九年级(上)数学第一次月考试题(11月份)
内蒙古包头市第三十六中学2024-2025学年九年级上学期第一次月考数学试题

内蒙古包头市第三十六中学2024-2025学年九年级上学期第一次月考数学试题一、单选题1.下列方程是关于x 的一元二次方程的是( )A .33x x +=B .2230x x --=C .()270x x x -+=D .20ax bx c ++=2.用配方法解一元二次方程2870x x ++=,则方程可变形为( )A .()2816x -=B .()2857x +=C .()249x -=D .()249x += 3.如图,正方形ABCD 中,以对角线AC 为一边作菱形AEFC ,则∠F AB 等于( ).A .22.5°B .45°C .30°D .135°4.用如图所示的A 、B 两个转盘进行“配紫色”游戏(红色和蓝色在一起配成紫色),A 转盘是二等分,B 转盘是三等分,分别转动两个转盘各一次(指针指向分界线则重新转动转盘),则配成紫色的概率为( )A .16B .14 C .13 D .125.观察下面的表格,一元二次方程2 1.4x x -=的一个近似解是( )A . 0.11B .1.6C .1.7D .1.86.若m 是一元二次方程2520x x --=的一个实数根,则220255m m -+的值是( ) A .2020 B .2027 C .2021 D .20237.如图是某公园在一长35m ,宽23m 的矩形湖面上修建的等宽的人行观景曲桥,它的面积恰好为原矩形湖面面积的15,求人行观景曲桥的宽.若设人行观景曲桥的宽为m x ,则x 满足的方程为( )A .()()135********x x --=⨯⨯ B .()()2352322335x x x --+=⨯C .()()4352323355x x --=⨯⨯ D .()()35232335x x --=⨯8.下列命题中,真命题是( )A .两对角线相等的四边形是矩形B .两对角线互相垂直的四边形是菱形C .两对角线互相垂直平分且相等的四边形是正方形D .一组对边相等另一组对边平行的四边形是平行四边形9.把一张长方形纸片ABCD 按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若4AB =,8BC =,则DF 的长为( )A .3B .4C .4.8D .510.把边长为1的正方形ABCD 绕点A 逆时针旋转45︒得到正方形AB C D ''',边B C ''与DC 交于点O ,则四边形AB OD '的面积为( )A .2B .C 1D .2二、填空题11.一元二次方程2230x x -+=的两根分别为1x 和2x ,则12122x x x x +-为.12.在一个不透明的袋子中有除颜色外均相同的 5 个红球和若干白球,通过多次摸球试 验后,发现摸到红球的频率约为 0.25,估计袋中白球有个.13.关于x 的一元二次方程22(3)95m x m x x -+=+化为一般形式后不含一次项,则m 的值为 . 14.如图,在矩形ABCD 中,,P Q 分别是,BC DC 上的点,,E F 分别是AP PQ ,的中点.12,5BC DQ ==,在点P 从B 移动到C (点Q 不动)的过程中,则线段EF =.15.如图,在ABC V 中,8AB =,12BC =,点D 、E 分别是边AB AC 、的中点,点F 是线段DE 上的一点,连接AF BF 、,若90AFB ∠=︒,则线段EF 的长为.16.如图,45BOD ∠=︒,BO DO =,点A 在OB 上,四边形ABCD 是矩形,连接AC ,BD 交于点E ,连接OE 交AD 于点F .下列4个判断:①OE BD ⊥;②30ADB ∠=︒;③DF =;④若点G 是线段OF 的中点,则AEG △为等腰直角三角形,其中,判断正确的是.(填序号)三、解答题17.(1)210x x --=;(2)()()2323x x x -=-;(3)()()1312x x -+=.18.广东多地推进林长制,筑牢粤北生态屏障,通过三“长”联动,实现点“绿”成金.现将质地大小完全相同,上面依次标有“点”“绿”“成”“金”字样的四个彩球放入同一个不透明的袋子.