4k 2+2).由22127((),4321,4x y y kx ⎧+-=⎪⎪⎨⎪=+⎪⎩ 整理得(1+k 2)x 2-1416x -=0.设D ,E 两点的坐标分别为(x 3,y 3),(x 4,y 4).由于2227048k ∆=+>,3424(1)x x k +=+, 342116(1)x x k =-+, 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]=22518(1)4k ++.因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+22518(1)4k ++. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5.所以|AB |2+|DE |2=t (4t -2)+25184t +=4t 2-2t +25184t +, 设g (t )=4t 2-2t +25184t +,t ∈[54,5], 因为g ′(t )=8t -2-2258t ,所以当t ∈[54,5]时,g ′(t )≥g ′(54)=6,即函数g (t )在t ∈[54,5]是增函数,所以当54t =时g (t )取到最小值132,因此当12k =时,|AB |2+|DE |2取到最小值132.22.解:(1)由ln ()exx kf x +=, 得1ln '()e xkx x xf x x --=,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1e xx (1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).(3)(理)因为g(x)=(x2+x)f′(x),所以g(x)=1e xx+(1-x-x ln x),x∈(0,+∞).因此对任意x>0,g(x)<1+e-2等价于1-x-x ln x<e1xx+·(1+e-2).由(2)知h(x)=1-x-x ln x,x∈(0,+∞),所以h′(x)=-ln x-2=-(ln x-lne-2),x∈(0,+∞),因此当x∈(0,e-2)时,h′(x)>0,h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e-2)=1+e-2,故1-x-x ln x≤1+e-2.设φ(x)=e x-(x+1).因为φ′(x)=e x-1=e x-e0,所以x∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x-(x+1)>0,即e11xx>+.所以1-x-x ln x≤1+e-2<e1xx+(1+e-2).因此对任意x>0,g(x)<1+e-2.(文)证明:因为g(x)=xf′(x),所以g(x)=1e x(1-x-x ln x),x∈(0,+∞).由(2)知h(x)=1-x-x ln x,求导得h′(x)=-ln x-2=-(ln x-lne-2),所以当x∈(0,e-2)时,h′(x)>0,函数h(x)单调递增;当x∈(e-2,+∞)时,h′(x)<0,函数h(x)单调递减.所以当x∈(0,+∞)时,h(x)≤h(e-2)=1+e-2.又当x∈(0,+∞)时,0<1e x<1,所以当x∈(0,+∞)时,1e xh(x)<1+e-2,即g(x)<1+e-2.综上所述结论成立.11。
2012年山东省高考数学试题(附答案和解释)(理科Word版)

2012年山东省高考数学试题(附答案和解释)(理科Word版)2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项: 1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V= Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)•P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x满足z(2-i)=11+7i(i为虚数单位),则z为 A 3+5i B 3-5i C -3+5i D -3-5i 解析: .答案选A。
另解:设,则根据复数相等可知,解得,于是。
2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA) B为 A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 解析:。
答案选C。
3 设a>0 a≠1 ,则“函数f(x)= ax在R上是减函数”,是“函数g(x)=(2-a) 在R上是增函数”的 A 充分不必要条件 B 必要不充分条件 C 充分必要条件 D 既不充分也不必要条件解析:p:“函数f(x)= ax在R上是减函数”等价于;q:“函数g(x)=(2-a) 在R 上是增函数”等价于,即且a≠1,故p是q成立的充分不必要条件. 答案选A。
2012——2015年山东高考数学(理科)试题及答案解析word解析版

2012普通高等学校招生全国统一考试(山东卷)理科数学本试卷分为第I 卷和第II 卷两部分,共4页,满分150分。
考试用时120分钟,考试结束后将本试卷和答题卡一并收回。
注意事项:1、 答题前考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡和试卷规定的位置上2、 第I 卷每小题选出答案后,用2 B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后再选涂其他答案标号,答案不能答在试卷上3、 第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的,答案无效。
4、 填空题请直接填写答案,解答题应写出文字说明、证明过程和演算步骤。
参考公式: 椎体的体积公式:Sh V 31=,其中S 是椎体的底面积,h 是椎体的高 如果事件B A ,互斥,那么()()()B P A P B A P +=+; 如果事件B A ,独立,那么()()()B P A P B A P ⋅=⋅。
第I 卷(60分)一、选择题1、 若复数z 满足()i i z 7112+=-(i 为虚数单位),则z 为(A)i 53+ (B) i 53- (C) i 53+- (D) i 53--2、已知全集{}4,3,2,1,0=U ,集合{}3,2,1=A ,{}4,2=B ,则=B A C U )(( )(A){}4,2,1 (B){}4,3,2 (C){}4,2,0 (D){}4,3,2,03、设0>a 并且1≠a ,则“函数()x a x f =在R 上是减函数”是“()()32x a x g -=在R 上是增函数”的(A)充分不必要条件 (B)必要不充分条件 (C)充分必要条件 (D)既不充分也不必要条件4、采用系统抽样方法从960人中抽取32人做问卷调查。
2012年理数高考试题答案及解析-山东

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
2012年高考真题——理科数学(山东卷)解析版

2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分.考试用时120分钟.考试结束后,务必将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件,A B 互斥,那么()()()P A B P A P B +=+;如果事件,A B 独立,那么()()()P A B P A P B ⋅=⋅.第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)若复数z 满足(2)117z i i -=+(i 为虚数单位),则z 为(A )35i + (B )35i - (C )35i -+ (D )35i -- 【解析】i ii i i i ii z 5352515)2)(2()2)(711(2711+=+=+-++=-+=。
