新编高考数学分类总复习全书:第2章函数的概念与基本初等函数 第10讲 含解析

合集下载

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》函数的单调性与最值

2024年高考数学总复习第二章《函数与基本初等函数》§2.2函数的单调性与最值最新考纲1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义.2.学会运用函数图象理解和研究函数的性质.1.函数的单调性(1)单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.2.函数的最值前提设函数y =f (x )的定义域为I ,如果存在实数M 满足条件(1)对于任意的x ∈I ,都有f (x )≤M ;(2)存在x 0∈I ,使得f (x 0)=M(3)对于任意的x ∈I ,都有f (x )≥M ;(4)存在x 0∈I ,使得f (x 0)=M结论M 为最大值M 为最小值概念方法微思考1.在判断函数的单调性时,你还知道哪些等价结论?提示对∀x 1,x 2∈D ,f (x 1)-f (x 2)x 1-x 2>0⇔f (x )在D 上是增函数,减函数类似.2.写出对勾函数y =x +ax (a >0)的增区间.提示(-∞,-a ]和[a ,+∞).题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若定义在R 上的函数f (x ),有f (-1)<f (3),则函数f (x )在R 上为增函数.(×)(2)函数y =f (x )在[1,+∞)上是增函数,则函数的单调递增区间是[1,+∞).(×)(3)函数y =1x的单调递减区间是(-∞,0)∪(0,+∞).(×)(4)如果一个函数在定义域内的某几个子区间上都是增函数,则这个函数在定义域上是增函数.(×)(5)所有的单调函数都有最值.(×)题组二教材改编2.函数f (x )=x 2-2x 的单调递增区间是____________.答案[1,+∞)(或(1,+∞))3.函数y =2x -1在[2,3]上的最大值是______.答案24.若函数f (x )=x 2-2mx +1在[2,+∞)上是增函数,则实数m 的取值范围是________.答案(-∞,2]解析由题意知,[2,+∞)⊆[m ,+∞),∴m ≤2.题组三易错自纠5.函数y =12log (x 2-4)的单调递减区间为________.答案(2,+∞)6.若函数f (x )=|x -a |+1的增区间是[2,+∞),则a =________.答案2解析∵f (x )=|x -a |+1的单调递增区间是[a ,+∞),∴a =2.7.函数y =f (x )是定义在[-2,2]上的减函数,且f (a +1)<f (2a ),则实数a 的取值范围是________.答案[-1,1)解析-2≤a+1≤2,-2≤2a≤2,a+1>2a,解得-1≤a<1.8.函数f(x)1x,x≥1,-x2+2,x<1的最大值为________.答案2解析当x≥1时,函数f(x)=1x为减函数,所以f(x)在x=1处取得最大值,为f(1)=1;当x<1时,易知函数f(x)=-x2+2在x=0处取得最大值,为f(0)=2.故函数f(x)的最大值为2.题型一确定函数的单调性命题点1求函数的单调区间例1(1)函数f(x)=ln(x2-2x-8)的单调递增区间是()A.(-∞,-2)B.(-∞,1)C.(1,+∞)D.(4,+∞)答案D解析函数y=x2-2x-8=(x-1)2-9图象的对称轴为直线x=1,由x2-2x-8>0,解得x>4或x<-2,所以(4,+∞)为函数y=x2-2x-8的一个单调递增区间.根据复合函数的单调性可知,函数f(x)=ln(x2-2x-8)的单调递增区间为(4,+∞).(2)函数y=-x2+2|x|+3的单调递减区间是__________________.答案[-1,0],[1,+∞)解析由题意知,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4,二次函数的图象如图.由图象可知,函数y=-x2+2|x|+3的单调递减区间为[-1,0],[1,+∞).命题点2讨论函数的单调性例2判断并证明函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上的单调性.解函数f (x )=ax 2+1x(1<a <3)在[1,2]上单调递增.证明:设1≤x 1<x 2≤2,则f (x 2)-f (x 1)=ax 22+1x 2-ax 21-1x 1=(x 2-x 1)a (x 1+x 2)-1x 1x 2,由1≤x 1<x 2≤2,得x 2-x 1>0,2<x 1+x 2<4,1<x 1x 2<4,-1<-1x 1x 2<-14.又因为1<a <3,所以2<a (x 1+x 2)<12,得a (x 1+x 2)-1x 1x 2>0,从而f (x 2)-f (x 1)>0,即f (x 2)>f (x 1),故当a ∈(1,3)时,f (x )在[1,2]上单调递增.引申探究如何用导数法求解本例?解f ′(x )=2ax -1x 2=2ax 3-1x 2,因为1≤x ≤2,所以1≤x 3≤8,又1<a <3,所以2ax 3-1>0,所以f ′(x )>0,所以函数f (x )=ax 2+1x (其中1<a <3)在[1,2]上是增函数.思维升华确定函数单调性的方法:(1)定义法和导数法,证明函数单调性只能用定义法和导数法;(2)复合函数法,复合函数单调性的规律是“同增异减”;(3)图象法,图象不连续的单调区间不能用“∪”连接.跟踪训练1(1)下列函数中,满足“∀x 1,x 2∈(0,+∞)且x 1≠x 2,(x 1-x 2)·[f (x 1)-f (x 2)]<0”的是()A .f (x )=2xB .f (x )=|x -1|C .f (x )=1x -xD .f (x )=ln(x +1)答案C解析由(x 1-x 2)·[f (x 1)-f (x 2)]<0可知,f (x )在(0,+∞)上是减函数,A ,D 选项中,f (x )为增函数;B 中,f (x )=|x -1|在(0,+∞)上不单调;对于f (x )=1x -x ,因为y =1x与y =-x 在(0,+∞)上单调递减,因此f (x )在(0,+∞)上是减函数.(2)函数f (x )=(a -1)x +2在R 上单调递增,则函数g (x )=a |x -2|的单调递减区间是______________.答案(-∞,2]解析因为f (x )在R 上单调递增,所以a -1>0,即a >1,因此g (x )的单调递减区间就是y =|x -2|的单调递减区间(-∞,2].(3)函数f (x )=|x -2|x 的单调递减区间是________.答案[1,2]解析f (x )2-2x ,x ≥2,x 2+2x ,x <2.画出f (x )图象,由图知f (x )的单调递减区间是[1,2].题型二函数的最值1.函数y =x 2-1x 2+1的值域为____________.答案[-1,1)解析由y =x 2-1x 2+1,可得x 2=1+y 1-y.由x 2≥0,知1+y1-y≥0,解得-1≤y <1,故所求函数的值域为[-1,1).2.函数y =x +1-x 2的最大值为________.答案2解析由1-x 2≥0,可得-1≤x ≤1.可令x =cos θ,θ∈[0,π],则y =cos θ+sin θ=2sin θ∈[0,π],所以-1≤y ≤2,故原函数的最大值为 2.3.函数y =|x +1|+|x -2|的值域为________.答案[3,+∞)解析函数y 2x +1,x ≤-1,,-1<x <2,x -1,x ≥2.作出函数的图象如图所示.根据图象可知,函数y =|x +1|+|x -2|的值域为[3,+∞).4.函数y =3x +1x -2的值域为________________.答案{y |y ∈R 且y ≠3}解析y =3x +1x -2=3(x -2)+7x -2=3+7x -2,因为7x -2≠0,所以3+7x -2≠3,所以函数y =3x +1x -2的值域为{y |y ∈R 且y ≠3}.5.函数f (x )-log 2(x +2)在区间[-1,1]上的最大值为________.答案3解析由于y 在[-1,1]上单调递减,y =log 2(x +2)在[-1,1]上单调递增,所以f (x )在[-1,1]上单调递减,故f (x )在[-1,1]上的最大值为f (-1)=3.6.若函数f (x )=x 2+ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M -m ()A .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关答案B 解析方法一设x 1,x 2分别是函数f (x )在[0,1]上的最小值点与最大值点,则m =x 21+ax 1+b ,M =x 22+ax 2+b .∴M -m =x 22-x 21+a (x 2-x 1),显然此值与a 有关,与b 无关.故选B.方法二由题意可知,函数f (x )的二次项系数为固定值,则二次函数图象的形状一定.随着b 的变动,相当于图象上下移动,若b 增大k 个单位,则最大值与最小值分别变为M +k ,m +k ,而(M +k )-(m +k )=M -m ,故与b 无关.随着a 的变动,相当于图象左右移动,则M -m 的值在变化,故与a 有关,故选B.思维升华求函数最值的五种常用方法及其思路(1)单调性法:先确定函数的单调性,再由单调性求最值.(2)图象法:先作出函数的图象,再观察其最高点、最低点,求出最值.(3)换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值.(4)分离常数法:形如求y=cx+dax+b(ac≠0)的函数的值域或最值常用分离常数法求解.(5)基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值.题型三函数单调性的应用命题点1比较函数值的大小例3已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)-f(x1)]·(x2-x1)<0恒成立,设a=f -12,b=f(2),c=f(3),则a,b,c的大小关系为()A.c>a>b B.c>b>aC.a>c>b D.b>a>c答案D解析根据已知可得函数f(x)的图象关于直线x=1对称,且在(1,+∞)上是减函数,因为a=f -12f522<52<3,所以b>a>c.命题点2解函数不等式例4(2018·四川成都五校联考)设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(-3)=0,则f(x)<0的解集是()A.{x|-3<x<0或x>3}B.{x|x<-3或0<x<3}C.{x|x<-3或x>3}D.{x|-3<x<0或0<x<3}答案B解析∵f(x)是奇函数,f(-3)=0,∴f(-3)=-f(3)=0,解得f(3)=0.∵函数f(x)在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0;当x>3时,f(x)>0.∵函数f(x)是奇函数,∴当-3<x<0时,f(x)>0;当x<-3时,f(x)<0.则不等式f (x )<0的解集是{x |0<x <3或x <-3}.命题点3求参数的取值范围例5(1)(2018·全国Ⅱ)若f (x )=cos x -sin x 在[0,a ]上是减函数,则a 的最大值是()A.π4B.π2C.3π4D .π答案C解析∵f (x )=cos x -sin x =-2sin∴当x -π4∈-π2,π2,即x ∈-π4,3π4时,y =sinf (x )=-2sin ∴-π4,3π4是f (x )在原点附近的单调减区间,结合条件得[0,a ]⊆-π4,3π4,∴a ≤3π4,即a max =3π4.