(1)叶子在袋子中随机摸出一个彩球,摸中标有“绿”字彩球的概率为;(2)若叶子在袋子中随机摸出一个彩球不放回,再摸出一个彩球,请用画树状图或列表法求出两次摸球能拼出“成金”的概率.19.已知关于x 的方程22210x kx k -+-=.(1)若方程有一根为5,求k 的值;(2)求证:不论k 取何值,方程总有两个不相等的实数根.20.如图,在平行四边形ABCD 中,过点D 作DE AB ⊥于点E ,CF AE =,连接AF(1)求证:四边形BFDE 是矩形;(2)若AF 平分DAB ∠,3CF =,5DF =,求四边形BFDE 的面积.21.如图,某小区建一长方形电动车充电棚,一边靠墙(墙长15米),另三边用总长25米的栏杆围成,留1米宽的门,若想要建成面积为80平方米的电动车充电棚,则车棚垂直于墙的一边的长为多少米?22.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销.销售量持续走高.在售价不变的基础上,三月底的销售量达到400件.设二、三这两个月销售量的月平均增长率不变.(1)求二、三这两个月销售量的月平均增长率.(2)从四月份起,商场决定采用降价促销的方式回馈顾客,经调查发现,该商品每降价1元,销售量增加5件,当商品降价多少元时,商场获利4250元?23.ABC V 中,90B ??,5cm AB =,6cm BC =,点P 从点A 开始沿边AB 向终点B 以1cm/s 的速度移动,与此同时,点Q 从点B 开始沿边BC 向终点C 以2cm/s 的速度移动.如果点P 、Q 分别从点A 、B 同时出发,当点Q 运动到点C 时,两点停止运动.设运动时间为t 秒.(1)填空:BQ =__________,PB =__________(用含t 的代数式表示);(2)是否存在t 的值,使得PBQ V 的面积等于24cm ?若存在,请求比此时t 的值;若不存在,请说明理由.(3)是否存在t 的值,使得5cm PQ =?若存在,请求出此时t 的值;若不存在,请说明理由.。
九年级数学第一次月考卷(北师大版)(全解全析)【测试范围:第一章~第三章】A4版

2024-2025学年九年级数学上学期第一次月考卷基础知识达标测(考试时间:120分钟试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:第一章~第三章(北师大版)。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、单选题1.下列方程是关于x的一元二次方程的是().A.1+x=2B.x2―2y=0xC.x2+2x=x2―1D.x2=0【答案】D【分析】本题考查了一元二次方程的定义,掌握一元二次方程的定义是解题的关键.根据一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程,逐项分析判断即可求解.+x=2,是分式方程,不是一元二次方程;故该选项不符合题意;【详解】解:A.1xB.x2―2y=0,含有两个未知数,不是一元二次方程,故该选项不符合题意;C.x2+2x=x2―1,化简后为:2x+1=0,不是一元二次方程,故该选项不符合题意;D.x2=0,是一元二次方程,故该选项符合题意;故选D.2.下列事件中,属于必然事件的是()A.打开电视,正在播放跳水比赛B.一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,至少有一个是红球C.抛掷两枚质地均匀的骰子,点数和为6D.一个多边形的内角和为600°【答案】B【分析】本题考查事件的分类,必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,由此对每一项进行分析即可.【详解】A,打开电视,可能播放跳水比赛,也可能不播放,因此该事件是随机事件;B,一个不透明的袋子中装有3个红球和1个白球,除颜色外,这些球无其他差别,随机摸出两个球,可能是2个红球,也可能是1个红球和1个白球,因此至少有一个是红球,该事件是必然事件;C,抛掷两枚质地均匀的骰子,点数和为可能是6,也可能不是6,因此该事件是随机事件;D,设一个n边形的内角和为600°,则(n―2)⋅180°=600°,解得n=16,不是整数,因此这种情3况不存在,该事件是不可能事件;故选B.3.