2018-2019学年八 年级上学期期末质量检测数学试题(含答案)

合集下载

2018-2019厦门市八年级上学期期末数学试卷及答案

2018-2019厦门市八年级上学期期末数学试卷及答案

2018—2019学年(上)厦门市八年级质量检测数 学(试卷满分:150分 考试时间:120分钟)准考证号 姓名 座位号注意事项:1.全卷三大题,25小题,试卷共4页,另有答题卡. 2.答案必须写在答题卡上,否则不能得分. 3.可以直接使用2B 铅笔作图.一、选择题(本大题有10小题,每小题4分,共40分.每小题都有四个选项,其中有且只有一个选项正确) 1. 计算2-1的结果是A .-2B .-12C .12D .12. x =1是方程2x +a =-2的解,则a 的值是A .-4B .-3C .0D .4 3. 四边形的内角和是A .90°B .180°C .360°D .540°4. 在平面直角坐标系xOy 中,若△ABC 在第一象限,则△ABC 关于x 轴对称的图形所在的位置是A .第一象限B .第二象限C .第三象限D .第四象限 5. 若AD 是△ABC 的中线,则下列结论正确的是 A .BD =CD B .AD ⊥BCC .∠BAD =∠CAD D .BD =CD 且AD ⊥BC6. 运用完全平方公式(a +b ) 2=a 2+2ab +b 2计算(x +12)2,则公式中的2ab 是A .12x B . x C .2x D .4x 7. 甲完成一项工作需要n 天,乙完成该项工作需要的时间比甲多3天,则乙一天能完成的工作量是该项工作的 A .3n B .13n C .1n +13 D . 1n +3 8. 如图1,点F ,C 在BE 上,△ABC ≌△DEF ,AB 和DE , AC 和DF 是对应边,AC ,DF 交于点M ,则∠AMF 等于 A . 2∠B B . 2∠ACB C . ∠A +∠D D . ∠B +∠ACB图1MF E CDBA9. 在半径为R 的圆形钢板上,挖去四个半径都为r 的小圆.若R =16.8,剩余部分的面积为272π,则r 的值是A . 3.2B . 2.4C . 1.6D . 0.8 10. 在平面直角坐标系xOy 中,点A (0,a ),B (b ,12-b ),C (2a -3,0),0<a <b <12, 若OB 平分AOC ,且AB =BC ,则a +b 的值为A.9或12B. 9或11C. 10或11D.10或12 二、填空题(本大题有6小题,每小题4分,共24分) 11. 计算下列各题:(1)x ·x 4÷x 2= ; (2)(ab )2 = .12. 要使分式1x -3有意义,x 应满足的条件是 .13. 如图2,在△ABC 中,∠C =90°,∠A =30°,AB =4,则 BC 的长为 .14. 如图3,在△ABC 中,∠B =60°,AD 平分∠BAC ,点E 在AD 延长线上,且EC ⊥AC .若∠E =50°,则∠ADC 的度数是 . 15. 如图4,已知E ,F ,P ,Q 分别是长方形纸片ABCD将该纸片对折,使顶点B ,D 16. 已知a ,b 满足(a —2b ) (a +b )—4ab +4b 2+2b =a —a 2,且a ≠2则a 与b 的数量关系是 . 三、解答题(本大题有9小题,共86分) 17. (本题满分12分)计算:(1)10mn 2÷5mn ×m 3n ; (2) (3x +2)( x -5) .18. (本题满分7分)如图5,在△ABC 中,∠B =60°,过点C 作CD ∥AB ,若∠ACD =60°,求证:△ABC 是等边三角形.图4图5ABCD图3 AB CD ABC图219.(本题满分14分) 化简并求值:(1)(2a -1)2-(2a +4)2,其中4a +3=2;(2)(3m -2+1) ÷3m +3m 2-4,其中m =4.20.(本题满分7分)如图6,已知AB ∥CF , D 是AB 上一点,DF 交AC 于点E , 若AB =BD +CF ,求证:△ADE ≌△CFE .21.(本题满分7分)在平面直角坐标系xOy 中,点A 在第一象限,点A ,B 关于y 轴对称.(1)若A (1,3),写出点B 的坐标;(2)若A (a ,b ),且△AOB 的面积为a 2,求点B 的坐标 (用含a 的代数式表示).22.(本题满分8分)已知一组数32,-56,712,-920,…,(-1)n +1[n +(n +1)] n (n +1)(从左往右数,第1个数是32,第2个数是-56,第3个数是712,第4个数是-920,依此类推,第n 个数是(-1)n +1[n +(n +1)]n (n +1)).(1)分别写出第5个、第6个数;(2)记这组数的前n 个数的和是s n ,如:s 1=32(可表示为1+12);s 2=32+(-56)=23(可表示为1-13); s 3=32+(-56)+712=54(可表示为1+14); s 4=32+(-56)+712+(-920)=45(可表示为1-15).请计算s 99的值.备用图图6ACD EF23.(本题满分9分)如图7,在△ABC 中,D 是边AB 上的动点,若在边AC ,BC 上分别有点E ,F ,使得AE =AD ,BF =BD .(1)设∠C =α,求∠EDF (用含α的代数式表示);(2)尺规作图:分别在边AB ,AC 上确定点P ,Q (PQ 不与DE 平行或重合),使得 ∠CPQ =∠EDF .(保留作图痕迹,不写作法)24.(本题满分10分)一条笔直的公路依次经过A ,B ,C 三地,且A ,B 两地相距1000m ,B ,C 两地相距2000 m .甲、乙两人骑车分别从A ,B 两地同时出发前往C 地.(1)若甲每分钟比乙多骑100m ,且甲、乙同时到达C 地 ,求甲的速度;(2)若出发5 min ,甲还未骑到B 地,且此时甲、乙两人相距不到650 m ,请判断谁先到 达C 地,并说明理由.25.(本题满分12分)如图8,在△ABC 中,∠A <∠C ,BD ⊥AC ,垂足为D ,点E 是边BC 上的一个动点,连接DE ,过点E 作EF ⊥DE ,交AB 的延长线于点F ,连接DF 交BC 于点G . (1)请根据题意补全示意图; (2)当△ABD 与△DEF 全等时,① 若AD =FE ,∠A =30°,∠AFD =40°,求∠C 的度数; ② 试探究GF ,AF ,DF 之间的数量关系,并证明.图7B DEF 图8BCD2018—2019学年(上) 厦门市八年级质量检测数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)二、填空题(本大题共6小题,每小题4分,共24分)11.(1)x3;(2)a2b2. 12. x≠3.13.2.14. 100°. 15. MH.16. 2a-b=1.17.(本题满分12分)(1)(本小题满分6分)解: 10mn2÷5mn·m3n=2n·m3n……………………………3分=2m3n2.……………………………6分(2)(本小题满分6分)解:(3x+2)( x-5)=3x2-15x+2x-10 ……………………………4分=3x2-13x-10.……………………………6分18.(本题满分7分)证明:证法一:∵CD∥AB,∴∠A=∠ACD=60°.………………………4分∵∠B=60°,在△ABC中,∠ACB=180°-∠A-∠B=60°.………………………6分∴∠A=∠B=∠ACB.∴△ABC是等边三角形. ……………………………7分证法二:∵CD∥AB,∴∠B+∠BCD=180°.∵∠B=60°,∴∠BCD=120°.………………………3分∴∠ACB=∠BCD-∠ACB=60°.………………………4分在△ABC中,∠A=180°-∠B-∠ACB=60°.………………………6分图5AB CD∴ ∠A =∠B =∠ACB .∴ △ABC 是等边三角形. ……………………………7分19.(本题满分14分) (1)(本小题满分7分) 解:(2a -1)2-(2a +4)2=[(2a -1)+(2a +4)][(2a -1)-(2a +4)] ……………………………3分 =-5(4a +3) …………………………5分当4a +3=2时,原式=-5×2=-10 ……………………………7分 (2)(本小题满分7分) 解:(3m -2+1) ÷3m +3m 2-4=3+m -2m -2·m 2-43m +3 ……………………………2分=m +1m -2·(m+2)( m -2)3(m +1) ……………………………5分=m+23……………………………6分当m =4时,原式=2 …………………………7分20.(本题满分7分)证明:∵ AB =BD +CF , 又∵ AB =BD +AD ,∴ CF =AD , ……………………2分 ∵ AB ∥CF ,∴ ∠A =∠ACF ,∠ADF =∠F ………………6分 ∴ △ADE ≌△CFE . ………………7分21.(本题满分7分) 解:(1)点B 的坐标为(-1,3). ……………2分 (2)解法一:如图:连接AB ,交y 轴于点P , ∵ 点A ,B 关于y 轴对称,∴ AB ⊥y 轴且AP =BP . ……………4分 ∵ A (a , b )在第一象限, ∴ a >0,且b >0. ∴ AP =a ,OP =b .图6ABCD EFABP∴ AB =2b .∴ S △AOB =12AB ·OP =ab . ……………5分∵ S △AOB =a 2, ∴ ab =a 2.∴ a =b . ……………6分 ∴ A (a , a ).∵ 点A ,B 关于y 轴对称, ∴ B (-a , a ). ……………7分解法二:如图:∵ A (a , b )在第一象限, ∴ a >0,且b >0.∵ 点A ,B 关于y 轴对称, 又∵ A (a , b ), ∴ B (-a , b ).连接AB ,交y 轴于点P ,可得AB ⊥y 轴,且AP =BP =a ,OP =b . ……………4分 ∴ AB =2a .∴ S △AOB =12AB ·OP =ab . ……………5分∵ S △AOB =a 2, ∴ ab =a 2.∴ a =b . ……………6分 ∴ B (-a , a ). ……………7分 22.(本题满分8分) 解:(1)第5个数是:1130 ,第6个数是:-1342. ……………4分 (2)因为第n 个数是(-1)n +1[n +(n +1)]n (n +1),所以当n 为奇数时,第n 个数为n +(n +1) n (n +1)=1n +1n +1;当n 为偶数时,第n 个数为-n +(n +1) n (n +1)=-(1n +1n +1). …………2分所以s 99=(1+12)-(12+13)+(13+14)... -(198+199)+(199+1100)=1+1100=101100. ……………4分23.(本题满分9分)(1)(本小题满分4分) 解:∵ AE =AD ,∴ ∠AED =∠ADE , …………………1分 在△ADE 中, ∠ADE =12(180°-∠A ). ……………2分同理可得∠BDF =12(180°-∠B ). ……………3分∴ ∠EDF =180°-∠ADE -∠BDF=180°-12(180°-∠A )-12(180°-∠B )=12(∠A +∠B ).在△ABC 中,∠A +∠B =180°-∠C =180°-α.∴ ∠EDF =12(180°-α)=90°-12α. ……………5分(2)(本小题满分4分)解:尺规作图:如图点P ,Q 即为所求. …………………9分24.(本题满分10分) 解:(1)设甲的速度为x m /min ,则乙的速度为(x -100)m /min ,由题意得3000x =2000x -100. ……………2分 解得x =300 . ……………3分经检验,x =300是原方程的解.答:甲的速度为300 m /min . ……………4分 (2)解法一:设甲的速度为x m /min ,乙的速度为y m /min ,因为出发5 min ,甲还未骑到B 地,可得5x <1000, ……………5分 解得x <200.因为出发5 min ,甲、乙两人相距不到650 m ,可得5y +1000—5x <650. ………………………6分 化简得x —y >70.设甲、乙从出发到到达C 地所用的时间分别为t 甲,t 乙,则 t 甲—t 乙=3000x — 2000y ………………………7分=1000(3y —2xxy).图7ABCDEFP Q因为x —y >70,所以y <x —70. 所以3y —2x <3(x —70)—2x . 即3y —2x <x —210. 又因为x <200, 所以3y —2x <0.因为由实际意义可知xy >0, 所以t 甲—t 乙<0.即t 甲<t 乙 . ………………………9分 所以甲先到达C 地. ………………………10分解法二:设甲的速度为x m /min ,乙的速度为y m /min ,因为出发5 min ,甲还未骑到B 地,可得5x <1000, ……………5分 解得x <200.因为出发5 min ,甲、乙两人相距不到650 m ,可得5y +1000—5x <650. ………………………6分 化简得x —y >70.由题可知,出发后,甲经过1000x —y min 追上乙,则此时s 甲=1000xx —y . ………………………7分因为x —y >70,且x <200,所以s 甲<1000×20070<3000. ………………………9分也即甲追上乙时,两人还未到达C 地. 因为x >y ,所以甲先到达C 地. ………………………10分25.(本题满分12分) 解:(1)(本小题满分2分)如图8即为所求示意图. ………………2分(2)(本小题满分10分) ①(本小题满分4分) ∵ DE ⊥EF , BD ⊥AC ,EFG图8(1)BCD∴ ∠DEF =∠ADB =90°. ∵ △ABD 与△DEF 全等, ∴ AB =DF . 又∵ AD =FE ,∴ ∠ABD =∠FDE , …………………4分 BD =DE .在Rt △ABD 中,∠ABD =90°-∠A =60°. ∴ ∠FDE =60°. ∵ ∠ABD =∠BDF +∠AFD , ∵ ∠AFD =40°,∴ ∠BDF =20°.∴ ∠BDE =∠BDF +∠FDE =20°+60°=80°.…………………5分 ∵ BD =DE ,∴ ∠DBE =∠BED =12(180°-∠BDE )=50°.在Rt △BDC 中,∠C =90°-∠DBE =90°-50°=40°. …………………6分 ②(本小题满分6分)GF ,AF ,DF 之间的数量关系为:AF =DF +FG . 证明:由①得,AB =DF .(I )若BD =DE , 设∠ABD =α,∠DBE =β, ∵ △ABD 与△DEF 全等, ∴ ∠ABD =∠FDE =α. ∵ BD =DE ,∴ ∠DBE =∠DEB =β.数学试题 第11页 共11页 ∴ ∠FBG =180°-∠ABD -∠DBE =180°-α-β.在△DGE 中,∠DGE =180°-∠FDE -∠DEB =180°-α-β.∴ ∠FBG =∠DGE .又∵ ∠DGE =∠FGB ,∴ ∠FBG =∠FGB . …………………9分∴ FB =FG .又∵ AB =DF ,∴ AF =AB +FB =DF +FG . …………………10分(II )若AD =DE ,如图,延长FE 交AC 于H ,∵ DE ⊥FH ,∴ DH >DE .则在线段DH 上存在点I ,使得DI =DE .连接BI ,∵ AD =DE =DI ,又∵ BD ⊥AC ,∴ AB =BI .∴ ∠A =∠BID . …………………11分∵ ∠BID =∠C +∠IBC ,∴ ∠BID >∠C .∴ ∠A >∠C .不符合题意.综上所述,GF ,AF ,DF 之间的数量关系为:AF =DF +FG . …………………12分E F G H I 图8(2)②(II ) A B C D。

