限制性内切酶
限制性核酸内切酶

限制性核酸内切酶限制性核酸内切酶( restriction endonucleases ),简称限制酶,是一类能识别和切割双链 DNA 分子中的某些特定核苷酸序列的核酸水解酶,主要从细菌中分离得到。
根据结构和功能特性,把限制酶分为Ⅰ、Ⅱ和Ⅲ型。
Ⅰ型限制酶的切点不固定,很难形成稳定的、特异性切割末端;Ⅲ型限制酶对 DNA 链的识别序列是非对称的,不产生特异性的 DNA 片段,故基因工程实验中基本不用Ⅰ型和Ⅲ型限制酶。
Ⅱ型限制酶的主要作用是切割 DNA 分子,在 DNA 重组、构建新质粒、建立 DNA 的限制性酶切图谱、 DNA 的分子杂交、制备 DNA 的放射性探针、构建基因文库等方面起到重要作用,是基因工程重要的工具酶。
Ⅱ型限制性核酸内切酶的特点是:一般能识别和切割 4~8 个碱基对的核苷酸序列;大多数识别序列具有回文结构。
Ⅱ型限制性核酸内切酶的切割方式有三种:切割产生 5 ' 突出的粘性末端( sticky ends );切割产生 3 ' 突出的粘性末端;切割产生平头末端( blunt ends )。
Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。
III型限制性内切酶同时具有修饰及认知切割的作用根据酶的功能特性、大小及反应时所需的辅助因子,限制性内切酶可分为两大类,即I类酶和Ⅱ酶。
最早从大肠杆菌中发现的EcoK、EcoB就属于I类酶。
反应过程中除需Mg2+外,还需要S-腺苷-L甲硫氨酸、ATP;在DNA分子上没有特异性的酶解片断,这是I、Ⅱ类酶之间最明显的差异。
因此,I类酶作为DNA的分析工具价值不大。
Ⅱ类酶有EcoR I、BamH I、Hind Ⅱ、Hind Ⅲ等。
反应只需Mg2+;最重要的是在所识别的特定碱基顺序上有特异性的切点,因而DNA分子经过Ⅱ类酶作用后,可产生特异性的酶解片断,这些片断可用凝胶电泳法进行分离、鉴别。
限制性核酸内切酶与核酸内切酶、外切酶

限制性核酸内切酶百科名片其3′→5′外切酶活性使双链DNA分子产生出单链区,经过这种修饰的DNA 再配合使用Klenow酶,同时加进带放射性同位素的核苷酸,便可以制备特异性的放射性探针。
核酸内切酶核酸内切酶(endonuclease)在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶,与核酸外切酶相对应。
从对底物的特异性来看,可分为DNaseⅠ、DNaseⅡ等仅分解DNA的酶;脾脏RNase、RNaseT1等仅分解RNA的酶。
如链孢霉(Neurospora)的核酸酶就是既分解DNA又分解RNA的酶。
一般来说,大都不具碱基特异性,但也有诸如脾脏RNase、RNaseT1等或限制性内切酶那种能够识别并切断特定的碱基或碱基序列的酶。
[1]寡核苷酸,是一类只有20个以下碱基对的短链核苷酸的总称(包括脱氧核糖核酸DNA或核糖核酸RNA内的核苷酸),寡核苷酸可以很容易地和它们的互补对链接,所以常用来作为探针确定DNA或RNA的结构,经常用于基因芯片、电泳、荧光原位杂交等过程中。
RNA聚合酶科技名词定义中文名称:RNA聚合酶英文名称:RNA polymerase定义1:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:生物化学与分子生物学(一级学科);酶(二级学科)定义2:以一条DNA链或RNA链为模板催化由核苷-5′-三磷酸合成RNA的酶。
所属学科:细胞生物学(一级学科);细胞遗传(二级学科)定义3:以DNA或RNA为模板合成RNA的酶。
所属学科:遗传学(一级学科);分子遗传学(二级学科)本内容由全国科学技术名词审定委员会审定公布RNA聚合酶(RNA polymerase):以一条DNA链或RNA为模板催化由核苷-5′-三磷酸合成RNA的酶。
是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。