故选A 。
【答案】A(2)已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则U C A B 为(A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,4【解析】}4,0{=A C U ,所以}42,0{,)(=B A C U ,选C. 【答案】C(3)设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R上是增函数”的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件【解析】若函数x a x f =)(在R 上为减函数,则有10<<a 。
2012年6月8日全国各地高考理科数学试题及参考答案山东卷

2012年全国各地高考数学试题普通高等学校招生全国统一考试(山东卷) 理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式: 锥体的体积公式:V=13Sh,其中S 是锥体的底面积,h 是锥体的高。
如果事件A,B 互斥,那么P(A +B)=P(A)+P(B);如果事件A,B 独立,那么P(AB)=P(A)·P(B)。
第I 卷(共60分)一、 选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1 若复数x 满足z(2-i)=11+7i(i 为虚数单位),则z 为 A 3+5i B 3-5i C -3+5i D -3-5i 解析:i ii i i i z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA)B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。
2012年高考数学山东省理科试题详细解答包括选择填空
2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B )。
一、选择题:本大题共l0小题.每小题5分,共50分在每小题给出的四个选项中,只 有一项是满足题目要求的.1.若复数z 满足()2-=11+7z i i (i 为虚数单位),则z 为 (A )3+5i (B) 3-5i (C) -3+5i (D) -3-5i()()()()11+72+11+715+25====3+52-2-2+5i i i i z i i i i ,故选A2.已知全集{}=0,1,2,3,4U ,集合{}{}=1,2,3,=2,4A B ,则()U C A B 为 (A ){}1,2,4 (B) {}2,3,3 (C) {}0,2,4 (D) {}0,2,3,4{}(){}=0,4,=0,2,4U U C A C A B ,故选C3.设>0a 且1a ≠,则“函数 ()=x f x a 在R 上是减函数”是“函数()()3=2-g x a x 在R 上是增函数”的(A )充分不必要条件 (B) 必要不充分条件 (C)充分必要条件 (D) 既不充分也不必要条件()=x f x a 在R 上是减函数0<<1a ⇒1<2-<2a ⇒()()3=2-g x a x ⇒函数在R 上是增函数,而函数()()3=2-g x a x 在R 上是增函数只需<2a 即可,又>0a 且1a ≠,所以0<<21a a ≠且,故选A4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B) 9 (C)10 (D)15抽取32人,可将960人分成32组,每组30人,由于第一组抽取的是9号,所以第k组抽取的人的号码为()=9+30-1=30-21k a k k ,令45130-217k k N ≤≤∈,解得236257,15.725.7,1625,*1510k k k k N ≤≤∴≤≤∴≤≤∈,所以共有10人,故选C 5. 已知变量,x y 满足约束条件+222+44--1x y x y x y ≥⎧⎪≤⎨⎪≥⎩,则目标函数=3-z x y 的取值范围是(A )3-,62⎡⎤⎢⎥⎣⎦ (B )3-,-12⎡⎤⎢⎥⎣⎦(C )[]-1,6 (D )3-6,2⎡⎤⎢⎥⎣⎦区域如所示,()()12,0,,3,0,12C D E ⎛⎫ ⎪⎝⎭,而目标函数对应直线为=3-y x z ,当直线过C时,max =6z ,当直线过点D时,3=-2min z ,故选A 6.执行右面的程序框图,如果输入=4a ,那么输出的n 的值为(A )2 (B )3 (C )4 (D )5 当=0n 时,=1,=3,n=1P Q 当=1n 时,=5,=7,n=2P Q当=2n 时,=21,=15,n=3P Q ,此时>P Q ,输出=3n ,故选B7若,,sin 2=428ππθθ⎡⎤∈⎢⎥⎣⎦,则. sin =θ (A)35 (B) 45(C) (D) 341,,2,,cos2sin 2cos2=-4228πππθθπθθθ⎡⎤⎡⎤∈∴∈∴⎢⎥⎢⎥⎣⎦⎣⎦又21-cos 293sin==,,,sin =216424θππθθθ⎡⎤∈⎢⎥⎣⎦,故选D8.定义在R 上的函数()f x 满足()()+6=f x f x .当-3<-1x ≤时,()()2=-+2f x x ;当-1<3x ≤时,()=f x x .则()()()1+2++2012=f f f(A) 335 (B) 338 (C)1678 (D) 2012()()+6=f x f x ,周期为6,只需弄清楚()()()()()()1,2,3,4,5,6f f f f f f 即可,由已知()()()()()()()()()()1=1,2=2,3=-3=-1,4=-2=0,5=-1=-1,6=0=0f f f f f f f f f f ,所以6个一组得1,共335组,还余下两个分别等于()()1=1,2=2,f f 所以()()()1+2++2012=f f f 338,故选B 9.函数-cos 6=2-2x xxy 的图象大致为=cos6y x 为偶函数,-=2-2x x y 为奇函数,所以-cos 6=2-2x xxy 为奇函数,故可排除A,又当>0x 时,-4-12-2=>02x xxx 恒成立,所以只需研究=cos6y x 的值,当0<<12x π时,=cos 6y x 的值为正,-cos 6=2-2x xxy 值也为正,故可排除B,而且已知=cos6y x 的值不可能在某一个自变量之后恒为正,故可排除C,故选D10. 已知椭圆()2222:+=1>>0x y C a b a b 双曲线22-=1x y 的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为(A )22+=182x y (B )22+=1126x y (C )22+=1164x y (D )22+=1205x y 双曲线22-=1x y 的渐近线的方程为=y x ±,设直线=y x 与椭圆在第一象限的交点坐标为()()000,>0x x x ,且由已知2004=16=2x x ∴,代入椭圆方程有2244+=1a b ,又=2c a ,解得 22=20,=5a b ,方程为22+=1205x y ,故选D11现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中人取3张,要求3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为 (A)232 (B)252 (C)472 (D)4843种颜色为()33144=256C C ;2种颜色,有红色为121344=72C C C ,无红色为21213244=144C C C C ,所有方法数位472,故选C 12.设函数()()()21=,=+,,0f x g x ax bx a b R a x∈≠.