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

人教版2018-2019学年八年级(上册)期末数学试卷 有答案

人教版2018-2019学年八年级(上册)期末数学试卷有答案2018-201年八年级(上)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.要使分式有意义,则x的取值应满足()A。

x≠2 B。

x≠-1 C。

x=2 D。

x=-12.若三角形的三边长分别为3,4,x-1,则x的取值范围是()B。

2<x<8 A。

<x<8 C。

<x<6 D。

2<x<63.分式可变形为()A。

B。

- C。

D。

-4.下列代数运算正确的是()C。

(x+1)2=x2+1 A。

(x3)2=x5 B。

(2x)2=2x2 D。

x3·x2=x55.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()C。

90° A。

70° B。

80° D。

100°6.把多项式(m+1)(m-1)+(m-1)提取公因式(m-1)后,余下的部分是()A。

m+1 B。

2m C。

2 D。

m+27.化简结果正确的是()D。

b2-a2 A。

ab B。

-ab C。

a2-b28.如图,在边长为2a的正方形中央剪去一边长为(a+2)的小正方形(a>2),将剩余部分剪开密铺成一个平行四边形,则该平行四边形的面积为()D。

4a2-a-2 A。

a2+4 B。

2a2+4a C。

3a2-4a-49.如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠XXX;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()B。

2组 A。

1组 C。

3组 D。

4组10.已知a+b=2,则a2-b2+4b的值是()D。

6 A。

2 B。

3 C。

411.如图,在平面直角坐标系中,点P(-1,2)关于直线x=1的对称点的坐标为()C。

(3,2) A。

2 0 18-2019 学年八年级上学期末考试数学试题含答案

2 0 18-2019 学年八年级上学期末考试数学试题含答案

βαD CB A PDCB A 2018-2019学年度上学期八年级数学期末试卷 (考试时间:120分钟,满分:150分)一、选择题:(本大题12个小题,每小题4分,共48分) 1.下列大学的校徽图案中,是轴对称图形的是( )A. B. C. D. 2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8; B .5,6,11; C .12,5,6; D .3,4,5 .3.若分式1x x-有意义,则x 的取值范围是( )A .x ≠-1;B .x ≠1;C .x ≥-1;D .x ≥1. 4.下列运算正确的是( )A .3x2+2x3=5x5;B .0)14.3(0=-π; C .3-2=-6; D .(x3)2=x6.5.下列因式分解正确的是( ) A .x2-xy+x=x(x-y); B .a3+2a2b+ab2=a(a+b)2; C .x2-2x+4=(x-1)2+3; D .ax2-9=a(x+3)(x-3).6.化简:=+++1x x1x x 2( )A .1;B .0;C .x ;D .x2。

7.如图,一个等边三角形纸片,剪去一个角后得到一个 四边形,则图中∠α+∠β的度数是( )A .180°;B .220°;C .240°;D .300°.8如图,在△ABC 中,D 是BC 边上一点,且AB=AD=DC ,∠BAD=40°,则∠C 为( ). A .25°; B .35°; C .40°; D .50°。

9.如图,△ABC 的外角∠ACD 的平分线CP 与∠ABC 平分线BP 交于点P ,若∠BPC=40°,则∠CAP 的度数是( ) A.30°; B.40°; C.50°; D.60°。