(2)已知函数f (x )2+12a -2,x ≤1,x -a ,x >1,若f (x )在(0,+∞)上单调递增,则实数a 的取值范围为________.答案(1,2]解析由题意,得12+12a -2≤0,则a ≤2,又y =a x -a (x >1)是增函数,故a >1,所以a 的取值范围为1<a ≤2.(3)(2018·安徽滁州中学月考)已知函数f (x )=log 2(x 2-ax +3a )在[2,+∞)上是增函数,则实数a 的取值范围是______________.答案(-4,4]解析设g (x )=x 2-ax +3a ,根据对数函数及复合函数的单调性知,g (x )在[2,+∞)上是增函数,且g (2)>0,2,a >0,∴-4<a ≤4,∴实数a 的取值范围是(-4,4].思维升华函数单调性应用问题的常见类型及解题策略(1)比较大小.(2)解不等式.利用函数的单调性将“f ”符号脱掉,转化为具体的不等式求解,应注意函数的定义域.(3)利用单调性求参数.①依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较;②需注意若函数在区间[a ,b ]上是单调的,则该函数在此区间的任意子集上也是单调的;③分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.跟踪训练2(1)如果函数f (x )2-a )x +1,x <1,x ,x ≥1满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.答案32,解析对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0,所以y =f (x )在(-∞,+∞)上是增函数.-a >0,>1,2-a )×1+1≤a ,解得32≤a <2.故实数a 的取值范围是32,(2)已知函数f (x )是定义在区间[0,+∞)上的函数,且在该区间上单调递增,则满足f (2x -1)<f x 的取值范围是______________.答案12,解析因为函数f (x )是定义在区间[0,+∞)上的增函数,且满足f (2x -1)<所以0≤2x -1<13,解得12≤x <23.1.下列函数中,在区间(0,+∞)上为增函数的是()A .y =ln(x +2)B .y =-x +1C .yD .y =x +1x答案A解析函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数.2.已知函数f(x)=x2-2x-3,则该函数的单调递增区间为()A.(-∞,1]B.[3,+∞)C.(-∞,-1]D.[1,+∞)答案B解析设t=x2-2x-3,由t≥0,即x2-2x-3≥0,解得x≤-1或x≥3,所以函数f(x)的定义域为(-∞,-1]∪[3,+∞).因为函数t=x2-2x-3的图象的对称轴为x=1,所以函数t在(-∞,-1]上单调递减,在[3,+∞)上单调递增,所以函数f(x)的单调递增区间为[3,+∞).3.设偶函数f(x)的定义域为R,当x∈[0,+∞)时,f(x)是增函数,则f(-2),f(π),f(-3)的大小关系是()A.f(π)>f(-3)>f(-2)B.f(π)>f(-2)>f(-3)C.f(π)<f(-3)<f(-2)D.f(π)<f(-2)<f(-3)答案A解析因为f(x)是偶函数,所以f(-3)=f(3),f(-2)=f(2).又因为函数f(x)在[0,+∞)上是增函数,所以f(π)>f(3)>f(2),即f(π)>f(-3)>f(-2).4.已知函数f(x)-2a)x,x≤1,a x+13,x>1,当x1≠x2时,f(x1)-f(x2)x1-x2<0,则a的取值范围是(),13 B.13,12,12 D.14,13答案A解析当x1≠x2时,f(x1)-f(x2)x1-x2<0,∴f(x)是R上的减函数.∵f(x)-2a)x,x≤1,a x+13,x>1,-2a<1,a<1,-2a≥13,∴0<a≤13.5.设f (x )x -a )2,x ≤0,+1x +a ,x >0,若f (0)是f (x )的最小值,则a 的取值范围为()A .[-1,2]B .[-1,0]C .[1,2]D .[0,2]答案D 解析∵当x ≤0时,f (x )=(x -a )2,f (0)是f (x )的最小值,∴a ≥0.当x >0时,f (x )=x +1x +a ≥2+a ,当且仅当x =1时取“=”.要满足f (0)是f (x )的最小值,需2+a ≥f (0)=a 2,即a 2-a -2≤0,解得-1≤a ≤2.∴a 的取值范围是0≤a ≤2.故选D.6.已知函数f (x )2x ,x ≥1,+c ,x <1,则“c =-1”是“函数f (x )在R 上单调递增”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案A 解析若函数f (x )在R 上单调递增,则需log 21≥c +1,即c ≤-1.由于c =-1,即c ≤-1,但c ≤-1不能得出c =-1,所以“c =-1”是“函数f (x )在R 上单调递增”的充分不必要条件.7.已知奇函数f (x )在R 上是增函数.若a =-b =f (log 24.1),c =f (20.8),则a ,b ,c 的大小关系为________________.答案a >b >c 解析∵f (x )在R 上是奇函数,∴a =-log f (log 25).又f (x )在R 上是增函数,且log 25>log 24.1>log 24=2>20.8,∴f (log 25)>f (log 24.1)>f (20.8),∴a >b >c .8.如果函数f (x )=ax 2+2x -3在区间(-∞,4)上单调递增,则实数a 的取值范围是______________.答案-14,0解析当a =0时,f (x )=2x -3在定义域R 上是单调递增的,故在(-∞,4)上单调递增;当a ≠0时,二次函数f (x )的对称轴为x =-1a,因为f (x )在(-∞,4)上单调递增,所以a <0,且-1a ≥4,解得-14≤a <0.综上,实数a 的取值范围是-140.9.记min{a ,b },a ≤b ,,a >b ,若f (x )=min{x +2,10-x }(x ≥0),则f (x )的最大值为________.答案6解析由题意知,f (x )+2,0≤x ≤4,-x ,x >4,易知f (x )max =f (4)=6.10.设函数f (x )x 2+4x ,x ≤4,2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a的取值范围是__________________.答案(-∞,1]∪[4,+∞)解析作函数f (x )的图象如图所示,由图象可知f (x )在(a ,a +1)上单调递增,需满足a ≥4或a +1≤2,即a ≤1或a ≥4.11.已知f (x )=x x -a(x ≠a ).(1)若a =-2,试证f (x )在(-∞,-2)上单调递增;(2)若a >0且f (x )在(1,+∞)上单调递减,求a 的取值范围.(1)证明当a =-2时,f (x )=x x +2.设x 1<x 2<-2,则f (x 1)-f (x 2)=x 1x 1+2-x 2x 2+2=2(x 1-x 2)(x 1+2)(x 2+2).因为(x 1+2)(x 2+2)>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2),所以f (x )在(-∞,-2)上单调递增.(2)解设1<x 1<x 2,则f (x 1)-f (x 2)=x 1x 1-a -x 2x 2-a=a (x 2-x 1)(x 1-a )(x 2-a ).因为a >0,x 2-x 1>0,所以要使f (x 1)-f (x 2)>0,只需(x 1-a )(x 2-a )>0恒成立,所以a ≤1.综上所述,0<a ≤1.12.(2018·河南南阳一中月考)设函数f (x )=ax 2+bx +1(a ,b ∈R ),F (x )x ),x >0,f (x ),x <0.(1)若f (-1)=0,且对任意实数x 均有f (x )≥0成立,求F (x )的解析式;(2)在(1)的条件下,当x ∈[-2,2]时,g (x )=f (x )-kx 是单调函数,求实数k 的取值范围.解(1)∵f (-1)=0,∴b =a +1.由f (x )≥0恒成立,知a >0且方程ax 2+bx +1=0中Δ=b 2-4a =(a +1)2-4a =(a -1)2≤0,∴a =1.从而f (x )=x 2+2x +1.∴F (x )x +1)2,x >0,(x +1)2,x <0.(2)由(1)可知f (x )=x 2+2x +1,∴g (x )=f (x )-kx =x 2+(2-k )x +1,由g (x )在[-2,2]上是单调函数,知-2-k 2≤-2或-2-k 2≥2,得k ≤-2或k ≥6.即实数k 的取值范围为(-∞,-2]∪[6,+∞).13.已知函数f (x )3,x ≤0,(x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是()A .(-∞,-1)∪(2,+∞)B .(-∞,-2)∪(1,+∞)C .(-1,2)D .(-2,1)答案D 解析∵当x =0时,两个表达式对应的函数值都为0,∴函数的图象是一条连续的曲线.又∵当x ≤0时,函数f (x )=x 3为增函数,当x >0时,f (x )=ln(x +1)也是增函数,∴函数f (x )是定义在R 上的增函数.因此,不等式f (2-x 2)>f (x )等价于2-x 2>x ,即x 2+x -2<0,解得-2<x <1.14.已知f (x )2-4x +3,x ≤0,x 2-2x +3,x >0,不等式f (x +a )>f (2a -x )在[a ,a +1]上恒成立,则实数a 的取值范围是________.答案(-∞,-2)解析二次函数y 1=x 2-4x +3的对称轴是x =2,∴该函数在(-∞,0]上单调递减,∴x 2-4x +3≥3,同样可知函数y 2=-x 2-2x +3在(0,+∞)上单调递减,∴-x 2-2x +3<3,∴f (x )在R 上单调递减,∴由f (x +a )>f (2a -x )得到x +a <2a -x ,即2x <a ,∴2x <a 在[a ,a +1]上恒成立,∴2(a +1)<a ,∴a <-2,∴实数a 的取值范围是(-∞,-2).15.已知函数f (x )=2020x +ln(x 2+1+x )-2020-x +1,则不等式f (2x -1)+f (2x )>2的解集为____________.答案解析由题意知,f (-x )+f (x )=2,∴f (2x -1)+f (2x )>2可化为f (2x -1)>f (-2x ),又由题意知函数f (x )在R 上单调递增,∴2x -1>-2x ,∴x >14,∴16.已知定义在区间(0,+∞)上的函数f (x )是增函数,f (1)=0,f (3)=1.(1)解不等式0<f (x 2-1)<1;(2)若f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立,求实数m 的取值范围.解(1)2-1>0,x 2-1<3,得2<x <2或-2<x <- 2.∴原不等式的解集为(-2,-2)∪(2,2).(2)∵函数f (x )在(0,3]上是增函数,∴f (x )在(0,3]上的最大值为f (3)=1,∴不等式f (x )≤m 2-2am +1对所有x ∈(0,3],a ∈[-1,1]恒成立转化为1≤m 2-2am +1对所有a ∈[-1,1]恒成立,即m 2-2am ≥0对所有a ∈[-1,1]恒成立.设g (a )=-2ma +m 2,a ∈[-1,1],∴(-1)≥0,(1)≥0,m +m 2≥0,2m +m 2≥0,解该不等式组,得m ≤-2或m ≥2或m =0,即实数m 的取值范围为(-∞,-2]∪{0}∪[2,+∞).。