若()=y f x 的图像与()=y g x 的图像有且仅有两个不同的公共点()()1122,,,A x y B x y 则下列判断正确的是 (A)当<0a 时,1212+<0,+>0x x y y (B) 当<0a 时,1212+>0,+<0x x y y (C) 当>0a 时,1212+<0,+<0x x y y (D) 当>0a 时,1212+>0,+>0x x y y 若()=y f x 的图像与()=y g x 的图像有且仅有两个不同的公共点()()1122,,,A x y B x y ,即方程()21=+0ax bx a x ≠有两个不同的实根,即32+-1=0ax bx x有两个不同的实根,即32+-1=0ax bx 有两个不等于0的不等实根,又0a ≠,即321+-=0b x x a a有两个不等于0的不等实根,由于是三次形式,说明必有一个二重根,不妨令1x 为二重根,所以有()()232121--=+-b x x x x x x a a ,即()()32223212112121+2+++2+=+-b x x x x x x x x x x x x a a对应系数相等得()()()1221122122+=1+2=021=-3b x x a x x x x x a ⎧⎪⎪⎪⎨⎪⎪⎪⎩,又120,0x x ≠≠,由(2)得12=-2x x ,代入(3)得321=4a x ,而此时1221221+=-,+=2x x x y y x ,当>0a 时,2>0x 所以1212+<0,+>0x x y y 当<0a 时,2<0x 所以1212+>0,+<0x x y y ,故选B第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13.若不等式·-42kx ≤的解集为{}13x x ≤≤,则实数=k .-42-2-4226kx kx kx ≤⇔≤≤⇔≤≤,易知0k ≠,若>0k 得,26=2x k k k≤≤∴,<0k 显然不成立,所以=2k14. 如图,正方体1111-ABCD A BC D 的棱长为1,,E F 分别为线段11,AA B C 上的点,则三棱锥1-D EDF 的体积为 .11--111==1=326D EDF F EDD V V ⨯⨯,所以1615设>0a,若曲线y =,=0x a y 所围成封闭图形的面积为2a ,则=a ___________由已知33222022===33a xa a ⎰解得4=9a16.如图,在平面直角坐标系xoy 中,一单位圆的圆心的初始位置在()0,1,此时圆上一点P 的位置在()0,0,圆在x 轴上沿正向滚动,当圆滚动到圆心位于()2,1时,OP的坐标为____________圆在x 轴上沿正向滚动,当圆滚动到圆心位于()2,1时,点P 转过的弧长为2,中心角为2弧度,如图所示,''=2,PO'F=2-2PO A π∠∴∠令(),P x y ,则=2-cos 2-=2-sin 22x π⎛⎫⎪⎝⎭, =1+sin 2-=1-cos 22y π⎛⎫⎪⎝⎭,所以OP 的坐标为()2-sin 2,1-cos2三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知向量()()=sin ,1,=cos ,cos 2>02A m x n x x A ⎫⎪⎭,函数()=f x m n 的最大值为6,(1)求A(2)将函数()=y f x 的图像向左平移12π个单位,再将所得图像上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()=y g x 的图像,求()g x 在50,24π⎡⎤⎢⎥⎣⎦上的值域. ()1=sin cos +cos 2sin 2+cos 2=sin 2+226A f x m n x x x A x A x A x π⎛⎫ ⎪⎝⎭(1)函数()=f x m n的最大值为6,所以=6A(2)由已知()=6sin 4+3g x x π⎛⎫⎪⎝⎭,570,,4+,24336x x ππππ⎡⎤⎡⎤∈∈⎢⎥⎢⎥⎣⎦⎣⎦,所以()[]-3,6g x ∈ 18.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,//,=60,AB CD DAB ∠︒ ,FC ABCD ⊥平面 ,==AE BD CB CD CF ⊥(1)求证:BD AED ⊥平面 (2)求二面角--F BD C 的余弦值19.(本小题满分12分)现有甲、乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X的分布列及数学期望EX.20.(本小题满分12分)在等差数列{}n a 中,3455++=84,=73a a a a (1)求数列{}n a 的通项公式(2)对任意*m N ∈,将数列{}n a 中落入区间()29,9n n 内的项的个数记为m b ,求数列{}m b 的前m项的和m S21.(本小题满分12分)在平面直角坐标系xoy 中,F 是抛物线()2:=2>0C x py p 的焦点,M 是抛物线C上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C的准线的距离为34。
【专家解析】2012年高考数学(理)真题精校精析(山东卷)(纯word书稿)
2012·山东卷(数学理科)1. 若复数z 满足z (2-i)=11+7i(i 为虚数单位),则z 为( ) A .3+5i B .3-5i C .-3+5i D .-3-5i1.A [解析] 本题考查复数的概念及运算,考查运算能力,容易题.设z =a +b i ()a ,b ∈R ,由题意得()a +b i ()2-i =()2a +b +()2b -a i =11+7i ,即⎩⎨⎧ 2a +b =11,2b -a =7,解之得⎩⎨⎧a =3,b =5.2. 已知全集U ={0,1,2,3,4},集合A ={1,2,3},B ={2,4},则(∁U A )∪B 为( ) A .{1,2,4} B .{2,3,4} C .{0,2,4} D .{0,2,3,4}2.C [解析] 本题考查集合间的关系及交并补的运算,考查运算能力,容易题. ∵U ={}0,1,2,3,4,A ={}1,2,3,B ={}2,4, ∴∁U A ={}0,4,(∁UA )∪B ={}0,2,4.3. 设a >0且a ≠1,则“函数f (x )=a x 在上是减函数”是“函数g (x )=(2-a )x 3在上是增函数”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件 D .既不充分也不必要条件 3.A [解析] 本题考查命题间的关系及函数的单调性,考查推理论证能力,容易题.当f ()x =a x 为上的减函数时,0<a <1,2-a >0,此时f ()x =()2-a x 3在上为增函数成立;当f ()x =()2-a x 3为增函数时,2-a >0即a <2,但1<a <2时,f ()x =a x 为上的减函数不成立,故选A.4.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C ,则抽到的人中,做问卷B 的人数为( )A .7B .9C .10D .154.C [解析] 本题考查系统抽样,考查数据处理能力,中档题.第n 个抽到的编号为9+()n -1×30=30n -21,由题意得451≤30n -21≤750,解之得151115≤n ≤25710,又∵n ∈,∴满足条件的n 共有10个.5. 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y ≥2,2x +y ≤4,4x -y ≥-1,则目标函数z =3x -y 的取值范围是( )A.[]-32,6B.[]-32,-1 C .[-1,6] D.[]-6,325.A [解析] 本题考查简单的线性规划问题,考查数据处理能力,容易题. 可行域如图所示阴影部分.当目标函数线l 移至可行域中的A 点时,目标函数有最大值z =3×2-0=6移至可行域中的B 点时,目标函数有最小值z =3×12-3=-32.6.执行如图1-1所示的程序框图,如果输入a =4,那么输出的n 的值为( )A .2B .3C .4D .56.B [解析] 本题考查算法与程序框图,考查数据处理能力,容易题.