10.若分式 2y 1x 1=-,则分式y xy 3x y4xy 5x 4---+的值等于( )NM D C B A OFEC DBANM D CBA OD C B A yBA O2431A .53-; B .53; C .54-; D .54.11.关于x 的方程21x m1x 2x 3=+-+-无解,则m 的值为( )A.-8;B.-5;C.-2;D.5.12. 在△ABC 中,∠ACB=90°,AC=BC=4,点D 为AB 的中点,M ,N 分别在BC ,AC 上,且BM=CN 现有以下四个结论:①DN=DM ; ② ∠NDM=90°; ③ 四边形CMDN 的面积为4;④△CMN 的面积最大为2.其中正确的结论有( )A.①②④;B. ①②③;C. ②③④;D. ①②③④.二、填空题:(本大题6个小题,每小题4分,共24分)13.已知一个多边形的内角和等于1260°,则这个多边形是 边形. 14.因式分解:2a2-2= .15.解方程:13x 321x x -+=+,则x= .16.如图,∠ABF=∠DCE ,BE=CF ,请补充一个条件: ,能使用“AAS ”的方法得△ABF ≌△DCE.17.若3x 1x =+,则1x x x 2++的值是 .18.在锐角△ABC 中,BC=8,∠ABC=30°,BD 平分∠ABC ,M 、N 分别是BD 、BC 上的动点,则CM+MN的最小值是 。

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年第一学期八年级数学期末试题(含答案)

2018—2019学年度第一学期期末考试八年级数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页.满分150分,考试用时120分钟.考试结束后,只收交答题卡.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、班级、姓名、考试号、座号填写在答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,必须用0.5毫米黑色签字笔将该答案选项的字母代号填入答题卡的相应表格中,不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,并将该选项的字母代号填入答题卡的相应表格中.每小题涂对得3分,满分36分. 1.下列长度的四根木棒中,能与长5cm 、11cm 的两根木棒首尾相接,钉成一个三角形的是 A. 5cmB. 6cmC. 11cmD.16cm2.下列说法:①全等图形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长、面积分别相等.其中正确的说法为 A. ①②③④B. ①③④C. ①②④D.②③④3.在北大、清华、复旦和浙大的校标LOGO 中,是轴对称图形的是A.B.C. D .4.若一个三角形的三个内角的度数之比为1∶2∶3,那么相对应的三个外角的度数之比为 A. 3∶2∶1B. 1∶2∶3C. 3∶4∶5 D .5∶4∶35.下列运算正确的是 A.224a a a+= B.62322a a a-÷=-C.222233ab a b a b ⋅= D.224()a a -=6.已知分式242x x -+的值等于零,那么x 的值是A .2B .-2C .±2D .07.不改变分式的值,把0.0230.35x x -+的分子、分母中含x 项的系数化为整数为A.2335x x -+B.23305x x -++C. 230030500x x -+ D .230030500x x +-+ 8.与单项式23a b -的积是32222629a b a b a b -+的多项式是A.23ab --B.2233ab b -+-C.233b - D .2233ab b -+9.如图,已知AC =BD ,添加下列条件,不能使△ABC ≌△DCB 的是 A. ∠ACB =∠DBCB. AB =DCC.∠ABC =∠DCB D .∠A =∠D =90°10.如图,在△ABC 中,AB =AC ,∠A =36°,AB 垂直平分线交AC 于D ,交AB 于E ,给出下列结论:①∠C =72°;②BD 平分∠ABC ;③BC =AD ;④△BDC 是等腰三角形.其中正确结论的个数是 A.1 B.2C.3 D .4 11.若a -b =2,则a 2-b 2-4b 的值是 A.0 B.2C.4 D .6 12.若22(3)1t t --=,则t 可以取的值有 A. 4个B. 3个C. 2个D .1个第Ⅱ卷(非选择题 共114分)二、填空题:本大题共10个小题,每小题4分,满分40分.13.已知点A (3,b )与点(a ,-2)关于y 轴对称,则a +b = . 14.因式分解:2228mx my -= . 15.一个多边形的外角和是内角和的27,则这个多边形的边数为 . (第9题图)(第10题图)16.如图,在四边形ABCD 中,∠A =50°,直线l 与边AB 、AD 分别相交于点M 、N , 则∠1+∠2= .17.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,AB =10,AC =8,△ABC 的面积为45,则DE 的长为 .18.如图,已知AB ∥CF ,E 是DF 的中点,若AB =9cm ,CF =6cm ,则BD = cm .19.已知,如图△ABC 为等边三角形,高AH =10cm ,D 为AB 的中点,点P 为AH 上的一个动点,则PD +PB 的最小值为 cm . 20.计算:2222()()x y xy --= (结果不含负指数幂).21.轮船在顺水中航行80千米所需的时间和逆水航行60千米所需的时间相同.已知水流的速度是3千米/时,则轮船在静水中的速度是 千米/时. 22.观察下列等式:1×3+1=22;2×4+1=32;3×5+1=42;4×6+1=52;…请利用你所发现的规律写出第n 个等式: . 三、解答题:本大题共6个小题,满分74分. 解答时请写出必要的演推过程. 23.计算:(1)234(1)(43)(2)2a a a a -++-÷; (2)2.BAC =α,∠B =β(α>β).(第16题图) (第17题图)(第18题图) (第19题图)(1)若α=70°,β=40°,求∠DCE 的度数;(2)用α、β的代数式表示∠DCE = (只写出结果,不用写演推过程); (3)如图②,若将条件中的CE 改为是△ABC 外角∠ACF 的平分线,交BA 延长线于点E ,且α-β=30°,则∠DCE = (只写出结果,不用写演推过程). 26.(1)解方程:21133x xx x =---; (2)列方程解应用题:某超市用2000元购进某种干果销售,由于销售状况良好,超市又拨6000元资金购进该种干果,但这次的进价比第一次的进价提高了20%,购进干果数量是第一次的2倍还多200千克.求该种干果的第一次进价是每千克多少元? 27.如图,△ABC 是等边三角形,BD ⊥AC ,AE ⊥BC ,垂足分别为D 、E ,AE 、BD 相交于点O ,连接DE .(1)求证:△CDE 是等边三角形; (2)若AO =12,求OE 的长.28.如图,AB =AC ,AB ⊥AC ,AD =AE ,AE ⊥AD ,B ,C ,E 三点在同一条直线上. (1)求证:DC ⊥BE ;(2)探究∠CAE 与∠CDE 之间有怎样的数量关系?写出结论,并说明理由.(第28题图)(第27题图)2018—2019学年第一学期八年级数学试题参考答案及评分标准二、填空题:(每题4分,共40分)13.-5 ; 14.2(2)(2)m x y x y +-; 15.9 ; 16.230°;17.5; 18.3; 19.10; 20. 261x y ;21.21; 22.2(2)1(1)n n n ++=+. 三、解答题:(共74分)23.解:(1)234(1)(43)(2)2a a a a -++-÷=4a 2﹣4a +3a ﹣3﹣4a 2 ………………………………………………4分 =﹣a ﹣3 ………………………………………………5分 (2)(2x ﹣y )2﹣4x (x ﹣y )=4x 2﹣4xy +y 2﹣4x 2+4xy ……………………………………………9分 =y 2 ……………………………………………10分24.(1)解:原式=[9(a +b )+5(a ﹣b )][9(a +b )﹣5(a ﹣b )] ……2分=(14a +4b )(4a +14b ) ………………………………3分 =4(7a +2b )(2a +7b ) ………………………………5分(2)解:÷(﹣x ﹣1)﹣=…………………………7分=………………………………9分=………………………………………………10分= ………………………………………………11分 =………………………………………………12分25. 解:(1)∵∠ACB =180°﹣(∠BAC +∠B )=180°﹣(70°+40°)=70°, ………………2分 又∵CE 是∠ACB 的平分线,∴1352ACE ACB ∠=∠=︒. ………………………………4分∵CD 是高线,∴∠ADC =90°, ………………………………6分 ∴∠ACD =90°﹣∠BAC =20°,……………………………7分 ∴∠DCE =∠ACE ﹣∠ACD=35°﹣20°=15°.………………………………8分(2)2DCE αβ-∠=; …………………………………………10分(3)∠DCE 的度数为75°.………………………………………12分26.(1)解:方程的两边同乘3(x ﹣1),得6x =3x ﹣3﹣x , ………………………2分解得34x =-. ………………………4分检验:把34x =-代入3(x ﹣1)≠0. ………………………5分故原方程的解为34x =-. ………………………6分(2)解:设第一次的进价为x 元,由题意得 200060002200(120%)x x ⨯+=+ ………………………9分 解得 x =5 ……………………11分经检验:x =5是原分式方程的解,且符合题意. …………12分 答:该种干果的第一次进价是每千克5元. ……………………13分27. 解:(1)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠C =60°,BC =AC , CE =BC ,CD =AC ; ………………………………4分∴CD =CE , ……………5分 又∠C =60°,∴△CDE 是等边三角形.……………………………………6分 (2)∵△ABC 是等边三角形,且BD ⊥AC ,AE ⊥BC ,∴∠ABC =∠BAC =60°, …………………………………7分12D B C A B D A B C∠=∠=∠, 12B A E B AC ∠=∠, ……………………………………8分 ∴30ABD BAE ∠=∠=︒ ,30DBC ∠=︒, ……………………………………9分 ∴AO =BO , ……………………………………10分 ∵30DBC ∠=︒,AE ⊥BC ,∴BO =2OE , ……………………………………11分 ∴AO =2OE , ……………………………………12分 又AO =12,∴OE =6. ……………………………………13分28. (1)证明:∵AB ⊥AC ,AE ⊥AD ,AB =AC ,∴∠BAC =∠DAE =90°, ……………………………1分∠B =∠ACB =45°, ……………………………2分(第27题图)∴∠BAC +∠CAE =∠DAE +∠CAE ,∴∠BAE =∠CAD , ……………………………3分 在△BAE 与△CAD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△ABE (SAS ), ……………………………5分∴∠ACD =∠B =45°, ……………………………6分 ∴∠BCD =∠ACD +∠ACB =90°,……………………7分 ∴DC ⊥BE . ……………………………8分(2)∠CAE =∠CDE . ……………………………10分理由:∵AD =AE ,AE ⊥AD ,∴∠AED =∠ADE =45°,……………………………11分 ∵由(1)知DC ⊥BE ,∴∠CDE +∠AEC +∠AED =90°,∴∠CDE +∠AEC =45°,……………………………12分 又∠CAE +∠AEC =∠ACB =45°,…………………13分 ∴∠CAE =∠CDE . ……………………………14分(第28题图)。