2024年高考数学总复习第二章函数的概念与基本初等函数真题分类10函数与方程

2024年高考数学总复习第二章函数的概念与基本初等函数真题分类10函数与方程
证明:对每个n∈N*,当x>0时,f′n(x)=1+2x+…+xnn-1>0,故fn(x)在(0,+∞)内单 调递增.
由于f1(1)=0,当n≥2时,fn(1)=212+312+…+n12>0,故fn(1)≥0.
第5页
返回层目录 返回目录
真题分类10 函数与方程
又fn23=-1+23+k∑=n 223k2k ≤-13+14k∑=n 223k =-13+14·23211--2323n-1 =-13·23n-1<0, 所以存在唯一的xn∈23,1,满足fn(xn)=0.
第9页
返回层目录 返回目录
真题分类10 函数与方程
高考·数学
答案:C
(1-a)x,x<0, 由题意,b=f(x)-ax=13x3-12(a+1)x2,x≥0.
(1-a)x,x<0, 设 y=b,g(x)=13x3-12(a+1)x2,x≥0.
即以上两个函数的图象恰有 3 个交点,根据选项进行讨论.
高考·数学
第2页
返回目录
真题分类10 函数与方程
高考·数学
Ⅰ.函数零点存在定理法判断函数零点所在区间 Ⅱ.数形结合法Fra bibliotek断函数零点所在区间
01 判断函数在某个区间上是否存在零点的方法
(1)解方程:当函数对应的方程易求解时,可通过解方程判断方程是否有根落在给定区 间上.
(2)利用函数零点存在定理进行判断. (3)画出函数图象,通过观察图象与 x 轴在给定区间上是否有交点来判断.
真题分类10 函数与方程
高考·数学
第二章 函数的概念与基本初等函数
§ 2.6 函数与方程
真题分类10 函数与方程
C1.函数零点所在区间的判断 C2.函数零点个数的判断 C3.函数零点求和的问题 C4.零点与参数的综合问题