当n =0时,P =1,Q =3,P <Q 成立,执行循环;当n =1时,P =5,Q =7,P <Q 成立,执行循环;当n =2时,P =21,Q =15,P <Q 不成立,但是n =2+1=3后,再输出.7] 若θ∈[]π4,π2,sin2θ=378,则sin θ=( )A.35B.45C.74D.347.D [解析] 本题考查三角函数的二倍角公式,考查运算求解能力,中档题. 法一:∵θ∈[]π4,π2,sin2θ=378,∴cos2θ=-1-⎝⎛⎭⎫3782=1-2sin 2θ,解之得sin θ=34.法二:联立⎩⎪⎨⎪⎧2sin θcos θ=378,sin 2θ+cos 2θ=1,解之得sin θ=34.8.定义在上的函数f (x )满足f (x +6)=f (x ).当-3≤x <-1时,f (x )=-(x +2)2;当-1≤x <3时,f (x )=x ,则f (1)+f (2)+f (3)+…+f (2 012)=( )A .335B .338C .1 678D .2 0128.B [解析] 本题考查函数的性质,考查运算求解能力,应用意识,偏难. 由f (x )=f (x +6)知函数的周期为6,f (1)=1,f (2)=2,f (3)=f (-3)=-1,f (4)=f (-2)=-(-2+2)2=0,f (5)=f (-1)=-1,f (6)=f (0)=0, ∴f (1)+f (2)+…+f (2 012)=335[f (1)+f (2)+…+f (6)]+f (1)+f (2)=335×1+3=338. 9.函数y =cos6x2x -2-x的图象大致为( ) 9.D [解析] 本题考查函数的图象与性质,考查推理论证能力,应用意识,中档题. 由函数y =cos6x2x -2-x为奇函数,排除选项A ,当x 无限大时,y 趋向于0,排除选项C ,当x 从正数趋向于0时,y 趋向于正无穷大,故选D.10.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32.双曲线x 2-y 2=1的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为( )A.x 28+y 22=1B.x 212+y 26=1C.x 216+y 24=1D.x 220+y 25=110.D [解析] 本题考查椭圆的方程及直线与椭圆的位置关系,考查运算求解能力,中档题. 由离心率为32得,a 2=4b 2,排除选项B ,双曲线的渐近线方程为y =±x ,与椭圆的四交点组成的四边形的面积为16可得在第一象限的交点坐标为()2,2,代入选项ACD ,知选项D 正确.11. 现有16张不同的卡片,其中红色黄色蓝色绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( )A .232B .252C .472D .48411.C [解析] 本题考查排列组合,考查运算求解能力,应用意识,中档题.法一:(排除法)先从16张卡片选3张,然后排除所取三张同色与红色的为2张的情况,C 316-4C 34-C 24C 112=560-88=472.法二:有红色卡片的取法有C 14C 23C 14C 14+C 14C 13C 24,不含红色卡片的取法有C 14C 14C 14+C 13C 24C 18,总共不同取法有C 14C 23C 14C 14+C 14C 13C 24+C 14C 14C 14+C 13C 24C 18=472.12.设函数f (x )=1x ,g (x )=ax 2+bx (a ,b ∈,a ≠0),若y =f (x )的图象与y =g (x )的图象有且仅有两个不同的公共点A (x 1,y 1),B (x 2,y 2),则下列判断正确的是( )A .当a <0时,x 1+x 2<0,y 1+y 2>0B .当a <0时,x 1+x 2>0,y 1+y 2<0C .当a >0时,x 1+x 2<0,y 1+y 2<0D .当a >0时,x 1+x 2>0,y 1+y 2>0 12.B [解析] 本题考查函数的图象与性质,考查推理论证能力,偏难. 当y =f ()x 的图象与y =g ()x 图象有且仅有两个不同的公共点时,a <0时,其图象作出点A 关于原点的对称点C ,则C 点坐标为(-x 1,-y 1),由图象知-x 1<x 2,-y 1>y 2,故x 1+x 2>0,y 1+y 2<0,同理当a >0时,有x 1+x 2<0,y 1+y 2>0,故选B.13] 若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________.13.2 [解析] 本题考查绝对值不等式的解法,考查运算求解能力,容易题. 去绝对值得-2≤kx -4≤2,即2≤kx ≤6,又∵其解集为{}x |1≤x ≤3,∴k =2.14. 如图1-3所示,正方体ABCD -A 1B 1C 1D 1的棱长为1,E ,F 分别为线段 AA ,B C 上的点,则三棱锥D 1-EDF 的体积为________.14.16 [解析] 本题考查棱锥的体积公式,考查空间想象力与转化能力,中档题. VD 1-EDF =VF -DD 1E =13×12×1×1×1=16.15. 设a >0,若曲线y =x 与直线x =a ,y =0所围成封闭图形的面积为a 2,则a =________.15.49 [解析] 本题考查定积分的应用,考查运算求解能力,容易题由题意得a 2=⎠⎛0a x d x = |23x 32a 0=23a 32,解之得a =49. 16.如图1-4所示,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动,当圆滚动到圆心位于(2,1)时,OP →的坐_______16.(2-sin2,1-cos2) [解析] 本题考查向量坐标与三角函数,考查数据处理能力与创新意识,偏难.结合图象,设滚动后圆与x 轴的交点为Q ,圆心为C 2,作C 2M ⊥y 轴于M ,∠PC 2Q =2,∠PC 2M=2-π2,∴点P 的横坐标为2-1×cos ()2-π2=2-sin2,点P 的纵坐标为1+1×sin ()2-π2=1-cos2.17.[2012·山东卷] 已知向量=(sin x,1),=()3A cos x ,A2cos2x (A >0),函数f (x )=的最大值为6.(1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数y=g (x )的图象,求g (x )在[]0,5π24上的值域.17.解:(1)f (x )=3A sin x cos x +A2cos2x=A ⎝⎛⎭⎫32sin2x +12cos2x =A sin ()2x +π6.因为A >0,由题意知,A =6. (2)由(1)f (x )=6sin ()2x +π6. 将函数y =f (x )的图象向左平移π12个单位后得到y =6sin ⎣⎡⎦⎤2()x +π12+π6=6sin ()2x +π3的图象; 再将得到图象上各点横坐标缩短为原来的12倍,纵坐标不变,得到y =6sin ()4x +π3的图象.因此,g (x )=6sin ()4x +π3. 因为x ∈[]0,5π24,所以4x +π3∈[]π3,7π6.故g (x )在[]0,5π24上的值域为[-3,6].18.[2012·山东卷] 在如图1-5所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,FC ⊥平面ABCD ,AE ⊥BD ,CB =CD =CF .(1)求证:BD ⊥平面AED ;(2)求二面角F -BD -C 的余弦值.18.解:(1)证明:因为四边形ABCD 是等腰梯形,AB ∥CD ,∠DAB =60°,所以∠ADC =∠BCD =120°.