2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测 八年级数学试题答案

2018—2019学年度第一学期期末学业水平检测八年级数学参考答案一、选择题 (每小题3分,共36分。

每小题只有一个选项符合题意)二、填空题(每小题3分,共15分。

每小题只填写最后结果)13. 5个14. 112°15. 2 16. 42 17. (﹣2,5)三、解答题(共7小题,共69分。

解答应写出必要的步骤)18.(本题满分8分,每小题4分)解:(1)去分母得:x2﹣x=x2﹣2x﹣3,解得:x=﹣3,……………………3分经检验x=﹣3是原方程的根;…………………………………………………4分(2)去分母得:x2+4x﹣x2﹣2x+8=12,解得:x=2,………………………………3分经检验x=2是增根,分式方程无解.…………………………………………4分19.(本题满分8分,(1)题3分,(2)题5分)(1)原式= •= ﹣•= ……………………3分(2)原式=﹣=…………………………………………………………3分当m=﹣12时,原式=53………………………………………………………5分20.(本题满分7分)解:(1)设D31的平均速度为x千米/时,则G377的平均速度为1.2x千米/时.由题意:﹣=1,……………………………………………………3分解得x=250.经检验:x=250,是分式方程的解,且符合题意.………………………4分所以,D31的平均速度250千米/时.……………………………………5分(2)G377的性价比==0.75 D31的性价比==0.94,…………7分∵0.94>0.75 ∴为了G377的性价比达到D31的性价比,建议降低G377票价.……………………………………………………………………………8分21.(本题满分8分)(1)如图所示△A′B′C′……………………………………………3分(2)A′(2,3)、B′(3,1)、C′(-1,2) ……………………………………………6分(3)如图所示P点即为所求找到点B关于x轴的对称点B′′,连接AB′′交x轴于点P,此时P A+PB的值最小.………………………………………………………8分22.(本题满分8分)(1)证明:∵∠ACB=90°,∠ABC=30°,∴BC⊥AE,∠CAB=60°,∵AD平分∠CAB,∴∠DAB=∠CAB=30°=∠ABC,∴DA=DB,∵CE=AC,∴BC是线段AE的垂直平分线,∴DE=DA,∴DE=DB;…………………4分(2)△ABE是等边三角形;理由如下:连接BE,如图:∵BC是线段AE的垂直平分线,∴BA=BE,即△ABE是等腰三角形,又∵∠CAB=60°,∴△ABE是等边三角形.……………………8分23.(本题满分8分)解:(1)服装项目的权是:1﹣20%﹣30%﹣40%=10%;……………………………2分(2)小亮在选拔赛中四个项目所得分数的众数是85,…………………………3分中位数是:(80+85)÷2=82.5;…………………………………………………4分(3)小亮得分为:85×10%+70×20%+80×30%+85×40%=80.5,小颖得分为:90×10%+75×20%+75×30%+80×40%=78.5,……………………6分∵80.5>78.5,∴小亮的演讲成绩好,故选择小亮参加“不忘初心,永远跟党走”主题演讲比赛.……………………8分24.(本题满分10分)(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC,∴△ABC为等腰直角三角形,∠EBD=45°.∵点D为BC的中点,∴AD=BC=BD,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF.………………………………………………………3分在△BDE和△ADF中,,∴△BDE≌△ADF(ASA),∴BE=AF;……………………………………………………………………………5分(2)BE=AF,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FD A.……………………………………………………………………8分在△EDB和△FDA中,,∴△EDB≌△FDA(ASA),∴BE=AF.……………………………………………………………………………10分25.(本题满分12分)解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,∵BC=7cm,BP=5cm,∴PC=2cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD(AAS);………3分(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DP A=∠DPE=90°,在△DP A和△DPE中,,∴△DP A≌△DPE(ASA),∴P A=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=90°.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;…………………8分(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=2cm,∴PC=BC﹣BP=5cm,∴CD=CP=5cm. ………………………………12分。