因为在细胞内与基因DNA的遗传信息转录为RNA有关,所以也称转录酶。
限制性内切酶酶切位点汇总

限制性内切酶酶切位点汇总限制性内切酶(Restriction Endonuclease)是一类存在于细菌体内的酶,它能够识别特定的酶切位点,并在该位点上切割DNA链。
限制性内切酶起源于细菌,原本作为细菌对抗噬菌体感染的防御机制,但现在被广泛应用于分子生物学和基因工程领域。
限制性内切酶的分类和命名依据它们发现的第一个类型的噬菌体。
如EcoRI是从大肠杆菌中分离出的内切酶,与T4噬菌体相关;HindIII是与T4噬菌体有关的内切酶等。
酶名中的缩写首字母通常是酶切位点的首字母,比如EcoRI是指E.coli的RY粘性末端的切点。
现在限制性内切酶已被发现有超过3000多个类型。
下面是一些常见的限制性内切酶的切割位点汇总:1. EcoRI:切割位点为G↓AATTC(↓表示切割位点),产生的切割后的两个DNA片段是G-AATTC和CTTAA-G。
2. HindIII:切割位点为A↓AGCTT,产生的切割后的两个DNA片段是A-AGCTT和TTCGA-A。
3. SmaI:切割位点为CCC↓GGG,产生的切割后的两个DNA片段是CCC-GGG和GGG-CCC。
4. BamHI:切割位点为G↓GATCC,产生的切割后的两个DNA片段是G-GATCC和CCTAG-G。
5. XhoI:切割位点为C↓TCGAG,产生的切割后的两个DNA片段是C-TCGAG和GAGCT-C。
6. NotI:切割位点为GC×GGCCGC,产生的切割后的两个DNA片段是GC-GGCCGC和CGC-GC。
7. EcoRV:切割位点为GAT↓ATC,产生的切割后的两个DNA片段是GAT-ATC和TAC-TAG。
8. KpnI:切割位点为GGTAC↓C,产生的切割后的两个DNA片段是GGTAC-C和CCATG-G。
9. SalI:切割位点为G↓TCGAC,产生的切割后的两个DNA片段是G-TCGAC和CAGCT-G。
10. PstI:切割位点为CTGCA↓G,产生的切割后的两个DNA片段是CTGC-AG和GACG-T。
限制性核酸内切酶名词解释

限制性核酸内切酶名词解释限制性核酸内切酶(RestrictionNucleases,RNases)是一类重要的核酸分子分析工具,是由胞壁杆菌和放线菌等微生物中编码的特定核酸酶类别。
它可以特异性的切割DNA和RNA的特定序列,对研究DNA和RNA的结构和功能有着重要的作用。
限制性核酸内切酶的分子结构基本上是由多聚腺苷酸(polypeptide)和双聚腺苷酸(dipeptide)组成的。
此外,它们还包含辅酶(cofactor),例如Mg2+或Ca2+、K+等,并且需要这些辅酶才能激活其具有酶活性。
一个限制性核酸内切酶在一次反应中可以检测出多个DNA序列,而且能够辨识具有同系特征特异性碱基对,尽量减少大量的氧化废物产生。
与其他核酸分子分析工具不同的是,限制性核酸内切酶具有单端可切或双端可切的特性,可以选择性地切割DNA分子的特定序列,其切割后的片段可以进一步用于分子生物学技术,如DNA测序、PCR及DNA杂交等。
例如,细菌DNA内切酶BamHI以TGT^AAT为切割位点,能有效地将DNA分子切断,切割后可以得到二条内切片段,分别以TGT和AAT为3端,以及一条5末端非切片段;而HpaII以C^CGG为切割位点,切割后可以得到二条内切片段,分别以C和CGG为5端,以及一条3末端的非切片段。
此外,限制性核酸内切酶还可用于检测DNA片段的克隆和定位,以及调控基因表达,控制蛋白质翻译等用途,因此,它们在遗传学、分子生物学研究中起着重要的作用。
它们能够解析特定DNA序列,同时保留它们的原始特征,有助于研究者对其进行详细的调查。
在生物技术的应用中,使用限制性核酸内切酶可以改变DNA序列,实现重组DNA的目的,创造各种抗性等目的。
因此,限制性核酸内切酶的重要性不言而喻。
它们是研究 DNARNA 构和功能的重要工具,同时也是实现技术转化的重要基础。