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷及答案解析

2024年高考数学总复习第二章《函数与基本初等函数》模考卷(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.函数y =ln x +1-x 的定义域是()A .(0,1)B .[0,1)C .(0,1]D .[0,1]答案C解析>0,-x ≥0,解得0<x ≤1,所以函数f (x )的定义域为(0,1].故选C.2.下列函数中,既是奇函数,又在区间(0,1)上递减的函数是()A .y =cos xB .y |C .y =tan xD .y =x-3答案D解析由于y =cos x 是偶函数,故A 不是正确选项.由于y |是偶函数,故B 不是正确选项.由于y =tan x 在(0,1)上为增函数,故C 不是正确选项.D 选项中y =x -3既是奇函数,又在(0,1)上递减,符合题意.故选D.3.设函数y =log 3x 与y =3-x 的图象的交点为(x 0,y 0),则x 0所在的区间是()A .(0,1)B .(1,2)C .(2,3)D .(3,4)答案C解析因为方程log 3x =-x +3的解,就是m (x )=log 3x +x -3的零点,因为m (x )=log 3x +x -3单调递增且连续,m (x )=log 3x +x -3在(1,2)上满足m (1)m (2)>0,m (x )=log 3x +x -3在(2,3)上满足m (2)m (3)<0,所以m (x )=log 3x +x -3的零点在(2,3)内,可得方程log 3x +x -3=0的解所在的区间是(2,3),即则x 0所在的区间是(2,3),故选C.4.若a =π82=1πlog b ,c =log ()A .b >c >aB .a >b >cC .c >a >bD .b >a >c答案B解析a =π82>20=1,∵0<1π<1,1πlog b >0,∴0<b <1,c =log log 232<log 21=0,∴a >b >c .故选B.5.(2019·山师大附中模拟)函数f (x )-2a )x +3a (x <1),x (x ≥1)的值域为R ,则实数a 的取值范围是()A .(-∞,-1) B.12,1C.-1答案C解析因为函数f (x )-2a )x +3a (x <1)x (x ≥1),的值域为R -2a >0,1-2a )+3a ≥0,解得-1≤a <12,故选C.6.函数y =2xln|x |的图象大致为()答案B解析采用排除法,函数定义域为{x |x ≠0且x ≠±1},排除A ;当x >1时,ln|x |>0,y =2xln|x |>0,排除D ;当x <-1时,ln|x |>0,y =2x ln|x |<0,排除C ,故选B.7.(2019·山师大附中模拟)函数f (x )是R 上的偶函数,且f (x +1)=-f (x ),若f (x )在[-1,0]上单调递减,则函数f (x )在[3,5]上是()A.增函数B.减函数C.先增后减的函数D.先减后增的函数答案D解析已知f(x+1)=-f(x),则函数周期T=2,因为函数f(x)是R上的偶函数,在[-1,0]上单调递减,所以函数f(x)在[0,1]上单调递增,即函数在[3,5]上是先减后增的函数.故选D.8.(2019·新乡模拟)设函数f(x)=e-x-e x-5x,则不等式f(x2)+f(-x-6)<0的解集为() A.(-3,2)B.(-∞,-3)∪(2,+∞)C.(-2,3)D.(-∞,-2)∪(3,+∞)答案D解析由f(x)=e-x-e x-5x,得f(-x)=e x-e-x+5x=-f(x),则f(x)是奇函数,故f(x2)+f(-x-6)<0⇔f(x2)<-f(-x-6)=f(x+6).又f(x)是减函数,所以f(x2)<f(x+6)⇔x2>x+6,解得x<-2或x>3,故不等式f(x2)+f(-x-6)<0的解集为(-∞,-2)∪(3,+∞),故选D.9.(2019·广东六校模拟)已知f(x)是定义域为(-∞,+∞)的奇函数,满足f(1-x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(2019)等于()A.-2018B.2C.0D.50答案C解析f(x)是定义域为(-∞,+∞)的奇函数,可得f(-x)=-f(x),f(1-x)=f(1+x)即有f(x+2)=f(-x),即f(x+2)=-f(x),进而得到f(x+4)=-f(x+2)=f(x),f(x)为周期为4的函数,若f(1)=2,可得f(3)=f(-1)=-f(1)=-2,f(2)=f(0)=0,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0-2+0=0,可得f(1)+f(2)+f(3)+…+f(2019)=504×0+2+0-2=0.故选C.10.(2019·衡水中学摸底)已知函数f(x)e x,x≤0,x,x>0(e为自然对数的底数),若关于x 的方程f(x)+a=0有两个不相等的实根,则a的取值范围是()A .a >-1B .-1<a <1C .0<a ≤1D .a <1答案C解析画出函数f (x )的图象如图所示,若关于x 的方程f (x )+a =0有两个不相等的实根,则函数f (x )与直线y =-a 有两个不同交点,由图可知-1≤-a <0,所以0<a ≤1.故选C.11.(2019·新疆昌吉教育共同体月考)若关于x 的不等式1+a cos x ≥23sin 2R 上恒成立,则实数a 的最大值为()A .-13 B.13C.23D .1答案B解析1+a cos x ≥23sin 2=23cos 2x =23(2cos 2x -1),令cos x =t ∈[-1,1],并代入不等式,则问题转化为不等式4t 2-3at -5≤0在t ∈[-1,1]+3a -5≤0,-3a -5≤0,所以-13≤a ≤13.所以实数a 的最大值为13.12.(2019·沈阳东北育才学校模拟)设函数f (x )+1|,x ≤0,4x |,x >0,若关于x 的方程f (x )=a 有四个不同的解x 1,x 2,x 3,x 4,且x 1<x 2<x 3<x 4,则x 3(x 1+x 2)+1x 23x 4的取值范围是()1,721C .(-1,+∞)-∞,72答案A解析画出函数f (x )的图象如图所示,根据对称性可知,x 1和x 2关于x =-1对称,故x 1+x 2=-2.由于|log 4x |=|log 41x |,故1x 3=x 4,x 3·x 4=1.令log 41x =1,解得x =14,所以x 3∈14,x 3(x 1+x 2)+1x 23x 4=-2x 3+1x 3,由于函数y =-2x +1x 在区间14,减函数,故-2x 3+1x 3∈1,72,故选A.二、填空题(本大题共4小题,每小题5分,共20分)13.函数f (x )=ln x -2的定义域为________.答案[e 2,+∞)解析∵函数f (x )=ln x -2,∴ln x -2≥0,即ln x ≥ln e 2,∴x ≥e 2,∴函数f (x )=ln x -2的定义域为[e 2,+∞).14.(2019·浏阳六校联考)f (x )是定义在R 上的周期为3的奇函数,当0<x <1时,f (x )=4x ,则f (6)=________.答案-2解析由题意得-72+=-124=-2,又f (6)=f (0)=0,∴f (6)=-2.15.(2019·青岛调研)已知函数f (x )3(x +1),x >0,-x ,x ≤0,f (m )>1,则m 的取值范围是____________.