下列命题是假命题的是()A.有一组邻边相等的矩形是正方形B.有一组邻边相等的四边形是平行四边形C.有三个角是直角的四边形是矩形D.对角线互相垂直且平分的四边形是菱形【答案】B【分析】根据正方形的判定、平行四边形的判定、矩形和菱形的判定判断即可.【详解】解:A、有一组邻边相等的矩形是正方形,是真命题;B、有一组邻边相等的四边形不一定是平行四边形,如筝形,原命题是假命题;C、有三个角是直角的四边形是矩形,是真命题;D、对角线互相垂直且平分的四边形是菱形,是真命题;故选:B.【点睛】本题考查的是命题的真假判断,主要包括平行四边形的判定和特殊平行四边形的判定.判断命题的真假关键是要熟悉课本中的性质定理.4.已知m是方程x2―x―4=0的一个根,则―2m2+2m的值为()A.4B.―4C.8D.―8【答案】D【分析】根据一元二次方程的根的定义,可知m2―m=4,然后整体代入求值即可.【详解】解:∵m是方程x2―x―4=0的一个根,∴m2―m―4=0,整理,可得m2―m=4,∴―2m2+2m=―2(m2―m)=―2×4=―8.故选:D.【点睛】本题主要考查了一元二次方程的根的定义以及代数式求值,理解一元二次方程的根的定义是解题关键.5.某农机厂4月份生产零件50万个,第二季度共生产零件182万个,设该厂5,6月份平均每月的增长率为x,那么x满足的方程是()A.50(1―x)2=182B.50+50(1+x)+50(1+x)2=182C.50(1+2x)=182D.50+50(1+x)+50(1+2x)=182【答案】B【分析】本题主要考查一元二次方程的增长率问题,根据题意分别表示出五月份,六月份生产零件的量,最后相加列出等式即可.【详解】解:根据题意,该厂五月份生产零件为:50(1+x),则该厂六月份生产零件为:50(1+x)(1+x)=50(1+x)2,故该厂第二季度共生产零件为:50+50(1+x)+50(1+x)2=182.故选:B6.如图,在3×3的正方形网格中,已有两个小正方形被凃黑,再将图中剩余的小正方形中任意一个涂黑,则三个被涂黑的小正方形能构成轴对称图形的概率是()A.17B.37C.47D.57【答案】B【分析】本题考查了概率公式,轴对称图形,熟记概率公式和能识别轴对称图形是解题的关键.分别将7个空白处涂黑,判断出所得图案是轴对称图形的个数,再根据概率公式进行计算.【详解】解:如图①②③任意一处涂黑时,图案为轴对称图形,∵共有7个空白处,将①②③处任意一处涂黑,图案为轴对称图形,共3处,∴构成轴对称图形的概率是3,7故选:B7.若1和―1有一个是关于x的方程x2+bx+a=0的根,则一元二次方程(a+1)x2+2bx+(a+1)=0根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.有两个实数根D.没有实数根【答案】B【分析】本题考查了一元二次方程的根,一元二次方程的根的判别式.熟练掌握:当Δ=0时,一由(a+1)x2+2bx+(a+1)=0,可知Δ=4b2―4(a+1)2,由题意,当1是方程的根时,b=―(1+a),则Δ=0,此时,方程有两个相等的实数根;当―1是方程的根时,b=1+a,则Δ=0,此时,方程有两个相等的实数根;然后作答即可.【详解】解:∵(a+1)x2+2bx+(a+1)=0,∴Δ=4b2―4(a+1)2,∵1和―1有一个是关于x的方程x2+bx+a=0的根,当1是方程的根时,则1+b+a=0,解得,b=―(1+a),∴Δ=4b2―4(a+1)2=4[―(1+a)]2―4(a+1)2=0,此时,方程有两个相等的实数根;当―1是方程的根时,则1―b+a=0,解得,b=1+a,∴Δ=4b2―4(a+1)2=4(1+a)2―4(a+1)2=0,此时,方程有两个相等的实数根;综上,方程有两个相等的实数根,故选:B.8.如图,菱形ABCD的顶点A,B的坐标分别为1,2,―2,―1,BC∥x轴,将菱形ABCD平移,使点B与原点O重合,则平移后点D的对应点的坐标为()A.3―1,2B.2,3)C.+1,2)D.