又CB =CD ,所以∠CDB =30°,因此∠ADB =90°,AD ⊥BD 又AE ⊥BD ,且AE ∩AD =A ,AE ,AD ⊂平面AED ,所以BD ⊥平面AED . (2)解法一:取BD 的中点G ,连接CG ,FG , 由于CB =CD ,因此CG ⊥BD , 又FC ⊥平面ABCD ,BD ⊂平面ABCD , 所以FC ⊥BD ,由于FC ∩CG =C ,FC ,CG ⊂平面FCG , 所以BD ⊥平面FCG , 故BD ⊥FG ,所以∠FGC 为二面角F -BD -C 的平面角.在等腰三角形BCD 中,由于∠BCD =120°, 因此CG =12CB .又CB =CF ,所以GF =CG 2+CF 2=5CG , 故cos ∠FGC =55, 因此二面角F -BD -C 的余弦值为55. 解法二:由(1)知AD ⊥BD ,所以AC ⊥BC . 又FC ⊥平面ABCD , 因此CA ,CB ,CF 两两垂直,以C 为坐标原点,分别以CA ,CB ,CF所在的直线为x 轴,y 轴,z 轴, 建立如图所示的空间直角坐标系, 不妨设CB =1.则C (0,0,0),B (0,1,0),D ⎝⎛⎭⎫32,-12,0,F (0,0,1). 因此BD →=⎝⎛⎭⎫32,-32,0,BF →=(0,-1,1).设平面BDF 的一个法向量为=(x ,y ,z ), 则·BD →=0,·BF →=0, 所以x =3y =3z , 取z =1,则=(3,1,1).由于CF →=(0,0,1)是平面BDC 的一个法向量,则cos 〈,CF →〉=m ·CF →|m ||CF →|=15=55,所以二面角F -BD -C 的余弦值为55.19.[2012·山东卷] 现有甲乙两个靶,某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立,假设该射手完成以上三次射击.(1)求该射手恰好命中一次的概率;(2)求该射手的总得分X 的分布列及数学期望EX .19.解:(1)记:“该射手恰好命中一次”为事件A ,“该射手射击甲靶命中”为事件B ,“该射手第一次射击乙靶命中”为事件C ,“该射手第二次射击乙靶命中”为事件D ,由题意知P (B )=34,P (C )=P (D )=23,由于A =B C -D -+B -C D -+B -C -D , 根据事件的独立性和互斥性得P (A )=P (B C -D -+B -C D -+B -C -D )=P (B C -D -)+P (B -C D -)+P (B -C -D ) =P (B )P (C -)P (D -)+P (B -)P (C )P (D -)+P (B -)P (C -)P (D )=34×()1-23×()1-23+()1-34×23×()1-23+()1-34×()1-23×23 =736, (2)根据题意,X 的所有可能取值为0,1,2,3,4,5. 根据事件的独立性和互斥性得 P (X =0)=P (B -C -D -)=[1-P (B )][1-P (C )][1-P (D )] =()1-34×()1-23×()1-23 =136, P (X =1)=P (B C -D -)=P (B )P (C -)P (D -) =34×()1-23×()1-23=112, P (X =2)=P (B -C D -+B -C -D )=P (B -C D -)+P (B -C -D ) =()1-34×23×()1-23+()1-34×()1-23×23=19, P (X =3)=P (BCD -+B C -D )=P (BC D -)+P (B C -D ) =34×23×()1-23+34×()1-23×23 =13, P (X =4)=P (B -CD ) =()1-34×23×23=19, P (X =5)=P (BCD ) =34×23×23 =13. 故X 的分布列为所以EX =0×136+1×112+2×19+3×13+4×19+5×13=4112.20.[2012·山东卷] 在等差数列{a n }中,a 3+a 4+a 5=84,a 9=73. (1)求数列{a n }的通项公式;(2)对任意m ∈*,将数列{a n }中落入区间(9m,92m )内的项的个数记为b m ,求数列{b m }的前m 项和S m .20.解:(1)因为{a n }是一个等差数列,a 3+a 4+a 5=84, 所以a 3+a 4+a 5=3a 4=84,即a 4=28. 设数列{a n }的公差为d , 则5d =a 9-a 4=73-28=45, 故d =9.由a 4=a 1+3d 得28=a 1+3×9,即a 1=1, 所以a n =a 1+(n -1)d =1+9(n -1)=9n -8(n ∈). (2)对m ∈,若9m <a n <92m , 则9m +8<9n <92m +8, 因此9m -1+1≤n ≤92m -1.故得b m =92m -1-9m -1.于是S m =b 1+b 2+b 3+…+b m=(9+93+…+92m -1)-(1+9+…+9m -1)=9×(1-81m )1-81-(1-9m )1-9=92m +1-10×9m +180.21.[2012·山东卷] 在平面直角坐标系xOy 中,F 是抛物线C :x 2=2py (p >0)的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物C 的准线的距离为34.(1)求抛物线C 的方程;(2)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由; (3)若点M 的横坐标为2,直线l 2:y =kx +14与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当12≤k ≤2时,|AB |2+|DE |2的最小值.21.解:(1)依题意知F ()0,p 2,圆心Q 在线段OF 的垂直平分线y =p4上,因为抛物线C 的准线方程为y =-p2,所以3p 4=34,即p =1, 因此抛物线C 的方程为x 2=2y .(2)假设存在点M ()x 0,x 202(x 0>0)满足条件,抛物线C 在点M 处的切线斜率为y ′ ⎪⎪ x =x 0=⎝⎛⎪⎪ )x22′x =x 0=x 0.所以直线MQ 的方程为y -x 202=x 0(x -x 0),令y =14得x Q =x 02+14x 0,所以Q ()x 02+14x 0,14.又|QM |=|OQ |,故()14x 0-x 022+()14-x 2022=()14x 0+x 022+116, 因此()14-x 2022=916,又x 0>0,所以x 0=2,此时M (2,1).故存在点M (2,1),使得直线MQ 与抛物线C 相切于点M . (3)当x 0=2时,由(2)得Q ⎝⎛⎭⎫528,14,⊙Q 的半径为r =⎝⎛⎭⎫5282+()142=368, 所以⊙Q 的方程为⎝⎛⎭⎫x -5282+()y -142=2732.由⎩⎪⎨⎪⎧y =12x 2,y =kx +14整理得2x 2-4kx -1=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2), 由于Δ1=16k 2+8>0,x 1+x 2=2k ,x 1x 2=-12,所以|AB |2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)(4k 2+2).由⎩⎪⎨⎪⎧⎝⎛⎭⎫x -5282+()y -142=2732,y =kx +14,整理得(1+k 2)x 2-524x -116=0. 设D 、E 两点的坐标分别为(x 3,y 3),(x 4,y 4),由于Δ2=k 24+278>0,x 3+x 4=524(1+k 2),x 3x 4=-116(1+k 2), 所以|DE |2=(1+k 2)[(x 3+x 4)2-4x 3x 4]= 258(1+k 2)+14. 因此|AB |2+|DE |2=(1+k 2)(4k 2+2)+258(1+k 2)+14. 