它们可以用于检测DNA片段,改变序列,以及调控基因表达等多种用途,同时也可以做出有意义的蛋白质和重要生物体系。
限制性内切酶

限制性内切酶1,发现限制性内切酶能保护细菌不受噬菌体的感染,行使微生物免疫功能,缺乏限制性内切酶的大肠杆菌极易被噬菌体感染,但是如果拥有限制性内切酶,被感染的几率就会降低。
限制性内切酶在原核生物中普遍存在,所有自由生存的细菌和古细菌几乎都能编码限制性内切酶。
2,限制-修饰(R-M)系统大多数限制性内切酶常常伴随有一两种修饰酶(DNA甲基化酶),从而保护细胞自身的DNA不被限制性内切酶破坏。
修饰酶识别的位点与相应的限制性内切酶相同,但它们的作用是甲基化每条链中的一个碱基,而不是切开DNA链。
甲基化所形成的甲基基团能够伸入到限制性内切酶识别位点的双螺旋的大沟中,阻碍限制性内切酶发挥作用,即组成R-M系统。
在R-M系统中,有些限制性内切酶和修饰酶是两种不同的蛋白,独立行使自己的功能,有些本身就是一种大的限制-修饰复合酶,由不同的亚基或同一亚基的不同结构域分别执行自己的功能。
3,分类最常用的II型限制性内切酶,能够在识别序列内部或附近特异性的切开DNA链,产生特性的片段和凝胶电泳条带,是唯一一类能用于DNA分析和克隆的限制性内切酶。
限制性内切酶切割后产生一个3-羟基和5-磷酸基,只有当镁离子存在时才具有活性,而相应的修饰酶则需要S-腺苷甲硫氨酸的存在。
备注:NEBuffer: Tris-HCl , MgCl, DTT(二硫苏糖醇,强还原剂)星号活性:在非理想条件下,内切酶切割与识别位点相似但不完全相同的序列,称为星号活性。
使用高保真内切酶,即经过基因工程改造降低了星号活性。
同裂酶:识别序列相同的限制性内切酶即为同裂酶,第一个被发现的内切酶称为原酶,后来发现的识别序列相同的内切酶称为原酶的内裂酶。
4,甲基化(1)原核生物甲基化在原核生物中,DNA甲基化酶作为限制修饰系统的一个组成部分广泛存在,作用是保护宿主菌不被相应的限制性内切酶切割。
Dam甲基化酶:G m ATCDcm甲基化酶:C m CAGG和C m CTGG例如,从dam+ E.coli 中分离的质粒DNA则不能被识别序列为GA TC的限制性内切酶所切割,但是被Dam甲基化阻断的限制性位点可以通过克隆方法去甲基化,及将DNA转入至dam-的菌种中进行增殖。
限制性内切酶名词解释

限制性内切酶名词解释限制性内切酶(Restriction enzyme)是一类由细菌产生的酶,主要作用是切割DNA分子特定的酶切位点。
限制性内切酶在遗传工程和分子生物学研究中被广泛应用,能够将长的DNA 分子切割成特定大小的片段,从而使得研究者能够更好地研究和操作DNA。
限制性内切酶的发现和研究起源于1970年代。
当时,研究人员发现一些特定的细菌能够产生一种奇特的酶,它对DNA分子具有特异性的切割作用。
这种切割作用通常发生在特定的核苷酸序列上,被称为酶切位点或限制性位点。
每个限制性内切酶所识别和切割的酶切位点都有其独特的序列特征,并且有许多不同类型的限制性内切酶,如EcoRI、BamHI、HindIII等。
限制性内切酶的酶切作用是通过切割DNA分子的磷酸二酯键来实现的。
酶在酶切位点附近结合DNA分子,然后通过水解反应切割两股DNA的骨架,形成切割产物。
限制性内切酶的切割位置对两股DNA是对称的,意味着切割产物的两端都有一小段单链的“黏性末端”。
这种黏性末端的单链序列是由酶切位点的一部分序列决定的,如EcoRI酶切产生的末端序列是5'-GAATTC-3'。
黏性末端可以与其他黏性末端互补配对,形成DNA双链的黏性连接。
这种黏性连接有助于分子生物学研究者将DNA分子重新连在一起,或者将不同的DNA分子连接在一起,从而构建新的DNA分子。
限制性内切酶的应用非常广泛。
一方面,通过限制性内切酶的切割作用,可以将长的DNA分子切割成小片段,从而方便进行测序、克隆和分析。
另一方面,限制性内切酶可以用于DNA重组和基因工程。