+3,3)【答案】D【分析】本题考查了菱形的性质,坐标与图形,勾股定理以及平移等知识,先利用勾股定理求出AB,然后利用菱形的性质求出点D的坐标,最后利用平移的性质求解即可.【详解】解∶∵A,B的坐标分别为1,2,―2,―1,∴AB==∵菱形ABCD,∴AD=AB=AD∥BC,又BC∥x轴,∴AD∥x轴,∴D的坐标为(1+,∵菱形ABCD平移,使点B与原点O重合,∴菱形ABCD向右平移2个单位,向上平移1个单位,∴平移后点D的对应点的坐标为3,3),故选∶D.9.如图,在平行四边形ABCD中,∠C=135°,AB=2,AD=3,点H,G分别是CD,BC上的动点,连接AH,GH.E,F分别为AH,GH的中点,则EF的最小值是( )A.2B C D.【答案】C【分析】作AQ⊥BC,根据中位线定理可推出EF=12AG,进一步可得当AG⊥BC时,AG有最小值,此时EF的值也最小.据此即可求解.【详解】解:作AQ⊥BC,如图:∵E,F分别为AH,GH的中点∴EF=12AG故:当AG⊥BC时,AG有最小值,此时EF的值也最小∴EF的最小值是12AQ∵∠C=135°,AB=2∴∠B=180°―135°=45°∴AQ=AB×sin45°=∴EF故选:C【点睛】本题考查了中位线定理、平行四边形的性质、解直角三角形等.掌握相关结论即可.10.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a―b+c=0,则b2―4ac≥0;②若方程ax2+c=0有两个不相等的实数根,则方程ax2+bx+c=0必有两个不相等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若x0是一元二次方程ax2+bx+c=0的根,则b2―4ac=(2ax0+b)2;⑤若方程ax2+bx+c=0(a≠0)两根为x1,x2且满足x1≠x2≠0,则方程cx2+bx+a=0(c≠0),必有实数根1x1,1x2.其中,正确的是( )A.②④⑤B.②③⑤C.①②③④⑤D.①②④⑤【答案】D【分析】一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实数根,则Δ=b2―4ac>0;有两个相等的实数根,则Δ=b2―4ac=0;没有实数根,则Δ=b2―4ac<0;若一元二次方程ax2+bx+c=0(a≠0)的两个根为x1,x2,则x1+x2=―ba ,x1·x2=ca.【详解】解:①若a―b+c=0,则x=―1是一元二次方程ax2+bx+c=0的解∴Δ=b2―4ac≥0,故①正确;②∵方程ax2+c=0有两个不相等的实数根∴Δ=―4ac>0∴b2―4ac≥4ac>0∴方程ax2+bx+c=0必有两个不相等的实数根,故②正确;③∵c是方程ax2+bx+c=0的一个根∴ac2+bc+c=0当c=0时,无法得出ac+b+1=0,故③错误;④∵x0是一元二次方程ax2+bx+c=0的根∴x0=∴±=2ax0+b∴b2―4ac=(2ax0+b)2,故④正确;⑤∵方程ax2+bx+c=0(a≠0)两根为x1,x2∴x1+x2=―ba ,x1·x2=ca∴b=―a(x1+x2),c=ax1x2∴方程cx2+bx+a=0(c≠0)可化为:ax1x2x2―a(x1+x2)x+a=0(c≠0)即:x1x2x2―(x1+x2)x+1=0∴(x1x―1)(x2x―1)=0∴x=1x1或x=1x2,故⑤正确;综上分析可知,正确的是①②④⑤.故选:D【点睛】本题考查了一元二次方程根的判别式和根与系数的关系.熟记相关结论是解题关键.第II卷(非选择题)二、填空题11.已知关于x的一元二次方程(m―2)x2―2x+1=0有实数根,则实数m的取值范围是.【答案】m≤3且m≠2【分析】本题考查了一元二次方程的定义及根的判别式,根据一元二次方程的定义及根的判别式可得,解不等式即可求解,掌握一元二次方程的定义及根的判别式与根的关系是解题的关键.【详解】解:由题意得,Δ=(―2)2―4(m―2)×1=12―4m≥0,且m―2≠0,∴m≤3且m≠2.12.在一个不透明的盒子中装有6个红球、若干个黑球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是红球的概率为23,则盒子中黑球的个数为.