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上学期末测试数学试卷及答案

2018-2019学年八年级上期末测试数学卷一、选择题(本题共6个小题,每小题2分,共12分) 1.以长为3cm ,5cm ,7cm ,10cm 的四条线段中的三条线段为边,能构成三角形的情况有( )A.1种B.2种C.3种D.4种2.已知等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C. 50°或80°D. 40°或65°3.下列运算正确的是( )A .623a a a ÷=B .222a b 2a b a b +-- ()()=2C .235a a a -= ()D .5a 2b 7ab +=4.下面式子从左边到右边的变形是因式分解的是( )A. 2x x 2x x 12--=--()B. 22a b a b a b +-=- ()()C. 2x 4x 2x 2-=+- ()()D. 1x 1x 1x -=-()5.下列因式分解正确的是( )A. 2x xy x x x y -+=-()B. 3222a 2a b ab a a b -+=-()C. 22x 2x 4x 13-+=-+()D. 2ax 9a x 3x 3-=+- ()()6.△ABC 中AB 边上的高,下列画法中正确的是( )A. B. C. D.二、填空题(本题共8个小题;每小题3分,共24分)7.若2x 2a 3x 16+-+()是完全平方式,则a = _ _ .8.禽流感病毒的形状一般为球形,直径大约为0.000000102m ,该直径用科学记数法表示为m .9.如果分式x 1x 1--的值为零,那么x = . 10.我们已经学过用面积来说明公式.如222x 2xy y x y ++=+()就可以用下图甲中的面积来说明.请写出图乙的面积所说明的公式:x 2+(p +q )x +pq = ___ ____ .11.如图,∠1、∠2、∠3、∠4是五边形ABCDE 的4个外角,若∠A =100°,则∠1+∠2+∠3+∠4= .12.如图,OP 平分∠MON ,P A ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若P A =2,则PQ 的最小值为 ____ .13.如图,△ABC 中∠C =90°,AB 的垂直平分线DE 交BC 于点E ,D 为垂足,且EC =DE ,则∠B 的度数为 .14.如图,Rt △ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上A′处,折痕为CD ,则∠A′DB 为 .三、解答题(本题共4个小题;每小题5分,共20分)15.计算:220122013012 1.5201423----⨯+()()().16 计算: 23y z 2y z z 2y --+-+()()()17 计算: 2223322m n 3m n 4n ---÷ ()18.解方程2313x 16x 2-=--四、解答题(本题共4个小题;每小题7分,共28分)19.先化简,再求值:22x4x4x x1 x4x2x2-+--÷-++(),其中x =-3.20. 如图所示,在△ABC中,AE、BF是角平分线,它们相交于点O,AD是高,∠BAC=50°,∠C=70°,求∠DAC、∠BOA的度数.21. 列方程解应用题:八年级学生到距离学校15千米的农科所参观,一部分学生骑自行车先走,走了40分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的3倍,求骑自行车同学的速度.22. 已知:如图∠ABC及两点M、N.求作:点P,使得PM=PN,且P点到∠ABC两边的距离相等.(保留作图痕迹,不写做法)23. 在边长为1的小正方形组成的正方形网格中建立如图所示的平面直角坐标系,已知格点三角形ABC(三角形的三个顶点都在小正方形的顶点上)(1)写出△ABC的面积;(2)画出△ABC关于y轴对称的△A1B1C1;(3)写出点A及其对称点A1的坐标.24.已知:如图,△ABC中,∠ACB=45°,AD⊥BC于D,CF交AD于点F,连接BF并延长交AC于点E,∠BAD=∠FCD.求证:(1)△ABD≌△CFD(2)BE⊥AC25.我们知道一个图形的性质和判定之间有着密切的联系.比如,由等腰三角形的性质“等边对等角”得到它的判定“等角对等边”.小明在学完“等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合”性质后,得到如下三个猜想:①如果一个三角形的一条中线和一条高相互重合,则这个三角形是等腰三角形.②如果一个三角形的一条高和一条角平分线相互重合,则这个三角形是等腰三角形.③如果一个三角形的一条中线和一条角平分线相互重合,则这个三角形是等腰三角形.我们运用线段垂直平分线的性质,很容易证明猜想①的正确性.现请你帮助小明判断:(1)他的猜想②是命题(填“真”或“假”).(2)他的猜想③是否成立?若成立,请结合图形,写出已知、求证和证明过程;若不成立,请举反例说明.26.如图,在等边三角形ABC的顶点A、C处各有一只蜗牛,它们同时出发,以相同的速度分别由A向B、由C向A爬行,经过t分钟后,它们分别爬行到了D、E处.设在爬行过程中DC与BE的交点为F.(1)当点D、E不是AB、AC的中点时,图中有全等三角形吗?如果没有,请说明理由;如果有,请找出所有的全等三角形,并选择其中一对进行证明.(2)问蜗牛在爬行过程中DC与BE所成的∠BFC的大小有无变化?请证明你的结论.八年级数学第一学期试题参考答案及评分标准一、选择题:二、填空题:7.7或-1; 8.71.0210-⨯; 9.-1; 10.(x+p )(x+q ); 11.280°; 12.2; 13.30°; 14.10°三、解答题:(共46分)15.原式=4- 1.5+1 …………………2分=3.5 …………………3分16. 23y z 2y z z 2y --+-+()()()=22223y 2yz z 4y z -+--()()…………………2分 =22y 6yz 4z --+ …………………4分172223322m n 3m n 4n ---÷ () =443324m n 3m n 4n ---⋅÷ …………………5分=434323m n --+--() …………………7分=3mn …………………8分 18. 解:22x 4x 4x x 1x 4x 2x 2-+--÷-++() =x 2x x 1x+2x 2x 2---÷++() …………………2分 =2x 1-- …………………4分 当x =-3时,原式=12. …………………5分 19. 解:方程两边同时乘以2(3x ﹣1),得4﹣2(3x ﹣1)=3, …………………2分解得 x=. …………………3分检验:x=时,2(3x ﹣1)=2×(3×﹣1)≠0所以,原分式方程的解为x=. …………………5分20. 解:∵AD 是高 ∴∠ADC=90° ……………1分∵∠C=70°∴∠DAC=180°﹣90°﹣70°=20° ………2分∵∠BAC=50°,∠C=70°,AE 是角平分线∴∠BAO=25°,∠ABC=60° ……………4分 ∵BF 是∠ABC 的角平分线 ∴∠ABO=30° ……………5分 ∴∠BOA=180°﹣∠BAO ﹣∠ABO=125°. ……………6分21. 解:设骑自行车的速度是x 千米/小时,154015x 603x-= ……………3分 解得 x=15 ……………4分 经检验x=15是方程的解.答:骑自行车的同学的速度是15千米/小时. ……………6分22.①做出角平分线 (2)②做出MN 的垂直平分线 (4)③下结论...............得1分(共计7分)23.(1)S △ABC =72721=××.........3分 (2)画出正确的图形...........3分(3)写出点A (-1,3) A 1(1,3)... 1分24.. 证明:(1)∵AD ⊥BC∴∠ADC=∠ADB=90° ........1分又∵∠ACB=45°∴∠DAC=45° ............2分∴∠ACB=∠DAC ...........3分∴AD=CD ..................4分又∵∠BAD=∠FCD∠ADB=∠FDC∴△ABD ≌△CFD ..............5分(2)∵△ABD ≌△CFD ∴BD=FD ................6分∴∠1=∠2 ............... 7分又∵∠FDB=90°∴∠1=∠2=45°.............又∵∠ACD=45°∴△BEC中,∠BEC=90° .......∴BE⊥AC ...................8分25. 解:(1)真. ……………1分(2)已知:在△ABC中,D为BC的中点,AD平分∠BAC.求证:△ABC是等腰三角形. ……………2分证明:作DE⊥AB,DF⊥AC,垂足分别为E、F,……3分∵AD平分∠BAC,DE⊥AB,DF⊥AC∴DE=DF,∵D为BC的中点∴CD=BD,∴Rt△CFD≌Rt△BED(HL),…………5分∴∠B=∠C,∴AB=AC.即△ABC是等腰三角形. …………6分26. 解:(1)有全等三角形:△ACD≌△CBE;△ABE≌△BCD. ……2分证明:∵AB=BC=CA,两只蜗牛速度相同,且同时出发,∴∠A=∠BCE=60°,CE=AD.在△ACD和△CBE中,,∴△ACD≌△CBE. …………4分(2)DC和BE所成的∠BFC的大小保持120°不变.………5分证明:∵由(1)知△ACD≌△CBE,∠ACB=60°∴∠FBC+∠BCD=∠ACD+∠BCD=∠ACB=60°∴∠BFC=180°﹣(∠FBC+∠BCD) =120°.…………7分- 11 -。

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷(附答案解析)