答案(-∞,0)∪(2,+∞)解析若f (m )>1>0,3(1+m )>log 33≤0,-m >1,>0,+1>3≤0,m >0,解得m >2或m <0.16.已知函数f (x )2+3a ,x <0,a (x +1)+1,x ≥0(a >0且a ≠1)在R 上单调递减,且关于x 的方程|f (x )|=2-x 恰好有两个不相等的实数解,则a 的取值范围是________.答案13,23∪解析画出函数y =|f (x )|的图象如图,由函数y =f (x )是单调递减函数可知,0+3a ≥log a (0+1)+1,即a ≥13,由log a (x 0+1)+1=0得,x 0=1a -1≤2,所以当x ≥0时,y =2-x 与y =|f (x )|图象有且仅且一个交点.所以当2≥3a ,即13≤a ≤23时,函数y =|f (x )|与函数y =2-x 图象恰有两个不同的交点,即方程|f (x )|=2-x 恰好有两个不相等的实数解,结合图象可知当直线y =2-x 与函数y =x 2+3a 相切时,得x 2+x +3a -2=0.由Δ=1-4(3a -2)=0,解得a =34,此时也满足题意.综上,所求实数a 的取值范围是13,23∪三、解答题(本大题共70分)17.(10分)(2019·酒泉敦煌中学诊断)求下列函数的解析式:(1)已知2f (x -1)-f (1-x )=2x 2-1,求二次函数f (x )的解析式;(2)已知f (x -1)=x ,求f (x )的解析式.解(1)设f (x )=ax 2+bx +c (a ≠0),则f (x -1)=a (x -1)2+b (x -1)+c ,f (1-x )=a (1-x )2+b (1-x )+c ,所以2f (x -1)-f (1-x )=2ax 2-4ax +2a +2bx -2b +2c -(ax 2-2ax +a +b -bx +c )=ax 2-(2a -3b )x +a -3b +c =2x2-1,=2,a -3b =0,-3b +c =-1,=2,=43,=1,所以f (x )=2x 2+43x +1.(2)令t =x -1,t ≥-1,则x =(t +1)2,∴f (t )=(t +1)2(t ≥-1).∴f (x )的解析式为f (x )=(x +1)2,x ≥-1.18.(12分)(2019·廊坊省级示范高中联考)已知函数f (x )=log 3(ax 2-x +3).(1)若函数f (x )的定义域为R ,求a 的取值范围;(2)已知集合M =[1,3],方程f (x )=2的解集为N ,若M ∩N ≠∅,求a 的取值范围.解(1)因为函数的定义域为R ,所以ax 2-x +3>0恒成立,当a =0时,-x +3>0不恒成立,不符合题意;当a ≠0>0,=1-12a <0,解得a >112.综上所述a >112.(2)由题意可知,ax 2-x +3=9在[1,3]上有解.即a =6x 2+1x 在[1,3]上有解,设t =1x,t ∈13,1,则a =6t 2+t ,因为y =6t 2+t 在13,1上单调递增,所以y ∈[1,7].所以a ∈[1,7].19.(12分)函数f (x )对任意的a ,b ∈R 都有f (a +b )=f (a )+f (b )-1,并且当x >0时,f (x )>1.(1)判断函数f (x )是否为奇函数;(2)证明:f (x )在R 上是增函数;(3)解不等式f (3m 2-m -2)<1.(1)解当a =b =0时,解得f (0)=1,显然函数不可能是奇函数.(2)证明任取x 1,x 2∈R ,且x 1<x 2,则f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)+f (x 1)-1-f (x 1)=f (x 2-x 1)-1,∵x 2-x 1>0,∴f (x 2-x 1)>1,∴f (x 2)-f (x 1)>0,∴f (x )在R 上是增函数.(3)∵f (0)=1,∴f (3m 2-m -2)<1=f (0),又f (x )在R 上递增,所以3m 2-m -2<0,解得-23<m <1,∴-23,20.(12分)已知定义在R 上的函数f (x )是偶函数,当x ≥0时,f (x )=x 2-4x +1.(1)求函数f (x )在R 上的解析式;(2)若方程m =f (x )有4个根x 1,x 2,x 3,x 4,求m 的取值范围及x 1+x 2+x 3+x 4的值.解(1)设x <0⇒-x >0⇒f (-x )=(-x )2-4(-x )+1=x 2+4x +1,由函数f (x )是偶函数,则f (x )=f (-x )=x 2+4x +1,综上f (x )2-4x +1,x ≥0,2+4x +1,x <0或f (x )=x 2-4|x |+1.(2)作出函数f (x )的图象如图所示,由图可知,当-3<m <1时,方程m =f (x )有4个根.令x 1<x 2<x 3<x 4,由x 1+x 22=-2,x 3+x 42=2,得x 1+x 2=-4,x 3+x 4=4,则x 1+x 2+x 3+x 4=0.21.(12分)(2019·荆州质检)为响应国家提出的“大众创业,万众创新”的号召,小李同学大学毕业后,决定利用所学专业进行自主创业.经过市场调查,生产某小型电子产品需投入年固定成本为5万元,每年生产x 万件,需另投入流动成本为C (x )万元,且C (x )=2+4x ,0<x <8,x +49x -35,x ≥8,每件产品售价为10元.经市场分析,生产的产品当年能全部售完.(1)写出年利润P (x )(万元)关于年产量x (万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)(2)年产量为多少万件时,小李在这一产品的生产中所获利润最大?最大利润是多少?解(1)因为每件产品售价为10元,则x 万件产品销售收入为10x 万元,依题意得,当0<x <8时,P (x )=10x 2+45=-12x 2+6x -5,当x ≥8时,P (x )=10x x +49x -5=30所以P (x )-12x 2+6x -5,0<x <8,x ≥8.(2)当0<x <8时,P (x )=-12(x -6)2+13,当x =6时,P (x )取得最大值P (6)=13,当x ≥8时,P ′(x )=-1+49x 2<0,所以P (x )为减函数,当x =8时,P (x )取得最大值P (8)=1278,因为13<1278,故当年产量为8万件时,小李在这一产品的生产中所获利润最大,最大利润为1278万元.22.(12分)(2019·佛山禅城区调研)已知f (x )是定义在(-1,1)上的奇函数,当x ∈(0,1)时,f (x )=2x 4x +1.(1)求f (x )在(-1,1)上的解析式;(2)若g (x )是周期为2的函数,且x ∈(-1,1)时g (x )=f (x ),求x ∈(2n ,2n +1),n ∈N 时函数g (x )的解析式.解(1)当x ∈(-1,0)时,-x ∈(0,1),因为函数f (x )为奇函数,所以f (x )=-f (-x )=-2-x4-x +1=-2x1+4x .因为f (x )是定义在(-1,1)上的奇函数,所以f (0)=0,故当x ∈(-1,1)时,f (x )的解析式为f (x )∈(0,1),x ∈(-1,0).(2)设x ∈(2n ,2n +1),则x -2n ∈(0,1),g (x -2n )=2x-2n4x -2n +1.因为g (x )周期为2,n ∈N ,所以2n 也是周期,g (x -2n )=g (x ),所以x ∈(2n,2n +1)时,g (x )=2x -2n 4x-2n+1.。