【答案】3【分析】设黑球的个数为x个,根据概率的求法得:66+x =23,解方程即可求出黑球的个数.【详解】解:设黑球的个数为x个根据题意得:66+x =23解得:x=3经检验:x=3是原分式方程的解∴黑球的个数为3故答案为:3.【点睛】本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.13.把关于x的一元二次方程x²―8x+c=0配方,得(x―m)²=11,则c+m=.【答案】9【分析】本题考查了配方法解一元二次方程;把常数项c移项后,在左右两边同时加上一次项系数8的一半的平方得(x―4)2=16―c,进而得出c=5,m=4,即可求解.【详解】解:x2―8x+c=0配方,得(x―4)2=16―c∴m=4,16―c=11∴c=5∴c+m=9,故答案为:9.14.如图,在Rt△ABC中,∠ACB=90°,且Rt△ABC的周长是12cm,斜边上的中线CD长为52cm,则S△ABC=.【答案】6cm2【分析】先根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=5cm,再利用勾股定理可得AC2 +BC2=25cm2,利用三角形的周长公式可得AC+BC=7cm,然后利用完全平方公式可得AC⋅BC的值,最后利用三角形的面积公式求解即可得.cm,【详解】解:∵在Rt△ABC中,斜边上的中线CD长为52∴AB=2CD=5cm,∴AC2+BC2=AB2=25(cm2),∵Rt△ABC的周长是12cm,∴AC+BC+AB=AC+BC+5=12,∴AC+BC=7(cm),×(72―25)=12(cm2),∴AC⋅BC=AC+BC)2―(AC2+BC2)=12AC⋅BC=6cm2,则S△ABC=12故答案为:6cm2.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半、勾股定理、完全平方公式等知识点,熟练掌握直角三角形斜边上的中线等于斜边的一半是解题关键.15.如图,在矩形ABCD中,AB=4,AD=3.P是射线AB上一动点,将矩形ABCD沿着PD对折,点A的对应点为A′.当P,A′,C三点在同一直线上时,则AP的长.【答案】4±【分析】分类讨论:当点P在AB上时,由折叠的性质得AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,利用勾股定理求得A′C=AP=A′P=x,则PB=4―x,PC=x+定理列方程求解即可;当点P在AB的延长线上时,由折叠的性质得∠A=∠A′=90°,AP=A′P,AD=A′D=3,利用勾股定理求得A′C=AP=A′P=a,则CP=a―BP=a―4,利用勾股定理列方程求解即可.【详解】解:如图,当点P在AB上时,由折叠的性质得,AD=A′D=3,AP=A′P,∠A=∠DA′P=90°,∴∠DA′C=90°,在Rt△DA′C中,A′C==设AP=A′P=x,则PB=4―x,PC=x+在Rt△BCP中,BC2+BP2=PC2,即32+(4―x)2=(x+2,解得x=4―∴AP=4―如图,当点P在AB的延长线上时,由折叠的性质得,∠A=∠A′=90°,AP=A′P,AD=A′D=3,在Rt△A′DC中,A′C==设AP=A′P=a,则CP=a―BP=a―4,在Rt△BCP中,BC2+BP2=CP2,即32+(a―4)2=(a―2,解得a=4+综上所述,AP=±+4,故答案为:4±【点睛】本题考查矩形的性质、折叠的性质、勾股定理、解一元一次方程,运用分类讨论思想解决问题是解题的关键.16.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图所示放置,点A1,A2,A3,…,在直线y=x+2上,点C1,C2,C3,…在x轴上,则B2023的坐标是.【答案】(22024―2,22023)【分析】利用一次函数图象上点的坐标特征及正方形的性质可得出B1,B2,B3,……,的坐标,根据点的坐标的变化找出变化规律,再代入n=2023即可得出结论.【详解】解:∵直线y=x+2,当x=0时,y=2,∴A1的坐标为(0,2).