2018-2019学年度八年级(上册)期末质量评估抽查数学试卷命题人:xxx审题人:xxx考试时间:120分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题(本大题共6小题,每小题3分,共18分)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.下面四个数中无理数是()A.0.B.C.D.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,954.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥ADD.如果∠2=30°,必有∠4=∠C5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)7.25的平方根是,16的算术平方根是,﹣27的立方根是.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9= .12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为.13.(1)计算:|﹣|+3﹣2+(2)解方程组:14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?六、(本大题共12分)23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为;若点F为完美点,且横坐标为3,则点F的纵坐标为;(2)完美点P在直线(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.参考答案与试题解析一.选择题(共6小题)1.点(2018,﹣1)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】直接利用各象限内点的坐标特点得出答案.【解答】解:点(2018,﹣1)所在象限为第四象限.故选:D.【点评】此题主要考查了点的坐标,正确把握各象限内点的坐标特点是解题关键.2.下面四个数中无理数是()A.0.B.C.D.【分析】根据无理数的定义(无理数是指无限不循环小数)逐个判断即可.【解答】解:A、不是无理数,故本选项不符合题意;B、不是无理数,故本选项不符合题意;C、=3,不是无理数,故本选项不符合题意;D、是无理数,故本选项符合题意;故选:D.【点评】本题考查了无理数的定义和算术平方根,能理解无理数的定义的内容是解此题的关键,注意:无理数有:①开方开不尽的根式,②含π的,③一些有规律的数.3.在《数据的分析》章节测试中,“勇往直前”学习小组6位同学的平均成绩是90,其个人成绩分别是85,95,72,100,93,a,则这组数据的中位数和众数分别是()A.93,95B.93,90C.94,90D.94,95【分析】先根据平均数求得a的值,再将数据从小到大重新排列,继而利用中位数和众数的定义求解可得.【解答】解:∵这6位同学的平均成绩是90,∴85+95+72+100+93+a=6×90,解得:a=95,则这组数据从小到大重新排列为72、85、93、95、95、100,所以这组数据的中位数为=94,众数为95,故选:D.【点评】本题主要考查众数和中位数,解题的关键是掌握众数和中位数的定义.4.若将一副三角板按如图所示的方式放置,则下列结论不正确的是()A.∠1=∠3B.如果∠2=30°,则有AC∥DEC.如果∠2=30°,则有BC∥AD D.如果∠2=30°,必有∠4=∠C【分析】根据两种三角板的各角的度数,利用平行线的判定与性质结合已知条件对各个结论逐一验证,即可得出答案.【解答】解:∵∠CAB=∠EAD=90°,∴∠1=∠CAB﹣∠2,∠3=∠EAD﹣∠2,∴∠1=∠3.∴(A)正确.∵∠2=30°,∴∠1=90°﹣30°=60°,∵∠E=60°,∴∠1=∠E,∴AC∥DE.∴(B)正确.∵∠2=30°,∴∠3=90°﹣30°=60°,∵∠B=45°,∴BC不平行于AD.∴(C)错误.由AC∥DE可得∠4=∠C.∴(D)正确.故选:C.【点评】此题主要考查了学生对平行线判定与性质、余角和补角的理解和掌握,解答此题时要明确两种三角板各角的度数.5.我国是一个水资源分配不均的国家,在水资源紧缺的地方,都要修建地下水窖,在丰水期达到蓄水的功能如上图是某水窖的横断面示意图,如果在丰水期以固定的流量往这个空水窖中注水,下面能大致表示水面离地面的高度h 和注水时间t之间的关系的图象是()A.B.C.D.【分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系变为先快后慢.【解答】解:根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,先快后慢.故选:D.【点评】考查根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.6.已知一次函数y=kx+b,若k<0,b<0,则函数y=kx+b的图象大致是()A.B.C.D.【分析】根据一次函数y=kx+b中的k、b的取值范围,确定该函数图象所经过的象限.【解答】解:∵一次函数y=kx+b中,k<0,b<0,∴该直线必经过二、四象限,且与y轴负半轴相交.故选:B.【点评】主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.二.填空题(共6小题)7.25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3.【分析】根据立方根、平方根、算术平方根的定义求出即可.【解答】解:25的平方根是±5,16的算术平方根是4,﹣27的立方根是﹣3,故答案为:±5,4,﹣3.【点评】本题考查了立方根、平方根、算术平方根的定义,能熟记立方根、平方根、算术平方根的定义的内容是解此题的关键.8.若点A(m+1,2)与点B(4,n﹣1)关于y轴对称,则m+n的值是﹣2.【分析】根据关于y轴对称的点,横坐标互为相反数,纵坐标相等,可得m,n的值,再代入计算可得.【解答】解:∵点A(m+1,2)与点B(4,n﹣1)关于y轴对称,∴m+1=﹣4,2=n﹣1,解得:m=﹣5,n=3,则m+n=﹣5+3=﹣2,故答案为:﹣2.【点评】本题考查了关于x,y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.9.在Rt△ABC中,∠C=90°,AB=15,AC=12,则AB边上的高CD长为7.2.【分析】先用勾股定理求出直角边BC的长度,再用面积就可以求出斜边上的高.【解答】解:在Rt△ABC中,∵∠C=90°,AB=15,AC=12,∴BC==9,=AC•BC=AB•CD,由面积公式得:S△ABC∴CD===7.2.故斜边AB上的高CD的长为7.2.故答案为:7.2.【点评】本题考查了勾股定理,利用勾股定理和直角三角形的面积相结合,求解斜边上的高是解直角三角形的重要题型之一,也是中考的热点.10.AE是△ABC的角平分线,AD是BC边上的高,且∠B=40°,∠ACD=70°,则∠DAE的度数为15°或35°.【分析】根据三角形的内角和定理求出∠BAD,求出∠BAE,相减即可.【解答】解:∵AD⊥BC,∴∠ADB=90°,∵∠B=60°,∴∠BAD=90°﹣60°=30°,∵∠B=60°,∠C=30°,∴∠BAC=180°﹣∠B﹣∠C=90°,∵AE是△ABC角平分线,∴∠BAE=∠BAC=45°,∴∠DAE=∠BAE﹣∠BAD=15°,故答案为:15°或35°【点评】本题主要考查对三角形的内角和定理,三角形的角平分线等知识点的理解和掌握,能正确画图和求出∠BAE、∠BAD的度数是解此题的关键.11.对于实数x,y,定义新运算x*y=ax+by+1,其中a,b为常数,等式右边为通常的加法和乘法运算,若3*5=14,4*7=19,则5*9=24.【分析】按照定义新运算x*y=ax+by+1,用已知的两个式子建立方程组,求得a,b的值后,再求5*9的值【解答】解:根据题意知,解得:,则x*y=x+2y+1,所以5*9=5+2×9+1=24,故答案为:24.【点评】本题是新定义题,考查了定义新运算,解方程组.要注意运算顺序与运算符号.12.平面直角坐标系中,A、O两点的坐标分别为(2,0),(0,0),点P在正比例函数y=x(x>0)图象上运动,则满足△PAO为等腰三角形的P点的坐标为(1,1)或(,)或(2,2).【分析】分OP=AP、OP=OA、AO=AP三种情况考虑:①当OP1=AP1时,△AOP1为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P1的坐标;②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P2的坐标;③当AO=AP3时,△OAP3为等腰直角三角形,根据等腰直角三角形的性质结合点A的坐标可得出点P3的坐标.综上即可得出结论.【解答】解:∵点A的坐标为(2,0),∴OA=2.分三种情况考虑,如图所示.①当OP1=AP1时,∵∠AOP1=45°,∴△AOP1为等腰直角三角形.又∵OA=2,∴点P1的坐标为(1,1);②当OP2=OA时,过点P2作P2B⊥x轴,则△OBP2为等腰直角三角形.∵OP2=OA=2,∴OB=BP2=,∴点P2的坐标为(,);③当AO=AP3时,△OAP3为等腰直角三角形.∵OA=2,∴AP3=OA=2,∴点P3的坐标为(2,2).综上所述:点P的坐标为(1,1)或(,)或(2,2).故答案为:(1,1)或(,)或(2,2).【点评】本题考查了一次函数图象上点的坐标特征、等腰三角形的性质以及等腰直角三角形的性质,分OP=AP、OP=OA、AO=AP三种情况求出点P的坐标是解题的关键.三.解答题(共11小题)13.(1)计算:|﹣|+3﹣2+(2)解方程组:【分析】(1)根据绝对值和二次根式的加减法可以解答本题;(2)根据解二元一次方程组的方法可以解答此方程组.【解答】解:(1)|﹣|+3﹣2+==;(2)②﹣①×2,得x=6,将x=6代入①,得y=﹣3,故原方程组的解是.【点评】本题考查实数的运算、解二元一次方程组,解答本题的关键是明确它们各自的计算方法.14.已知一次函数y=kx﹣4,当x=2时,y=﹣2.(1)求此一次函数的解析式;(2)将该函数的图象向上平移3个单位,求平移后的图象与x轴的交点的坐标.【分析】(1)根据待定系数法,可得函数解析式;(2)根据函数图象的平移规律,可得平移后的解析式,根据自变量与函数值的对应关系,可得答案.【解答】解:(1)将x=2,y=﹣2代入函数解析式,得2k﹣4=﹣2,解得k=1,一次函数的解析式为y=x﹣4;(2)一次函数y=x﹣4的图象向上平移3个单位,得y=x﹣1.当y=0时,x﹣1=0,解得x=1,平移后的图象与x轴的交点的坐标(1,0).【点评】本题考查了一次函数图象与几何变换,解(1)的关键是待定系数法,解(2)的关键是利用函数图象的平移规律.15.如图,已知∠A=∠D,∠C=∠F.请问∠1与∠2存在怎样的关系?请证明你的结论.【分析】先证AC∥DF得∠C=∠DEC,结合∠C=∠F可证CE∥BF,得∠2=∠3,根据∠1=∠3可得证.【解答】证明:∠1=∠2,理由:∵∠A=∠D,∴AC∥DF,∴∠C=∠DEC,∵∠C=∠F,∴∠F=∠DEC,∴CE∥BF,∴∠2=∠3,∵∠1=∠3,∴∠1=∠2.【点评】本题主要考查平行线的判定与性质,解题的关键是:熟记同位角相等⇔两直线平行,内错角相等⇔两直线平行,同旁内角互补⇔两直线平行.16.如图,四边形ABCD各顶点的坐标分别是A(0,0),B(8,0),C(6,4),D(3,6),求出四边形ABCD的面积.【分析】本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.【解答】解:过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+S EFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×3×6+×(4+6)×3+×2×4=28.故四边形ABCD的面积为28.【点评】此题主要考查了点的坐标的意义以及与图形相结合的具体运用.要掌握两点间的距离公式和图形有机结合起来的解题方法.17.如图所示,△ABC在正方形网格中,若点A的坐标为(0,3),按要求回答下列问题:(1)在图中建立正确的平面直角坐标系;(2)根据所建立的坐标系,写出点B和点C的坐标;(3)作出△ABC关于x轴的对称图形△A′B′C′.(不用写作法)【分析】(1)根据点A的坐标为(0,3),即可建立正确的平面直角坐标系;(2)观察建立的直角坐标系即可得出答案;(3)分别作点A,B,C关于x轴的对称点A′,B′,C′,连接A′B′,B′C′,C′A′则△A′B′C′即为所求.【解答】解:(1)所建立的平面直角坐标系如下所示:(2)点B和点C的坐标分别为:B(﹣3,﹣1)C(1,1);(3)所作△A'B'C'如下图所示.【点评】本题考查了轴对称变换作图,作轴对称后的图形的依据是轴对称的性质,基本作法是:①先确定图形的关键点;②利用轴对称性质作出关键点的对称点;③按原图形中的方式顺次连接对称点.18.某农场前年玉米和小麦的产量共200吨,去年采用了种植新技术,去年玉米和小麦的产量共222吨,其中玉米增产5%,小麦增产15%,该农场去年玉米和小麦的产量分别是多少吨?【分析】设农场去年计划生产小麦x吨,玉米y吨,利用去年计划生产小麦和玉米200吨,则x+y=200,再利用小麦超产15%,玉米超产5%,则实际生产了222吨,得出等式(1+5%)y+(1+15%)x=222,进而组成方程组求出答案.【解答】解:设农场去年计划生产玉米x吨,小麦y吨,根据题意可得:,解得:,则80×(1+5%)=84(吨),120×(1+15%)=138(吨),答:农场去年实际生产玉米84吨,小麦138吨.【点评】此题主要考查了二元一次方程组的应用,根据计划以及实际生产的粮食吨数得出等式是解题关键.19.如图,在△ABC中,D是BC上的一点,AC=4,CD=3,AD=5,AB=4.(1)求证:∠C=90°;(2)求BD的长.【分析】(1)根据勾股定理的逆定理可证∠C=90°;(2)在Rt△ACB中,先根据勾股定理得到BC的长,再根据线段的和差关系可求BD的长.【解答】(1)证明:∵AC2+CD2=42+32=25,AD2=52=25,∴AC2+CD2=AD2,∴△ACD是直角三角形,且∠C=90°;(2)解:∵在Rt△ABC中,∠C=90°,∴BC===8,∴BD=BC﹣CD=8﹣3=5.【点评】本题考查了勾股定理的逆定理,勾股定理,注意熟练掌握勾股定理的逆定理和勾股定理是解题的关键.20.甲、乙两名射击运动员进行射击比赛,两人在相同条件下,各射击10次,射击的成绩如图所示.根据统计图信息,整理分析数据如下:(1)补充表格中a,b,c的值,并求甲的方差s2;(2)运用表中的四个统计量,简要分析这两名运动员的射击成绩,若选派其中一名参赛,你认为应选哪名运动员?【分析】(1)由折线统计图得出具体数据,再根据中位数、众数和平均数的定义求解可得;(2)根据平均数、众数、中位数及方差的意义求解,只要合理即可.【解答】解:(1)a=×(6×2+7×7+9)=7,b=8,c=7,s2=×[(9﹣8)2+(10﹣8)2+(8﹣8)2+(7﹣8)2+(6﹣8)2+(8﹣8)2+(8﹣8)2+(10﹣8)2+(6﹣8)2+(8﹣8)2]=1.8.(2)∵甲的平均成绩、中位数与众数比乙的都高,∴应选甲运动员.【点评】本题考查的是折线统计图和方差、平均数、中位数、众数的综合运用.熟练掌握平均数的计算,理解方差的概念,能够根据计算的数据进行综合分析.21.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回,设汽车从甲地出发x(小时)时,汽车与甲地的距离为y(千米),y与x的函数关系如图所示,根据图象信息,解答下列问题;(1)这辆汽车的往返速度是否相同?请说明理由;(2)求返程中y与x之间的函数表达式;(3)求这辆汽车从甲地出发4(小时)时与甲地的距离.【分析】(1)根据题意和函数图象可以解答本题;(2)根据函数图象中的数据可以求得与x之间的函数表达式;(3)将x=4代入(2)中的函数解析式即可解答本题.【解答】解:(1)不相同,理由:因为去时用了2小时,返回时用了2.5小时,所以辆汽车的往返速度不相同;(2)设返回过程中y与x之间的函数关系式为y=kx+b,,解得,,∴y=﹣48x+240(2.5≤x≤5);(3)当x=4时,y=﹣48×4+240=48,答:这辆汽车从甲地出发4(小时)时与甲地的距离是48千米.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.22.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力.如图,有一台风中心沿东西方向AB由点A行驶向点B,已知点C为一海港,且点C与直线AB上两点A,B的距离分别为300km 和400km,又AB=500km,以台风中心为圆心周围250km以内为受影响区域.(1)海港C受台风影响吗?为什么?(2)若台风的速度为20km/h,台风影响该海港持续的时间有多长?【分析】(1)利用勾股定理的逆定理得出△ABC是直角三角形,进而利用三角形面积得出CD的长,进而得出海港C是否受台风影响;(2)利用勾股定理得出ED以及EF的长,进而得出台风影响该海港持续的时间.【解答】解:(1)海港C受台风影响.理由:如图,过点C作CD⊥AB于D,∵AC=300km,BC=400km,AB=500km,∴AC2+BC2=AB2.∴△ABC是直角三角形.∴AC×BC=CD×AB∴300×400=500×CD∴CD==240(km)∵以台风中心为圆心周围250km以内为受影响区域,∴海港C受到台风影响.(2)当EC=250km,FC=250km时,正好影响C港口,∵ED==70(km),∴EF=140km∵台风的速度为20km/h,∴140÷20=7(小时)即台风影响该海港持续的时间为7小时.【点评】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.23.当m,n是正实数,且满足m+n=mn时,就称点P(m,)为“完美点”.(1)若点E为完美点,且横坐标为2,则点E的纵坐标为1;若点F为完美点,且横坐标为3,则点F的纵坐标为2;(2)完美点P在直线y=x﹣1(填直线解析式)上;(3)如图,已知点A(0,5)与点M都在直线y=﹣x+5上,点B,C是“完美点”,且点B在直线AM上.若MC=,AM=4,求△MBC的面积.【分析】(1)把m=2和3分别代入m+n=,求出n即可;(2)求出两条直线的解析式,再把P点的坐标代入即可;(3)由m+n=mn变式为=m﹣1,可知P(m,m﹣1),所以在直线y=x﹣1上,点A(0,5)在直线y=﹣x+b上,求得直线AM:y=﹣x+5,进而求得B(3,2),根据直线平行的性质从而证得直线AM与直线y=x﹣1垂直,然后根据勾股定理求得BC的长,从而求得三角形的面积.【解答】解:(1)把m=2代入m+n=mn得:2+n=2n,解得:n=2,即==1,所以E的纵坐标为1;把m=3代入m+n=mn得:3+n=3n,解得:n=,即==2,所以F的纵坐标为2;故答案为:1,2;(2)设直线AB的解析式为y=kx+b,从图象可知:与x轴的交点坐标为(1,0)A(0,5),代入得:,解得:k=﹣1,b=5,即直线AB的解析式是y=﹣x+5,设直线BC的解析式为y=ax+c,从图象可知:与y轴的交点坐标为(0,﹣1),与x轴的交点坐标为(1,0),代入得:,解得:a=1,c=﹣1,即直线BC的解析式是y=x﹣1,∵P(m,),m+n=mn且m,n是正实数,∴除以n得:∴P(m,m﹣1)即“完美点”P在直线y=x﹣1上;故答案为:y=x﹣1;(3)∵直线AB的解析式为:y=﹣x+5,直线BC的解析式为y=x﹣1,∴,解得:,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=﹣x,而直线y=x ﹣1与直线y=x平行,直线y=﹣x+5与直线y=﹣x平行,∴直线AM与直线y=x﹣1垂直,∵点B是直线y=x﹣1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x﹣1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴∵,∴又∵,∴BC=1,∴S=BC×BM==.△MBC【点评】本题考查了一次函数的性质,直角三角形的判定,勾股定理的应用以及三角形面积的计算等,判断直线垂直,借助正比例函数是本题的关键.。