新课程2021高考数学一轮复习第二章第10讲导数的概念及运算课件

新课程2021高考数学一轮复习第二章第10讲导数的概念及运算课件

[考向预测] 从近三年高考情况来看,本讲是高考中的必考内容.预测 2021 年高考将会涉及导数的运算及几何意义.以客观题的形式考查导数的定 义,求曲线的切线方程.导数的几何意义也可能会作为解答题中的一问进行 考查,试题难度属中低档.
1
PART ONE
基础知识过关
1.变化率与导数 (1)平均变化率
① ②
由①知 x0≠0,故②可化为 1+x20+ax0=0,
所以 ax0=-1-x20,代入①得 3x20+2(-1-x20)=-1,即 x20=1,解得 x0=±1. 当 x0=1 时,a=-2,f(x0)=x30+ax20=-1;当 x0=-1 时,a=2,f(x0)=x30+ ax20=1,所以点 P 的坐标为(1,-1)或(-1,1).
2.小题热身 (1)下列函数求导运算正确的个数为( ) ①(3x)′=3xlog3e;②(log2x)′=x·l1n 2; ③(e1-x)′=e1-x;④ln1x′=x. A.1 B.2 C.3 D.4
答案 A
解析 ①中,(3x)′=3xln 3,错误;②中,(log2x)′=x·l1n 2,正确;③ 中,(e1-x)′=-e1-x,错误;④中,ln1x′=0·llnnxx-2 1x=-xln1 x2,错误, 因此求导运算正确的个数为 1.
2.(2019·全国卷Ⅰ)曲线 y=3(x2+x)ex 在点(0,0)处的切线方程为 __y_=__3_x __.
解析 y′=3(2x+1)ex+3(x2+x)ex=ex(3x2+9x+3),∴斜率 k=e0×3 =3,∴切线方程为 y=3x.
角度 2 求切点坐标
3.(2019·广州模拟)设函数 f(x)=x3+ax2,若曲线 y=f(x)在点 P(x0,f(x0))

高三数学课件:第二章 函数的概念与基本初等函数 2-10

高三数学课件:第二章 函数的概念与基本初等函数 2-10

如果小王某次停车 3 小时,缴费 24 元,请你判断小王该次停
车所在地区的类别是( )
A.一类
B.二类
C.三类
D.无法判断
[解析] 假设在一类区域,则停车 3 小时,应缴费 2.5×4+ 3.75×4×2=40(元),不符合;假设在二类区域,则应缴费 1.5×4 +2.25×4×2=24(元),符合;假设在三类区域,则应缴费 0.5×4 +0.75×4×2=8(元),不符合,故选 B.
在建立二次函数模型解决实际问题中的最值问题时,一定要 注意自变量的取值范围,需根据函数图象的对称轴与函数定义域 在坐标系中对应区间之间的位置关系讨论求解.
[跟踪演练] 某企业采用新工艺,把生产中排放的二氧化碳转化为一种可 利用的化工产品.已知该企业每月的处理量最少为 400 吨,最多 为 600 吨,月处理成本 y(元)与月处理量 x(吨)之间的函数关系可 近似地表示为 y=12x2-200x+80000,且每处理一吨二氧化碳得到 的化工产品的价值为 100 元. (1)该企业每月处理量为多少吨时,才能使每吨的平均处理成 本最低? (2)该企业每月能否获利?如果获利,求出最大利润;如果不 获利,则国家每月至少需要补贴多少元才能使该企业不亏损?

比较大小

下结论
[解] (1)当 x≤6 时,y=50x-115, 令 50x-115>0,解得 x≥2.3, ∵x 为整数,∴3≤x≤6. 当 x>6 时,y=[50-3(x-6)]x-115=-3x2+68x-115. 令-3x2+68x-115>0,有 3x2-68x+115<0,结合 x 为整数 得 6<x≤20.
考点三 分段函数模型——热考点 (2017·山西孝义二轮模考)为了迎接世博会,某旅游 区提倡低碳生活,在景区提供自行车出租,该景区有 50 辆自行车 供游客租赁使用,管理这些自行车的费用是每日 115 元.根据经 验,若每辆自行车的日租金不超过 6 元,则自行车可以全部租出; 若超出 6 元,则每超过 1 元,租不出的自行车就增加 3 辆.为了 便于结算,每辆自行车的日租金 x(元)只取整数,并且要求租自行 车一日的总收入必须高于这一日的管理费用,用 y(元)表示出租自 行车的日净收入(即一日中出租自行车的总收入减去管理费用后 得到的部分).

2020版高考数学第二章函数概念与基本初等函数第10讲函数与方程课件

2020版高考数学第二章函数概念与基本初等函数第10讲函数与方程课件

(2)(分离参数法)若函数 f(x)=4x-2x-a,x∈[-1,1]有零点, 则实数 a 的取值范围是________.
【解析】
(1)函数 g(x)=f(x)+x+a 存在 2 个零点,即关于 x
的方程 f(x)=-x-a 有 2 个不同的实根,即函数 f(x)的图象与 直线 y=-x-a 有 2 个交点,作出直线 y=-x-a 与函数 f(x) 的图象,如图所示,由图可知,- a≤1,解得 a≥-1,故选 C.
答案:3
已知函数 f(x)=2ax-a+3, 若∃x0∈(-1, 1), 使得 f(x0)=0, 则实数 a 的取值范围是________.
解析: 依题意可得 f(-1)· f(1)<0, 即(-2a-a+3)(2a-a+3)<0, 解得 a<-3 或 a>1.
答案:(-∞,-3)∪(1,+∞)
函数零点所在区间的判断(师生共研) 2 函数 f(x)=ln x-x的零点所在的大致区间是( A.(1,2) C.(1,e)和(3,4) B.(2,3) D.(e,+∞) )
第二章 函数概念与基本初等函数
第 10 讲
函数与方程
1.函数的零点 函数零点的概念
f ( x) = 0 对于函数 y=f(x), 把使____________ 的实
数 x 叫做函数 y=f(x)的零点
方程的根与函数零 点的关系
实数根 ⇔函数 y=f(x) 方程 f(x)=0 有_________ x轴 的图象与_________ 有交点⇔函数 y=f(x) 零点 有_________
2
12 1 1 +x= x+2 - ≥- , 4 4
1 若函数 f(x)与 y=m 的图象有三个不同的交点,则- <m≤0, 4