∵四边形A1B1C1O为正方形,∴B1的坐标为(2,2),C1的坐标为(2,0).当x=2时,y=4,∴A2的坐标为(2,4),∵四边形A2B2C2C1为正方形,∴B2的坐标为(6,4),C2的坐标为(6,0).同理,可知:B3的坐标为(14,8),……,∴B n的坐标为(2n+1―2,2n)(n为整数),∴点B2023的坐标是(22024―2,22023).故答案为:(22024―2,22023).【点睛】本题考查了一次函数图象上点的坐标特征,正方形的性质及规律型,解题的关键是根据点的坐标的变化找出变化规律.三、解答题17.解方程:(1)x2―4x―1=0.(2) x(x―1)+2=2x【答案】(1)x1=2+2=2―(2)x1=2,x2=1【分析】(1)利用配方法解方程即可;(2)利用因式分解法解方程即可.【详解】(1)x2―4x―1=0x2―4x=1x2―4x+4=1+4(x―2)2=5x―2=±x1=2x2=2―(2)x(x―1)+2=2xx(x―1)+2―2x=0x(x―1)―2(x―1)=0(x―2)(x―1)=0x1=2,x2=1【点睛】本题考查了解一元二次方程,选择合适的方法是解题的关键.18.小明的手机没电了,现有一个只含A,B,C,D四个同型号插座的插线板(如图,假设每个插座都适合所有的充电插头,且被选中的可能性相同),请计算:(1)若小明随机选择一个插座插入,则插入插座C的概率为______;(2)现小明同时对手机和学习机两种电器充电,请用列表或画树状图的方法计算两种电器插在不相邻的插座的概率.【答案】(1)14(2)12【分析】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.(1)直接利用概率公式计算;(2)画树状图展示所有12种等可能的结果数,再找出两个插头插在不相邻插座的结果数,然后根据概率公式计算.【详解】(1)小明随机选择一个插座插入,则插入A 的概率=14;故答案为:14;(2)画树状图为:共有12种等可能的结果数,其中两个插头插在不相邻插座的结果数为6,所以两个插头插在不相邻插座的概率=612=12.19.如图,用长为34米的篱笆,一面利用墙(墙的最大可用长度为20米),围成中间隔有一道篱笆的长方形花圃,为了方便出入,在建造篱笆花圃时,在BC 上用其他材料做了宽为1米的两扇小门(如图),设花圃垂直于墙的边AB 长为x 米.(1)用含x 的代数式表示BC ;(2)当AB 为多少米时,所围成花圃面积为105平方米?【答案】(1)(36―3x )米(2)当AB 为7米时,所围成花圃面积为105平方米【分析】(1)用绳子的总长减去三个AB 的长,然后加上两个门的长即可表示出BC ;(2)由(1)得花圃长BC=36―3x,宽为x,然后再根据面积为105,列一元二次方程方程解答即可.【详解】(1)解:设花圃垂直于墙的边AB长为x米,则长BC=34―3x+2=36―3x(米)故答案为:(36―3x);(2)由题意可得:(36―3x)x=105解得:x1=5,x2=7∵当AB=5时,BC=36―3×5=21>20,不符合题意,故舍去;当AB=7时,BC=36―3×7=15<20,符合题意,∴AB=7(米).答:当AB为7米时,所围成花圃面积为105平方米.【点睛】本题主要考查一元二次方程的应用,弄清题意、用x表示出BC是解答本题的关键.20.已知关于x的一元二次方程x2+6x―m2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x1,x2满足x1+2x2=―5,求m的值.【答案】(1)见解析(2)m=±【分析】(1)根据一元二次方程根的判别式,代入计算即可解答;(2)根据一元二次方程根与系数的关系,求得x1,x2,再将其代入求得m的值即可.【详解】(1)证明:∵在方程x2+6x―m2=0中,Δ=62―4×1×(―m2)=36+4m2>0,∴该方程有两个不相等的实数根.(2)解:∵该方程的两个实数根分别为x1,x2,∴x1+x2=―6①,x1⋅x2=―m2②.∵x1+2x2=―5③,∴联立①③,解得x1=―7,x2=1.∴x1⋅x2=―7=―m2,解得m=±【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,熟知相关公式是解题的关键.21.