研究人员可以利用黏性末端的互补配对原理,将不同的DNA片段连在一起,构建新的DNA分子,例如将外源基因插入到质粒中,形成重组DNA分子。
此外,限制性内切酶还可以用于DNA分子的鉴定和分析,例如通过切割产物的大小和形态来鉴定特定的DNA序列。
总之,限制性内切酶是一种重要的分子工具,广泛应用于分子生物学研究、遗传工程和基因工程等领域。
DNA的限制性内切酶酶切

DNA的限制性内切酶酶切实验目的1.掌握DNA限制性内切酶酶切的原理与实验方法。
2.了解限制性内切酶的特点。
实验原理限制性内切酶是基因工程中剪切DNA分子常用的工具酶,它能识别双链DNA分子内部的特异序列并裂解磷酸二酯键。
根据限制性内切酶的组成、所需因子及裂解DNA的方式不同可分为三类,即Ⅰ型、Ⅱ型和Ⅲ型。
重组DNA技术中所说的限制性内切酶通常指Ⅱ型酶。
绝大多数Ⅱ型酶识别长度为4~6个核苷酸的回文对称特异核苷酸序列(如EcoRⅠ识别六个核苷酸序列5′-G↓AATTC-3′),有少数酶识别更长的序列或简并序列。
实验器材移液器、移液器吸头、1.5ml离心管、离心管架、水浴锅、离心机、制冰机、漂浮板等。
实验试剂(1)DNA样品:质粒pUC19和基因3055。
(2)限制性内切酶、BamH I和EcoR I。
(3)通用型DNA纯化回收试剂盒(试剂盒组成见本篇“实验四DNA片段的纯化与回收”)。
实验操作(1)取2支离心管,在冰上按以下顺序分别配制酶切反应体系(50μl):质粒pUC19/基因3055 43μl限制性内切酶5μlBamH I 1μlEcoR I 1μl(2)加完反应体系后,用手指弹管壁混匀,短暂离心,使反应液甩入离心管底部。
(3)将离心管插入漂浮板上,放置于水浴锅中,37℃水浴15min,然后80℃加热20min终止反应。
(4)使用通用型DNA纯化回收试剂盒回收酶切产物。
注意事项(1)注意要在冰上操作。
(2)加入限制性内切酶时,移液器吸头应贴着离心管壁沿着液面加入。
实验意义限制性内切酶是重组DNA技术中常用的工具酶,在体外构建重组载体时,用于特异性切割载体及目的基因。
思考题如何根据载体和目的基因选取合适的限制性内切酶?。
DNA的限制性内切酶酶切分析

DNA的限制性内切酶酶切分析DNA限制性内切酶酶切分析(restriction enzyme digestion analysis)是一种常用的实验方法,用于分析DNA片段的长度及其在不同DNA样本中的存在与否。
本文将介绍DNA限制性内切酶的定义和分类、酶切分析的原理、实验步骤和结果的分析等内容。
DNA限制性内切酶(restriction enzyme)是一种能够识别特定的DNA序列并酶切它们的酶类。
它的发现和应用让分子生物学和遗传学研究取得了重要的突破。
限制性内切酶按照它们识别的DNA序列和酶切的方式可以分为以下几类:1. 四切酶(Type I):这类酶不仅有切割DNA的酶活性,还有甲基转移酶活性。
它们通常是多亚基复合物,需同时与子基的甲基转移酶活性合作。
2. 六切酶(Type II):这类酶是最常用的限制性内切酶,它们能够识别特定的DNA序列,并在识别序列中特定的位置切割DNA链。
这类酶可以以精确的方式酶切DNA,生成具有粘性末端或平滑末端的DNA片段。
3. 四切酶(Type III):这类酶也是多亚基复合物,通常需要其中一种辅助因子才能发挥酶切活性。
4. 五切酶(Type IV):这类酶的酶切方式和高度特异性尚不清楚。
在酶切分析实验中,我们通常选用能够产生可检测到的DNA片段的限制性内切酶进行反应。
实验步骤如下:1.提取DNA样本:从要分析的细胞或组织中提取总DNA。
2. 选择限制性内切酶:根据需求选择一种适合的限制性内切酶。
常用的限制性内切酶有EcoRI、HindIII、BamHI等。
3.DNA酶切反应体系的设置:配置适当的酶切反应缓冲液,加入所选的限制性内切酶和总DNA,进行适当的搅拌反应。
4.酶切反应的条件调整:根据所选酶切酶的最佳工作条件进行反应温度、反应时间等参数的调整。
5.停止酶切反应:加入适当的制动剂(如酶切反应停止缓冲液)终止酶切反应。