新编高考数学分类总复习全书:第2章函数的概念与基本初等函数 章末总结含解析

新编高考数学分类总复习全书:第2章函数的概念与基本初等函数 章末总结含解析

新编高考数学分类总复习全书第2章函数的概念与基本初等函数一、点在纲上,源在本里二、根置教材,考在变中 一、选择题1.(必修1 P 58练习T 2(1)改编)函数f (x )=32-x的定义域为A ,值域为B ,则A ∩B =( )A .(0,2]B .[1,2]C .[0,1]D .(1,2)解析:选B.因为A ={x |x ≤2},B ={y |y ≥1},所以A ∩B =[1,2],故选B.2.(必修1 P 74A 组T 2(2)(3)(4)改编)设a =log 87,b =log 43,c =log 73,则a ,b ,c 的大小关系为( )A .a >b >cB .a >c >bC .b >a >cD .b >c >a解析:选A.由a =log 87得8a=7,即23a=7,2a=713,即a =log 2713.由b =log 43得4b =3,即22b=3,2b=312,即b =log 2312.又()7136=49,()3126=27.所以713>312,则a >b .由于1<4<7,所以log 43>log 73,即b >c ,所以a >b >c .3.(必修1 P 44A 组T 7改编)已知f (x )=a -x 1+x ,且f ⎝⎛⎭⎫1b =-f (b )对于b ≠-1时恒成立,则a 的值为( )A .0B .1C .2D .-1解析:选B.因为f (x )=a -x 1+x,由f ⎝⎛⎭⎫1b =-f (b ),得a -1b 1+1b =-a +b 1+b ,化简得(a -1)(b +1)=0.要使上式对于b ≠-1恒成立,则a -1=0,所以a =1.4.(必修1 P 45B 组T 6改编)定义在R 上的偶函数f (x )满足:f (4)=f (-2)=0,在区间(-∞,-3)与[-3,0]上分别单调递增和单调递减,则不等式xf(x)>0的解集为() A.(-∞,-4)∪(4,+∞)B.(-4,-2)∪(2,4)C.(-∞,-4)∪(-2,0)D.(-∞,-4)∪(-2,0)∪(2,4)解析:选D.因为f(x)是偶函数,所以f(4)=f(-4)=f(2)=f(-2)=0,又f(x)在(-∞,-3),[-3,0]上分别单调递增与单调递减,所以xf(x)>0的解集为(-∞,-4)∪(-2,0)∪(2,4),故选D.5.(必修1 P36练习T1(2)改编)函数y=(x3-x)2|x|的图象大致是()解析:选B.易判断函数为奇函数.由y=0得x=±1或x=0.且当0<x<1时,y<0;当x>1时,y>0,故选B.6.(必修1 P88例1改编)已知e是自然对数的底数,函数f(x)=e x+x-2的零点为a,函数g(x)=ln x+x-2的零点为b,则下列不等式中成立的是()A.f(a)<f(1)<f(b) B.f(a)<f(b)<f(1)C.f(1)<f(a)<f(b) D.f(b)<f(1)<f(a)解析:选A.由题意,知f′(x)=e x+1>0恒成立,所以函数f(x)在R上是单调递增的,而f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)的零点a∈(0,1);由题意,知g′(x)=1x+1>0,所以函数g(x)在(0,+∞)上是单调递增的,又g(1)=ln 1+1-2=-1<0,g(2)=ln 2+2-2=ln 2>0,所以函数g(x)的零点b∈(1,2).综上,可得0<a<1<b<2.因为f(x)在R上是单调递增的,所以f(a)<f(1)<f(b).故选A.7.(必修1 P 24A 组T 1(1)改编)已知函数f (x )=3xx -4的图象与直线x +my -3m -4=0有两个交点A (x 1,y 1),B (x 2,y 2),则y 1+y 2x 1+x 2等于( )A .43B .34C .-43D .-34解析:选B.因为f (x )=3x x -4=3(x -4)+12x -4=3+12x -4,其图象是由y =12x 向右平移4个单位后,再向上平移3个单位得到,所以函数f (x )=3xx -4的图象关于点(4,3)对称,又直线x +my -3m -4=0,即为(x -4)+m (y -3)=0,从而恒过定点(4,3).所以A (x 1,y 1)与B (x 2,y 2)关于点(4,3)对称,所以x 1+x 2=8,y 1+y 2=6,所以y 1+y 2x 1+x 2=68=34.8.(必修1 P 23练习T 3改编)已知函数f (x )=|2x -1|,a <b <c ,且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( )A .a <0,b <0,c <0B .a <0,b ≥0,c >0C .2-a <2cD .2a +2c <2解析:选D.作出函数f (x )=|2x -1|的图象如图中实线所示,又a <b <c ,且f (a )>f (c )>f (b ),结合图象知f (a )<1,a <0,c >0,所以0<2a <1,所以f (a )=|2a -1|=1-2a ,所以f (c )<1,所以0<c <1,所以1<2c <2,所以f (c )=|2c -1|=2c -1.又f (a )>f (c ),即1-2a >2c -1,所以2a +2c <2,故选D.二、填空题9.(必修1 P 75B 组T 2改编)若log a 2<1(a >0且a ≠1),则a 的范围为________. 解析:当0<a <1时,log a 2<0,所以log a 2<1成立.当a >1时,log a 2<1即为log a 2<log a a .所以a >2,综上所述a 的范围为(0,1)∪(2,+∞).答案:(0,1)∪(2,+∞)10.(必修1 P 23练习T 3改编)函数y =|x +a |的图象与直线y =1围成的三角形的面积为__________.解析:作出其图象如图所示,由⎩⎪⎨⎪⎧y =|x +a |,y =1,得A (-1-a ,1),B (1-a ,1),所以|AB |=2,所以S △ABC =12×2×1=1.答案:111.(必修1 P 75A 组T 12改编)研究鲑鱼的科学家发现鲑鱼逆流游速可以表示为函数v =a log 3Q100,其中v 的单位为m/s ,Q 表示鲑鱼的耗氧量的单位数,a 为正常数.已知一条鲑鱼游速为32 m/s 时,其耗氧量为2 700个单位数,则当它的游速为2 m/s 时,它的耗氧量是静止时耗氧量的________倍.解析:当Q =2 700时,v =32 m/s.所以32=a log 32 700100,所以a =12.即v =12log 3Q100.所以当v =2时,2=12log 3Q 100,此时Q =8 100,当v =0时,0=12log 3Q100,此时Q =100.所以游速2m/s 时的耗氧量是静止时耗氧量的8 100100=81倍.答案:8112.(必修1 P 83B 组T 4改编)已知函数f (x )=e x +k e -x 为奇函数,函数g (x )是f (x )的导函数,有下列4个结论:①[f (x )]2-[g (x )]2为定值;②曲线f (x )在任何一点(x 0,f (x 0))处的切线的倾斜角α是大于60°的锐角; ③函数f (x )与g (x )的图象有且只有1个交点; ④f (2x )=2f (x )g (x )恒成立.则正确的结论为________(将正确结论的序号都填上).解析:因为f (x )=e x +k e -x 为奇函数,所以f (-x )=-f (x ),即e -x +k e x =-e x -k e -x ,(k+1)(e -x +e x )=0.所以k =-1.即f (x )=e x -e -x .则g (x )=f ′(x )=e x +e -x ,所以[f (x )]2-[g (x )]2=(e x-e -x )2-(e x +e -x )2=-4为定值,故①正确.又f ′(x )=e x +e -x ≥2e x ·e -x =2.所以f ′(x 0)≥2> 3.即曲线f (x )在任意一点(x 0,f (x 0))处的切线的倾斜角α是大于60°的锐角,故②正确.③由f (x )=g (x ),即e x -e -x =e x +e -x 得e -x =0,无解.即函数f (x )与g (x )的图象无交点,故③错误.④f (2x )=e 2x -e-2x,f (x )g (x )=(e x -e -x )(e x +e -x )=e 2x -e-2x,所以f (2x )=f (x )g (x ),所以f (2x )=2f (x )g (x )恒成立错误,故④错误.答案:①②。