令1+k 2=t ,由于12≤k ≤2,则54≤t ≤5,所以|AB |2+|DE |2=t (4t -2)+258t +14=4t 2-2t +258t +14, 设g (t )=4t 2-2t +258t +14,t ∈[]54,5, 因为g ′(t )=8t -2-258t 2, 所以当t ∈[]54,5时,g ′(t )≥g ′()54=6,即函数g (t )在[]54,5上是增函数, 所以当t =54时g (t )取到最小值132.因此,当k =12时,|AB |2+|DE |2取到最小值132.22.B12[2012·山东卷] 已知函数f (x )=ln x +ke x(k 为常数,e =2.71828…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值; (2)求f (x )的单调区间;(3)设g (x )=(x 2+x )f ′(x ),其中f ′(x )为f (x )的导函数,证明:对任意x >0,g (x )<1+e -2.22.解:(1)由f (x )=ln x +ke x, 得f ′(x )=1-kx -x ln xx e x,x ∈(0,+∞),由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行, 所以f ′(1)=0,因此k =1. (2)由(1)得f ′(x )=1x e x(1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0. 又e x >0,所以x ∈(0,1)时,f ′(x )>0; x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞). (3)证明:因为g (x )=(x 2+x )f ′(x ), 所以g (x )=x +1e x(1-x -x ln x ),x ∈(0,+∞), 因此对任意x >0,g (x )<1+e -2等价于1-x -x ln x <e x x +1(1+e -2).由(2),h (x )=1-x -x ln x ,x ∈(0,+∞),所以h ′(x )=-ln x -2=-(ln x -lne -2),x ∈(0,+∞),因此当x ∈(0,e -2)时,h ′(x )>0,h (x )单调递增;当x∈(e-,+∞)时,h′(x)<0,h(x)单调递减.所以h(x)的最大值为h(e-2)=1+e-2,故1-x-x ln x≤1+e-2.设φ(x)=e x-(x+1).因为φ′(x)=e x-1=e x-e0,所以x∈(0,+∞)时,φ′(x)>0,φ(x)单调递增,φ(x)>φ(0)=0,故x∈(0,+∞)时,φ(x)=e x-(x+1)>0,即e xx+1>1.所以1-x-x ln x≤1+e-2<e xx+1(1+e-2).因此对任意x>0,g(x)<1+e-2.11。
高考理科数学试卷山东卷附答案
2012年高考理科数学试卷(山东卷)附答案2012年普通高等学校招生全国统一考试(山东卷)理科数学本试卷分第I卷和第II卷两部分,共4页。
满分150分。
考试用时120分钟,考试结束,务必将试卷和答题卡一并上交。
注意事项:1.答题前,考生务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号、县区和科类填写在答题卡上和试卷规定的位置上。
2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上。
3.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
参考公式:锥体的体积公式:V=Sh,其中S是锥体的底面积,h是锥体的高。
如果事件A,B互斥,那么P(A+B)=P(A)+P(B);如果事件A,B独立,那么P(AB)=P(A)P(B)。
第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1若复数x满足z(2-i)=11+7i(i为虚数单位),则z为A3+5iB3-5iC-3+5iD-3-5i2已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4},则(CuA)B为A{1,2,4}B{2,3,4}C{0,2,4}D{0,2,3,4}3设a>0a≠1,则“函数f(x)=a3在R上是减函数”,是“函数g(x)=(2-a)在R上是增函数”的A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为(A)7(B)9(C)10(D)15(5)的约束条件,则目标函数z=3x-y的取值范围是(A)(B)(C)[-1,6](D)(6)执行下面的程序图,如果输入a=4,那么输出的n 的值为(A)2(B)3(C)4(D)5(7)若,,则sin=(A)(B)(C)(D)(8)定义在R上的函数f(x)满足f(x+6)=f(x),当-3≤x<-1时,f(x)=-(x+2),当-1≤x<3时,f (x)=x。
2012年高考理科数学山东卷(含详细答案)
数学试卷 第1页(共39页) 数学试卷 第2页(共39页)数学试卷 第3页(共39页)绝密★启用前2012年普通高等学校招生全国统一考试(山东卷)数学(理科)本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分150分.考试用时120分钟.考试结束后,务必将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在答题卡上和试卷规定的位置上.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:锥体的体积公式:13V Sh =,其中S 是锥体的底面积,h 是锥体的高.如果事件A ,B 互斥,那么()()()P A B P A P B +=+;如果事件A ,B 独立,那么()()()P AB P A P B =.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z 满足(2i)117i z -=+(i 为虚数单位),则z 为( )A. 35i +B. 35i -C. 35i -+D. 35i --2. 已知全集{0,1,2,3,4}U =,集合{1,2,3}A =,{2,4}B =,则()U A B ð为 ( )A. {1,2,4}B. {2,3,4}C. {0,2,4}D. {0,2,3,4}3. 设0a >且1a ≠,则“函数()x f x a =在R 上是减函数”,是“函数3()(2)g x a x =-在R 上是增函数”的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为( )A. 7B. 9C. 10D. 15 5. 已知变量x ,y 满足约束条件22,24,41,x y x y x y +⎧⎪+⎨⎪--⎩≥≤≥则目标函数3z x y =-的取值范围是 ( )A. 3[,6]2- B. 3[,1]2-- C. [1,6]-D. 3[6,]2-6. 执行下面的程序图,如果输入4a =,那么输出的n 的值为( )A. 2B. 3C. 4D. 57. 若ππ[,]42θ∈,sin 2θ=sin θ= ( )A.35B. 45C.D.348. 定义在R 上的函数()f x 满足(6)()f x f x +=.当31x --≤<时,2()(2)f x x =-+;当13x -≤<时,()f x x =.则(1)(2)(3)(2012)f f f f +++⋅⋅⋅=( )A. 335B. 338C. 1 678D. 2 012 9. 函数cos622x xxy -=-的图象大致为( )ABD10. 已知椭圆2222:1(0)x y C a b a b +=>>.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为 ( )A. 22182x y +=B. 221126x y +=C. 221164x y +=D.221205x y += 11. 