6.扩增和可视化:对酶切后的DNA样品进行聚合酶链反应(PCR)扩增或直接进行凝胶电泳检测,以确定DNA片段的长度和存在与否。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
限制性核酸内切酶是一类能够识别双链DNA分子中的某种特定核苷酸序列(一般4-8bp),并在此处切割DNA双链的核酸内切酶。
主要存在于原核生物,是原核生物自我保护的一种机制。
它的作用包含两类,一种是对外的,限制作用,指一定类型的细菌可以通过限制性核酸内切酶的作用,破坏入侵的外源DNA,使得外源DNA对生物细胞的入侵受到限制。
另一种是对内的,修饰作用,指在特定位置发生甲基化,可免遭自身限制性酶的破坏。
限制性核酸内切酶的发现是在本世纪中期,Arber等人对λ噬菌体在大肠杆菌不同菌株上的平板培养效应的研究为基础,发现了原核生物体内存在着寄主控制的限制和修饰系统。
实验是:在K株或B株大肠杆菌上生长繁殖的噬菌体λ(K)或λ(B),再次感染原寄主菌体的成斑率为1,而感染新的寄主菌株的成斑率则分别为10-4和4*10-4所以说受到了限制。
在 20 世纪 60 年代,噬菌体学家阐明了宿主限制和修饰现象的生化机制。
该研究工作在 Me-selson 和 Yuan(1968)纯化得到了大肠杆菌 K12 的限制性内切酶时达到高峰。
因为这个内切酶可以把未修饰的 DNA 切割成大的分离片段,人们认为它一定识别一个靶序列。
从而提供了对 DNA 进行可控操作的前景。
但不幸的是,K12 内切酶不具备人们希望的性质。
虽然它确实是结合到一定的区域序列上,切割却在几千个碱基对以外“随机”发生的(Yuan 等,1980)。
经过大量努力后,终于在1970 年取得了突破,人们发现了在流感嗜血杆菌(Haemophilusinfluenzae)中存在一种酶,其作用更加简单(Kelly & Smith,1970;Smith & W ilcox,1970),即这个酶可以识别双链 DNA 分子中的一个特定靶序列,并在该序列之内切断多聚核苷酸链,从而产生长度和序列一定的分离片段。
突破性的进展始于 Hamilton Smith 的发现,他从嗜血流感细菌(Haemophilus influenzae)菌株 Rd中找到了一种限制性内切酶(Smith & Wilcox,1970),并阐明了它在噬菌体 T7 DNA 中切割的核苷酸序列(Kelly & Smith,1970)。
这个酶现在命名为 Hind Ⅱ。
嗜血流感细菌还具有另一个Ⅱ型的限制酶 Hind Ⅲ,而且含量很大。
幸运的是,Hind Ⅲ不切割T7 DNA,因此 Hind Ⅱ制剂中可能混有的 Hind Ⅲ将不产生任何问题(Old 等,1975)。
在发现 HindⅡ后不久,又分离到其他几个Ⅱ型的限制性内切酶,并分析了它们的性质,EcoRⅠ是其中最重要的一个(Hedgepeth 等,1972)。
它们随即迅速用于最初的重组 DNA 实验中。
了解限制性内切酶的用法先要知道什么是识别位点和切割类型。
大多数的Ⅱ型限制性内切酶,都能识别4-8个核苷酸组成的特定的核苷酸序列。
这样的序列称为核酸内切限制酶的识别序列。
切割位点的共同特点是具有双重旋转对称的结构形式,就是指这些核苷酸对的顺序是呈回文结构的。
例如: EcoRI 识别GAATTC。
切割类型分为粘性末端和平末端。
粘性末端是两条链上的断裂位置是交错的,但又对称的围绕着一个对称轴排列。
平末端是指两条链的断裂位置是一个对称的结构。
平末端的DNA片段不容易重新环化。
按照亚基组成、酶切位置、识别位点和辅助因子等不同,传统上将限制性内切酶分为四大类。
然而,蛋白测序的结果表明,限制性内切酶的变化多种多样,若从分子水平上分类,则远远不止四类。
Ⅰ型限制性内切酶是一类兼有限制性内切酶和修饰酶活性的多亚基蛋白复合体。
它们可在远离识别位点处任意切割 DNA 链。
以前认为Ⅰ型限制性内切酶很稀有,但基因组测序分析发现这类酶其实很常见。