2018-2019学年八年级上学期期末质量检测数学试 题(含答案)

2018-2019学年八年级上学期期末质量检测数学试 题(含答案)

2018-2019学年第一学期期末考试八年级数学试卷一、选择题(每小题3分,共30分)1、下列四个手机APP图标中,是轴对称图形的是()A、B、C、D、2、下列图形中具有稳定性的是()A、正方形B、长方形C、等腰三角形D、平行四边形3、下列长度的三根木棒能组成三角形的是()A、1 ,2 ,4B、2 ,2 ,4C、2 ,3 ,4D、2 ,3 ,64、已知某细菌直径长约0.0000152米,那么该细菌的直径长用科学计数法可表示为()A、152×105米B、1.52×10﹣5米C、﹣1.52×105米D、1.52×10﹣4米5、下列运算正确的是()A、(a+1)2=a2+1B、a8÷a2=a4C、3a·(-a)2=﹣3a3D、x3·x4=x76、如图,△ABC中,AB=AC,D是BC中点,下列结论中不正确的是()A、AB=2BDB、AD⊥BCC、AD平分∠BACD、∠B=∠C第6题第8题7、如果(x+m)与(x-4)的乘积中不含x的一次项,则m的值为()A、4B、﹣4C、0D、18、如图,已知点A、D、C、F在同一直线上,AB=DE,AD=CF,且∠B=∠E=90°,判定△ABC≌△DEF的依据是()A、SASB、ASAC、AASD、HL中的m、n的值同时扩大到原来的5倍,则此分式的值()9、分式+A、不变B、是原来的C、是原来的5倍D、是原来的10倍10、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A、90°-αB、αC、90°+αD、360°-α11、若分式+有意义,则x的取值范围为。