现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张.不同取法的种数为( )A. 232B. 252C. 472D. 48412. 设函数1()f x x=,2()(,,0)g x ax bx a b a =+∈≠R ,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点11(,)A x y ,22(,)B x y ,则下列判断正确的是( )A. 当0a <时,120x x +<,120y y +>B. 当0a <时,120x x +>,120y y +<C. 当0a >时,120x x +<,120yy +<D. 当0a >时,120x x +>,120y y +>姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效--------数学试卷 第4页(共39页)数学试卷 第5页(共39页)数学试卷 第6页(共39页)第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 若不等式|4|2kx -≤的解集为{|13}x x ≤≤,则实数k =_________.14. 如图,正方体1111ABCD A B C D -的棱长为1,E ,F 分别为线段1AA ,1B C 上的点,则三棱锥1D EDF -的体积为_________.15. 设0a >.若曲线y 与直线x a =,0y =所围成封闭图形的面积为2a ,则a =_________.16. 如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动.当圆滚动到圆心位于(2,1)时,OP 的坐标为_________.三、解答题:本大题共6小题,共74分. 17.(本小题满分12分)已知向量(sin ,1)x =m,cos ,cos2)(0)3Ax x A =>n ,函数()f x =⋅m n 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()y f x =的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()y g x =的图象.求()g x 在5π[0,]24上的值域.18.(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB CD ∥,60DAB ∠=,FC ⊥平面ABCD ,AE BD ⊥,CB CD CF ==. (Ⅰ)求证:BD ⊥平面AED ; (Ⅱ)求二面角F BD C --的余弦值.19.(本小题满分12分)现有甲、乙两个靶.某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX .20.(本小题满分12分)在等差数列{}n a 中,34584a a a ++=,973a =. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)对任意*m ∈N ,将数列{}n a 中落入区间2(9,9)m m 内的项的个数记为m b ,求数列{}m b 的前m 项和m S .21.(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过M ,F ,O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34. (Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M,直线1:4l y kx =+与抛物线C 有两个不同的交点A ,B ,l 与圆Q 有两个不同的交点D ,E ,求当122k ≤≤时,22|AB||DE|+的最小值.22.(本小题满分13分) 已知函数ln ()e xx kf x +=(k 为常数,e 2.71828=⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行. (Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()()g x x x f x '=+,其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.{0,2,4}A B=A B.又可知,0,a>并不单调递减,故而“函数3 / 13【解析】由所给的不等式组可知所表示的可行域如图所示,5 / 1312412C 264=数学试卷 第16页(共39页)不妨设12x x <,结合图形可知,当0a >时如右图,(2OP=-∠=PCD2, OP=-,即(27 / 133cos==m n A的图像向左平移60,CBCD CB DAB-∠3CDcos(180=60,3BD==,故AD AE A3BD=,建立如图所示的空间直角坐标系,数学试卷第22页(共39页)9 / 13,向量(0,0,1)n =为平面设向量(,,m x y=0,0m BD m FB ⎧=⎪⎨=⎪⎩ 1,则x =,则(3,1m =为平面BDF 的一个法向量.1,5m n m n m n〈〉===,而二面角F BD C --的余弦值为5(Ⅱ)建立如图所示的空间直角坐标系,确定法向量(0,0,1)n =和(3,1m =12311127C 4343336⎛⎫+= ⎪⎝⎭, 121113111121.(1),(2)C ,433643124339P X P X ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭ 22123121121321C (4),(5),4333439433P X P X ⎛⎫⎛⎫======= ⎪ ⎪⎝⎭⎝⎭, 0 1 234数学试卷 第28页(共39页)210919m +=,可求公差11 / 1322818k k -=+数学试卷第34页(共39页)13 / 13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012山东省高考数学试卷(理科)参考答案与试题解析参考公式: 锥体的体积公式:V=13Sh ,其中S 是锥体的底面积,h 是锥体的高。
如果事件A ,B 互斥,那么P (A+B )=P (A )+P(B);如果事件A,B 独立,那么P (AB )=P (A )·P (B ).第I 卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的。
1、若复数x 满足(2)117z i i -=+(i 为虚数单位),则z 为( ) (A )35i + (B )35i - (C )35i -+ (D )35i --2、已知全集{}0,1,2,3,4U =,集合{}{}1,2,3,2,4A B ==,则(()U C A B 为( ) (A ){}1,2,4 (B ){}2,3,4 (C ){}0,2,4 (D ){}0,2,3,43、设0a >且1a ≠,则“函数()xf x a =在R 上是减函数 ”,是“函数3()(2)g x a x =-在R 上是增函数”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4、采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为( )(A )7 (B ) 9 (C ) 10 (D )155、设变量y x ,满足约束条件⎪⎩⎪⎨⎧-≥-≤+≥+,14,42,22y x y x y x 则目标函数z=3x-y 的取值范围是( )(A )⎥⎦⎤⎢⎣⎡-6,23 (B )3,12⎡⎤--⎢⎥⎣⎦(C )[]6,1-(D )3-62⎡⎤⎢⎥⎣⎦,6、执行右面的程序框图,如果输入a=4,那么输出的n 的值为( )(A )2 (B )3 (C )4 (D )57、若42ππθ⎡⎤∈⎢⎥⎣⎦,,sin 2=8θ,则sin θ=( )(A )35(B )45(C )4(D )348、定义在R 上的函数f (x )满足()()6f x f x +=,当-3≤x <-1时,()x f =()22+-x ;当-1≤x <3时,()x f =.x 则()1f +()2f +()3f +…+()2012f =( ) (A )335 (B )338 (C )1678 (D )2012 9、函数xxx y --=226cos 的图像大致为( )A. B. C. D.10、已知椭圆C :()012222>>=+b a by ax 的离心学率为23。