2024年高考数学总复习第二章函数的概念与基本初等函数真题分类9函数的图象与变换

2024年高考数学总复习第二章函数的概念与基本初等函数真题分类9函数的图象与变换
1.(2023·天津,4,5 分)函数 f(x)的图象如下图,则 f(x)的解析式可能为( )
A.5(exx2-+e2-x) C.5(exx2++e2-x)
B.5x2s+in 1x D.5xc2+os1x
第4页
返回层目录 返回目录
真题分类9 函数的图象与变换
高考·数学
答案:D 由图知函数图象关于 y 轴对称,其为偶函数,且 f(-2)=f(2)<0, 由5(si-n (x)-2+x)1 =-5x2s+in 1x 且定义域为 R,即 B 中函数为奇函数,排除; 当 x>0 时,5(exx2-+e2-x) >0,5(exx2++e2-x) >0,即 A,C 中函数在(0,+∞)上的函数 值为正数,排除. 故选 D.
第11页
返回层目录 返回目录
真题分类9 函数的图象与变换
5.(2021·天津,3,5 分)函数 y=xl2n+|x2| 的图象大致为(
)
高考·数学
A
B
C
D
第12页
返回层目录 返回目录
真题分类9 函数的图象与变换
高考·数学
答案:B 设 y=f(x)=xl2n+|x2| ,则函数 f(x)的定义域为xx≠0 ,关于原点对称, 又 f(-x)=(-lnx|-)x2+| 2 =f(x),所以函数 f(x)为偶函数,排除 A,C; 当 x∈(0,1)时,ln |x|<0,x2+2>0,所以 f(x)<0,排除 D. 故选 B.
真题分类9 函数的图象与变换
高考·数学
答案:A 设 f(x)=x cos x+sin x,f(x)的定义域为 R.因为 f(-x)=-x cos (-x)+sin (-x)=-f(x),所以 f(x)为奇函数,排除选项 C,D.又 f(π)=πcos π+sin π=-π<0,排除选 项 B,故选 A.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1 解析:选 B.设这种放射性元素的半衰期是 x 年,则(1-10%)x= ,化简得 0.9x= ,即 2 2 1 lg -lg 2 -0.301 0 1 2 x=log0.9 = = = ≈6.6(年).故选 B. 2 lg 0.9 2lg 3-1 2 × 0.477 1-1 4.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过 10 m3 的,按每立方米 m 元收费;用水超过 10 m3 的,超过部分加倍收费.某职工某月缴水费 16m 元,则该职工这个月实际用水为( ) A.13 m3 C.18 m3 B.14 m3 D.26 m3
新编高考数学分类总复习全书
第 2 章函数的概念与基本初等函数
一、选择题 1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个 函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )
x y A.y=2x-2 C.y=log2x
1.992 1.517
3 4.041 8
4 7.5
解析:选 A.前 3 年年产量的增长速度越来越快,说明呈高速增长,只有 A、C 图象符 合要求,而后 3 年年产量保持不变,故选 A. 3.一种放射性元素的质量按每年 10%衰减,这种放射性元素的半衰期(剩余质量为最 初质量的一半所需的时间叫作半衰期 )是 (精确到 0.1,已知 lg 2= 0.301 0, lg 3= 0.477 1)( ) A.5.2 C.7.1 B.6.6 D.8.3
5.15 12
6.126 18.01
1 B.y= (x2-1) 2 D.y=log1x
2
解析:选 B.由题中表可知函数在(0,+∞)上是增函数,且 y 的变化随 x 的增大而增大 得越来越快,分析选项可知 B 符合,故选 B. 2.某工厂 6 年来生产某种产品的情况是:前 3 年年产量的增长速度越来越快,后 3 年 年产量保持不变,则该厂 6 年来这种产品的总产量 C 与时间 t(年)的函数关系图象正确的是 ( )
注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每 100 千米平均耗油量为________升. 解析: 因为每次都把油箱加满 ,第二次加了 48 升油 , 说明这段时间总耗油量为 48 升 , 而行驶的路程为 35 600- 35 000= 600(千米 ), 故每 100 千米平均耗油量为 48÷6= 8(升). 答案:8 8.某市出租车收费标准如下:起步价为 8 元,起步里程为 3 km(不超过 3 km 按起步 价付费);超过 3 km 但不超过 8 km 时,超过部分按每千米 2.15 元收费;超过 8 km 时,超 过部分按每千米 2.85 元收费,另每次乘坐需付燃油附加费 1 元.现某人乘坐一次出租车付 费 22.6 元,则此次出租车行驶了________km. 解析:设出租车行驶 x km 时,付费 y 元, 则 y=
解析:选 C.由题意,当生产第 k 档次的产品时,每天可获利润为 y=[8+2(k-1)][60- 3(k-1)]=-6k2+108k+378(1≤k≤10,k∈N*),配方可得 y=-6(k-9)2+864,所以当 k=9 时,获得利润最大.选 C.
二、填空题 7.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况. 加油时间 2016 年 5 月 1 日 2016 年 5 月 15 日 加油量(升) 12 48 加油时的累计里程(千米) 35 000 35 600
A.x=15,y=12 C.x=14,y=10 解析: 选 A.由三角形相似得
B.x=12,y=15 D.x=10,y=14 24-y x 5 5 = .得 x= (24- y), 所以 S= xy=- (y- 12)2+ 24-8 20 4 4
180,所以当 y=12 时,S 有最大值,此时 x=15.检验符合题意. 6.某类产品按工艺共分 10 个档次,最低档次产品每件利润为 8 元.每提高一个档 次,每件利润增加 2 元.用同样工时,可以生产最低档次产品 60 件,每提高一个档次将少 生产 3 件产品,则每天获得利润最大时生产产品的档次是( ) A.7 C.9 B.8 D.10
解 析 : 选 A.设 该 职 工 用 水 x m3 时 , 缴 纳 的 水 费 为 y 元 , 由 题 意 得 y= mx(0 < x ≤ 10), {10m+( x-10)·2m(x > 10),) 则 10m+(x-10)·2m=16m,解得 x=13. 5.某厂有许多形状为直角梯形的铁皮边角料,如图,为降低消耗,开源节流,现要从 这些边角料上截取矩形铁片(如图中阴影部分)备用,当截取的矩形面积最大时,矩形两边 长 x,y 应为( )
5=lg A2-lg A0=lg
即 8 级地震的最大振幅是 5 级地震最大振幅的 1 000 倍. 答案:1 000 10.某汽车销售公司在 A、B 两地销售同一种品牌的汽车,在 A 地的销售利润(单位:
万元 )为 y1= 4.1x- 0.1x2,在 B 地的销售利润 (单位:万元 )为 y2= 2x,其中 x 为销售量 (单 位:辆),若该公司在两地共销售 16 辆该种品牌的汽车,则能获得的最大利润是________ 万元. 解析:设公司在 A 地销售该品牌的汽车 x 辆,则在 B 地销售该品牌的汽车(16-x)辆, 所以可得利润 y= 4.1x- 0.1x2+ 2(16- x)=- 0.1x2+ 2.1x+ 32=- 0.1 x-
{Байду номын сангаас
9,0<x ≤ 3, 8+2.15(x-3)+1,3<x ≤ 8, 8+2.15 × 5+2.85(x-8)+1,x>8,
)
由 y=22.6,解得 x=9. 答案:9 9.里氏震级 M 的计算公式为:M=lg A-lg A0,其中 A 是测震仪记录的地震曲线的最 大振幅, A0 是相应的标准地震的振幅.则 8 级地震的最大振幅是 5 级地震最大振幅的 ________倍. 解析:设 8 级地震的最大振幅和 5 级地震的最大振幅分别为 A1,A2,则 8=lg A1-lg A0=lg A1 A1 ,则 0=108, 0 A A A2 A2 A1 5,所以 =103. , 则 = 10 A0 A0 A2
相关文档
最新文档