尽管Ⅰ型酶在生化研究中很有意义,但其不能产生确定的限制片段和明确的凝胶电泳条带,因而不具备实用性。
Ⅱ型限制性内切酶能在其识别序列内部或附近特异地切开 DNA 链。
它们产生确定的限制性片段和凝胶电泳条带,因此是唯一一类用于 DNA分析和克隆的限制性内切酶。
Ⅱ型限制性内切酶由一群性状和来源都不尽相同的蛋白组成,因而它们的氨基酸序列可能截然不同。
它们一般以同源二聚体的形式结合到 DNA 上,识别对称序列;只有当镁离子存在时,它们才有切割活性。
Ⅲ型限制性内切酶也是一类较大的兼有限制-修饰两种功能的酶。
它们在识别位点之外切开DNA 链,并且要求同一 DNA分子中存在两个反向的识别序列以完成切割。
这类酶很少能达到完全切割。
了解限制性内切酶的用法先要知道什么是识别位点和切割类型。
大多数的Ⅱ型限制性内切酶,都能识别4-8个核苷酸组成的特定的核苷酸序列。
这样的序列称为核酸内切限制酶的识别序列。
切割位点的共同特点是具有双重旋转对称的结构形式,就是指这些核苷酸对的顺序是呈回文结构的。
例如: EcoRI 识别GAATTC。
切割类型分为粘性末端和平末端。
粘性末端是两条链上的断裂位置是交错的,但又对称的围绕着一个对称轴排列。
平末端是指两条链的断裂位置是一个对称的结构。
平末端的DNA片段不容易重新环化。
使用限制性内切酶的条件是只有当镁离子存在时,它们才有切割活性,相应的修饰酶则需要 S- 腺苷甲硫氨酸的存在。
限制性内切酶切割后产生一个 3' -羟基和一个 5' -磷酸基。
限制性内切酶命名是由属名的头一个字母和种名的头两个字母表示寄主菌的物种名称,如果一种寄主菌株具有几个不同的限制与修饰体系,以罗马数字表示。
限制性内切酶中有很多相似的酶。
具有相同的序列特异性和切割位点的限制酶称为同裂酶。
识别相同序列,但切割位点不同的酶,例如 SmaⅠ(CCC/GGG)和 XmaⅠ(C/CCGGG),称为新裂酶。
虽然来源各异,识别的靶序列也各不相同,但都产生出相同的粘性末端。
影响限制性内切酶活性的因素。
DNA样品纯度的影响,DNA制剂中可能抑制限制性核酸内切酶活性的物质:蛋白质、酚、氯仿、酒精乙二胺四乙酸(EDTA)十二烷基硫酸钠(SDS)高浓度的盐离子等。
提高限制性内切核酸酶对低浓低纯度DNA制剂反应效率的方法有1、纯化DNA;2、增加核酸内切酶的用量,平均每微克底物DNA可高达10单位甚至更多些;3、扩大酶催化反应的体积,以使潜在的抑制因素被响应地稀释;4、延长酶催化反应的保温时间。
DNA的甲基化也会影响酶的活性。
DNA酶切反应的温度是影响限制性内切核酸酶活性的另一个重要因素。
不同的核酸内切酶,具有不同的最适温度,而且彼此之间有很大的变动范围。
但是大多数限制性核酸内切酶的标准反应温度都是37℃。
DNA分子的不同的构型对限制性内切核酸酶的活性也有很大的影响。
某些核酸内切酶切割超螺旋的质粒DNA或病毒DNA所需要的酶量,要比消化线性DNA高出许多倍,最高的可达20倍。
限制性核酸内切酶的反应缓冲液Tris-Cl:使反应混合物的pH恒定在酶活性所要求的最佳数值范围内。
对绝大数限制酶来说,最佳pH = 7.4。
MgCl2:保证酶活性的正常发挥。
NaCl 或 KCl:保证酶活性的正常发挥。
β-巯基乙醇:防止限制酶的氧化,保持酶的稳定性(但也可能有利于潜在污染杂质的稳定性)。
牛血清白蛋白(BSA):对某些限制酶是必需的,它是一种中性蛋白,可防止酶在低浓度蛋白质溶液中变性。
酶的星号活性在极端的条件下(如高 pH 和低离子强度下),限制性内切酶可以切割类似但不同于其特定识别序列的序列,这种改变的特异性称为星号活
性。
如EcoR Ⅰ切割GAATTC,但EcoR Ⅰ星号活性切割序列 N /AATTN。
限制性内切酶反应的终止。
消化DNA样品后,为进一步处理DNA要钝化内切酶的活性,钝化大多数限制性内切酶的方法是65 ℃温浴5分钟。
有些需要加入EDTA。
完成后进行凝胶电泳。
应用DNA重组。
限制酶(物理)图谱绘制。
突变分析(RFLP分析)。
限制酶的部分酶切与完全酶切。