双曲线122=-y x 的渐近线与椭圆C 有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆C 的方程为( ) (A )12822=+y x (B )161222=+y x (C )141622=+y x (D )152022=+y x11、现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张.从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) (A )232 (B)252 (C)472 (D)484 12、设函数()xx f 1=,()()0,,2≠∈+=a R b a bx ax x g .若()x f y =的图像与()x g y =的图像有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是( ) (A )当0a <时,12120,0x x y y +<+> (B )当0a <时,12120,0x x y y +>+< (C )当0a >时,12120,0x x y y +<+< (D )当0a >时,12120,0x x y y +>+>第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分。
13、若不等式2|4|≤-kx 的解集为,31|≤≤x x 则实数k =__________。
14、如图,正方体ABCD-A 1B 1C 1D 1的棱长为1,E,F 分别为线段AA 1,B 1C 上的点,则三棱锥D 1-EDF 的体积为____________。
15、设a >0.若曲线x y =与直线x =a ,y=0所围成封闭图形的面积为2a ,则=a ______。
16、如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向滚动。
当圆滚动到圆心位于(2,1)时,OP的坐标为______________。
三、解答题:本大题共6小题,共74分。
17、(本小题满分12分)已知向量()()sin ,1,cos ,cos 20,2A m x n x x A ⎫==>⎪⎭函数()f x m n =⋅ 的最大值为6.(Ⅰ)求A ;(Ⅱ)将函数()x f y =的图象像左平移12π个单位,再将所得图象上各点的横坐标缩短为原来的12倍,纵坐标不变,得到函数()x g y =的图象。
求()x g 在⎥⎦⎤⎢⎣⎡245,0π上的值域。
18、(本小题满分12分)在如图所示的几何体中,四边形ABCD 是等腰梯形,AB ∥CD ,60,DAB FC ∠=⊥平面,,ABCD AE BD CB CD CF ⊥==. (Ⅰ)求证:BD ⊥平面AED ; (Ⅱ)求二面角F BD C --的余弦值.19、(本小题满分12分)现有甲、乙两个靶。
某射手向甲靶射击一次,命中的概率为34,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分。
该射手每次射击的结果相互独立。
假设该射手完成以上三次射击。
(Ⅰ)求该射手恰好命中一次的概率;(Ⅱ)求该射手的总得分X 的分布列及数学期望EX20、(本小题满分12分)在等差数列{}n a 中,345584,73a a a a ++==, (Ⅰ)求数列{}n a 的通项公式;(Ⅱ) 对任意*m N ∈,将数列{}n a 中落入区间2(9,9)m m内的项的个数记为m b ,求数列{m b }的前m 项和m S .21、(本小题满分13分)在平面直角坐标系xOy 中,F 是抛物线2:2(0)C x py p =>的焦点,M 是抛物线C 上位于第一象限内的任意一点,过,,M F O 三点的圆的圆心为Q ,点Q 到抛物线C 的准线的距离为34.(Ⅰ)求抛物线C 的方程;(Ⅱ)是否存在点M ,使得直线MQ 与抛物线C 相切于点M ?若存在,求出点M 的坐标;若不存在,说明理由;(Ⅲ)若点M 直线1:4l y kx =+与抛物线C 有两个不同的交点,A B ,l 与圆Q 有两个不同的交点,D E ,求当122k ≤≤时,22AB DE +的最小值.22、(本小题满分13分) 已知函数ln ()xx k f x e+=(k 为常数, 2.71828e =⋅⋅⋅是自然对数的底数),曲线()y f x =在点(1,(1))f 处的切线与x 轴平行.(Ⅰ)求k 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2()()'()g x x x f x =+,其中'()f x 为()f x 的导函数.证明:对任意0x >,2()1g x e -<+2012山东省高考数学试卷(理科)参考答案与试题解析1. 解析:i ii i ii z 535)1114(7225)2)(711(2711+=++-=++=-+=.答案选A 。
另解:设),(R b a bi a z ∈+=,则i i a b b a i bi a 711)2(2)2)((+=-++=-+ 根据复数相等可知72,112=-=+a b b a ,解得5,3==b a ,于是i z 53+=。
2. 解析:}4,2,0{)(},4,0{==B A C A C U U 。
答案选C 。
3. 解析:p :“函数f(x)= a x 在R 上是减函数 ”等价于10<<a ;q :“函数g(x)=(2-a) 3x 在R 上是增函数”等价于02>-a ,即,20<<a 且a ≠1,故p 是q 成立的充分不必要条件. 答案选A 。
4. 解析:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C 。
5. 解析:作出可行域,直线03=-y x ,将直线平移至点)0,2(处有最大值, 点)3,21(处有最小值,即623≤≤-z .答案应选A 。
6.解析:312,140,00=+==+==q p n ;716,541,11=+==+==q p n ;15114,2145,22=+==+==q p n ,q p n >=,3。
答案应选B 。
7.解析:由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。
另解:由42ππθ⎡⎤∈⎢⎥⎣⎦,及sin 2=8θ可得434716776916761687312sin 1cos sin +=++=+=+=+=+θθθ,而当42ππθ⎡⎤∈⎢⎥⎣⎦,时θθcos sin >,结合选项即可得47cos ,43sin ==θθ.答案应选D 。
8.解析:2)2(,1)1(,0)0(,1)1(,0)2(,1)3(===-=-=--=-f f f f f f ,而函数的周期为6,3383335)2()1()210101(335)2012()2()1(=+=+++++-+-=+++f f f f f .答案应选B 9.解析:函数xxx x f --=226cos )(,)(226cos )(x f x x f xx-=-=--为奇函数,当0→x ,且0>x 时+∞→)(x f ;当0→x ,且0<x 时-∞→)(x f ; 当+∞→x ,+∞→--xx22,0)(→x f ;当-∞→x ,-∞→--x x 22,0)(→x f .答案应选D 。
10.解析:双曲线x ²-y ²=1的渐近线方程为x y ±=,代入可得164,222222==+=x S ba b a x ,则)(42222b a b a +=,又由23=e 可得b a 2=,则245b b =,于是20,522==a b 。