12、分解因式:m2-3m=。

13、若点A(2,m)关于y轴的对称点是B(n,5),则mn的值是。

14、若正多边形的一个内角等于135°,那么这个正多边形的边数是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019学年八年级(上)期末数学试卷一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.(3分)下列计算正确的是()A.x6•x2=x12 B.x6÷x2=x3 C.(x2)3=x5D.(xy)5=x5y53.(3分)若一个多边形的内角和为540°,则这个多边形是()A.三角形B.四边形C.五边形D.六边形4.(3分)下列分解因式错误的是()A.m(x﹣y)+n(x﹣y)=(x﹣y)(m+n)B.x3﹣x2+x=x(x2﹣x)C.3mx﹣6my=3m(x﹣2y)D.x2﹣y2=(x+y)(x﹣y)5.(3分)下面各组线段中,能组成三角形的是()A.4,5,6 B.3,7,3 C.2,4,6 D.1,2,36.(3分)分式与的最简公分母是()A.6y B.3y2 C.6y2 D.6y37.(3分)要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠8.(3分)若x2+(k﹣1)x+64是一个完全平方式,那么k的值是()A.9 B.17 C.9或﹣7 D.17或﹣159.(3分)已知等腰三角形的两边长分别为7和5,则它的周长是()A.12 B.17 C.19 D.17或1910.(3分)若3x=4,3y=6,则3x﹣2y的值是()A.B.9 C.D.3二.填空题(共8小题,满分24分,每小题3分)11.(3分)在直角三角形中,若一个锐角为35°,则另一个锐角为.12.(3分)当x=时,分式的值为0.13.(3分)计算:(π﹣3.14)0=.14.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.15.(3分)把多项式ax2+2axy+ay2分解因式的结果是.16.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为°.17.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为.18.(3分)如图,Rt△ABC中,∠B=90°,∠A=30°,AB=5,D是AC的中点,P是AB上一动点,则CP+PD的最小值为.三.解答题(共8小题,满分66分)19.(8分)计算:(1)(2x+3y)(x﹣y);(2)(12x4y3+3x3y2﹣6xy)÷6xy.20.(6分)先化简,再求值:(2x﹣3y)2+(x+3y)(x﹣3y),其中x=2,y=5.21.(7分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC ≌△DEF.22.(7分)解方程:.23.(8分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.24.(10分)如图,在△ABC中,∠ABC的角平分线OB与∠ACB的角平分线OC相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.(1)请写出图中所有的等腰三角形,并给予证明;(2)若AB+AC=14,求△AMN的周长.25.(8分)某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?26.(12分)探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,①∠APB+∠CPD=°;②若BP=4cm,求证:△ABP≌△PCD;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=cm.(请直接写出答案)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.(3分)在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( )A .B .C .D .【解答】解:A 、是轴对称图形,故A 符合题意;B 、不是轴对称图形,故B 不符合题意;C 、不是轴对称图形,故C 不符合题意;D 、不是轴对称图形,故D 不符合题意.故选:A .2.(3分)下列计算正确的是( )A .x6•x 2=x12B .x6÷x2=x3C .(x2)3=x5D .(xy )5=x5y5【解答】解:A 、x6•x 2=x8,此选项错误;B 、x6÷x2=x4,此选项错误;C 、(x2)3=x6,此选项错误;D 、(xy )5=x5y5,此选项正确;故选:D .3.(3分)若一个多边形的内角和为540°,则这个多边形是( )A .三角形B .四边形C .五边形D .六边形【解答】解:(n ﹣2)•180°=540°,故n=5.所以这个多边形为五边形.故选:C .4.(3分)下列分解因式错误的是( )A .m (x ﹣y )+n (x ﹣y )=(x ﹣y )(m+n )B .x3﹣x2+x=x (x2﹣x )C .3mx ﹣6my=3m (x ﹣2y )D .x2﹣y2=(x+y )(x ﹣y )【解答】解:A 、m (x ﹣y )+n (x ﹣y )=(x ﹣y )(m+n ),正确;B 、x3﹣x2+x=x (x2﹣x+1),错误;C 、3mx ﹣6my=3m (x ﹣2y ),正确;D 、x2﹣y2=(x+y )(x ﹣y ),正确,故选:B .5.(3分)下面各组线段中,能组成三角形的是( )A .4,5,6B .3,7,3C .2,4,6D .1,2,3【解答】解:A 、4+5>6,满足三角形的三边关系,所以A 能组成三角形;B 、3+3=7,不满足三角形的三边关系,所以B 不能组成三角形;C 、2+6=6,不满足三角形的三边关系,所以C 不能组成三角形;D 、1+2=3,不满足三角形的三边关系,所以D 不能组成三角形;故选:A .6.(3分)分式与的最简公分母是()A.6y B.3y2 C.6y2 D.6y3【解答】解:分式与的分母分别是3y、2y2,故最简公分母是6y2;故选:C.7.(3分)要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【解答】解:∵3x﹣7≠0,∴x≠.故选:D.8.(3分)若x2+(k﹣1)x+64是一个完全平方式,那么k的值是()A.9 B.17 C.9或﹣7 D.17或﹣15【解答】解:∵x2+(k﹣1)x+64是一个完全平方式,∴k﹣1=±2×8,即k﹣1=±16,解得:k=17或k=﹣15,故选:D.9.(3分)已知等腰三角形的两边长分别为7和5,则它的周长是()A.12 B.17 C.19 D.17或19【解答】解:当腰为7时,则三角形的三边长分别为7、7、5,满足三角形的三边关系,周长为19;当腰为5时,则三角形的三边长分别为5、5、7,满足三角形的三边关系,周长为17;综上可知,等腰三角形的周长为19或17.故选:D.10.(3分)若3x=4,3y=6,则3x﹣2y的值是()A.B.9 C.D.3【解答】解:3x﹣2y=3x÷(3y)2=4÷62=.故选:A.二.填空题(共8小题,满分24分,每小题3分)11.(3分)在直角三角形中,若一个锐角为35°,则另一个锐角为55°.【解答】解:∵在直角三角形中,一个锐角为35°,∴另一个锐角=90°﹣35°=55°.故答案为:55°.12.(3分)当x=3时,分式的值为0.【解答】解:由题意,得x﹣3=0且x﹣4≠0,解得x=3,故答案为:3.13.(3分)计算:(π﹣3.14)0=1.[来源:学科网]【解答】解:(π﹣3.14)0=1,故答案为1.14.(3分)PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.15.(3分)把多项式ax2+2axy+ay2分解因式的结果是a(x+y)2.【解答】解:原式=a(x2+2xy+y2)=a(x+y)2.故答案为:a(x+y)2.16.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为30°.【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,∵∠BCB′=∠A′CB′﹣∠A′CB,∴∠ACA′=∠ACB﹣∠A′CB,∴∠A CA′=∠BCB′=30°.故答案为:30°17.(3分)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为30°.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵DE是AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=40°,∴∠CBE=∠ABC﹣∠EBA=30°,故答案为:30°.18.(3分)如图,Rt△ABC中,∠B=90°,∠A=30°,AB=5,D是AC的中点,P是AB上一动点,则CP+PD的最小值为5.【解答】解:作C关于AB的对称点C',连接C′D,∵∠B=90°,∠A=30°,∴∠ACB=60°,∵AC=AC',∴△ACC'为等边三角形,∴CP+PD=DP+PC'为C'与直线AC之间的连接线段,∴最小值为C'到AC的距离=AB=5,故答案为:5.三.解答题(共8小题,满分66分)19.(8分)计算:(1)(2x+3y)(x﹣y);(2)(12x4y3+3x3y2﹣6xy)÷6xy.【解答】解:(1)原式=2x2﹣2xy+3xy﹣3y2=2x2+xy﹣3y2;(2)(12x4y3+3x3y2﹣6xy)÷6xy=2x3y2+0.5x2y﹣1.20.(6分)先化简,再求值:(2x﹣3y)2+(x+3y)(x﹣3y),其中x=2,y=5.【解答】解:原式=4x2﹣12xy+9y2+x2﹣9y2=5x2﹣12xy,当x=2、y=5时,原式=5×22﹣12×2×5=20﹣120=﹣100.21.(7分)如图,已知点E,C在线段BF上,BE=CF,AB∥DE,∠ACB=∠F.求证:△ABC ≌△DEF.【解答】证明:∵BE=CF,∴BE+CE=CF+CE,∴BC=EF,又∵AB∥DE,∴∠B=∠DEF,在△ABC和△DEF中,,∴△ABC≌△DEF(AS).22.(7分)解方程:.【解答】解:去分母得:2x+2x﹣2=3,移项合并得:4x=5,解得:x=1.25,经检验x=1.25是分式方程的解.23.(8分)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;(3)写出点A1,B1,C1的坐标.【解答】解:(1)如图所示:△ABC的面积:×3×5=7.5;(2)如图所示:(3)A1(1,5),B1(1,0),C1(4,3).24.(10分)如图,在△ABC中,∠ABC的角平分线OB与∠ACB的角平分线OC相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.(1)请写出图中所有的等腰三角形,并给予证明;(2)若AB+AC=14,求△AMN的周长.【解答】解:(1)△MBO和△NOC是等腰三角形,∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∴△MBO和△NOC是等腰三角形;(2)∵OB平分∠ABC,∴∠MBO=∠OBC,∵MN∥BC,∴∠MOB=∠OBC,∴∠MBO=∠MOB,∴MO=MB,同理可证:ON=NC,∵△AMN的周长=AM+MO+ON+AN,∴△AMN的周长=AM+MB+AN+NC=AB+AC=14.25.(8分)某校为了丰富学生的校园生活,准备购进一批篮球和足球,其中篮球的单价比足球的单价多40元,用1500元购进的篮球个数与900元购进的足球个数相同,篮球与足球的单价各是多少元?【解答】解:设篮球的单价为x元,依题意得,=,解得:x=100,经检验:x=100是原分式方程的解,且符合题意,则足球的价钱为:100﹣40=60(元).答:篮球和足球的单价分别为100元,60元.26.(12分)探究题:如图,AB⊥BC,射线CM⊥BC,且BC=5cm,AB=1cm,点P是线段BC (不与点B、C重合)上的动点,过点P作DP⊥AP交射线CM于点D,连结AD.(1)如图1,①∠APB+∠CPD=90°;②若BP=4cm,求证:△ABP≌△PCD;(2)如图2,若DP平分∠ADC,试猜测PB和PC的数量关系,并说明理由;(3)若△PDC是等腰三角形,则CD=4cm.(请直接写出答案)【解答】解:(1)∵DP⊥AP,∴∠APD=90°,∴∠APB+∠CPD=90°,故答案为:90;②∵BC=5cm,BP=4cm,∴PC=1cm,∴AB=PC,∵∠APB+∠CPD=90°,∠APB+∠BAP=90°,∴∠BAP=∠CPD,在△ABP和△PCD中,,∴△ABP≌△PCD;(2)PB=PC,理由:如图2,延长线段AP、DC交于点E,∵DP平分∠ADC,∴∠ADP=∠EDP.∵DP⊥AP,∴∠DPA=∠DPE=90°,在△DPA和△DPE中,,∴△DP A≌△DPE(ASA),∴PA=PE.∵AB⊥BP,CM⊥CP,∴∠ABP=∠ECP=Rt∠.在△APB和△EPC中,,∴△APB≌△EPC(AAS),∴PB=PC;(3)∵△PDC是等腰三角形,∴△PCD为等腰直角三角形,即∠DPC=45°,又∵DP⊥AP,∴∠APB=45°,∴BP=AB=1cm,∴PC=BC﹣BP=4cm,∴CD=CP=4cm,故答案为:4.。

相关文档
最新文档