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE 于点F,连接AE、CF.(1)求证:四边形AECF是菱形;(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.【答案】(1)见解析(2)AB=【分析】(1)由题意可得△AFD≌△CED(AAS),则AF=EC,根据“一组对边平行且相等的四边形是平行四边形”可得四边形AECF是平行四边形;又EF垂直平分AC,根据垂直平分线的性质可得AF=CF,根据“有一组邻边相等的平行四边形是菱形”可得结论;(2)过点A作AG⊥BC于点G,根据题意可得∠AEG=60°,AE=2,则BG=AG=AB=BG=【详解】(1)证明:在△ABC中,点D是AC的中点,∴AD=DC,∵AF∥BC,∴∠FAD=∠ECD,∠AFD=∠CED,∴△AFD≌△CED(AAS),∴AF=EC,∴四边形AECF是平行四边形,又EF⊥AC,点D是AC的中点,即EF垂直平分AC,∴平行四边形AECF是菱形.(2)解:如图,过点A作AG⊥BC于点G,由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,∴∠AEB=∠FAE=60°,∵AG⊥BC,∴∠AGB=∠AGE=90°,∴∠GAE=30°,AE=1,AG==∴GE=12∵∠B=45°,∴∠GAB=∠B=45°,∴BG=AG=∴AB==.【点睛】本题主要考查菱形的性质与判定,含30°角的直角三角形的三边关系,等腰直角三角形的性质与判定等内容,根据45°,30°等特殊角作出正确的垂线是解题关键.22.如图,在Rt△ABC中,AC=24cm,BC=7cm,点P在BC上从B运动到C(不包括C),速度为2cm/s;点Q在AC上从C运动到A(不包括A),速度为5cm/s.若点P,Q分别从B,C同时出发,当P,Q两点中有一个点运动到终点时,两点均停止运动.设运动时间为t秒,请解答下列问题,并写出探索的主要过程.(1)当t为何值时,P,Q两点的距离为?(2)当t 为何值时,△PCQ 的面积为15cm 2【答案】(1)经过1秒,P ,Q 两点的距离为(2)经过1.5秒或2秒,△PCQ 的面积为15cm 2【分析】本题考查一元二次方程的应用,勾股定理.熟练掌握勾股定理,列出一元二次方程,是解题的关键.(1)设经过t 秒,P ,Q 两点的距离为,勾股定理列式求解即可;(2)利用S △PCQ =12PC ⋅CQ ,列式计算即可.【详解】(1)解:设经过t 秒,P ,Q 两点的距离为,由题意,得:BP =2t cm ,CQ =5t cm ,∵在Rt △ABC 中,AC =24cm ,BC =7cm ,∴CP =BC ―BP =(7―2t )cm ,由勾股定理,得:CP 2+CQ 2=PQ 2,即:(7―2t )2+(5t )2=2,解得:t 1=1,t 2=―129(舍去);∴经过1秒,P ,Q 两点的距离为;(2)解:设经过t 秒,△PCQ 的面积为15cm 2,此时:BP =2t cm ,CQ =5t cm ,则:CP =BC ―BP =(7―2t )cm ,∴S △PCQ =12PC ⋅CQ =12(7―2t )⋅5t =15,解得:t 1=2,t 2=1.5,∴经过1.5秒或2秒,△PCQ 的面积为15cm 2.23.暑假期间某景区商店推出销售纪念品活动,已知纪念品每件的进货价为30元,经市场调研发现,当该纪念品的销售单价为40元时,每天可销售280件;当销售单价每增加1元,每天的销售数量将减少10件.(销售利润=销售总额-进货成本)(1)若该纪念品的销售单价为45元时则当天销售量为 件.(2)当该纪念品的销售单价为多少元时,该产品的当天销售利润是2610元.(3)该纪念品的当天销售利润有可能达到3700元吗?若能,请求出此时的销售单价;若不能,请说明理由.【答案】(1)230(2)59元或39元(3)不可能达到3700元,理由见解析【分析】本题考查一元二次方程的应用,找准等量关系是解题的关键,正确列出一元二次方程是解题的关键.(1)根据当天销售量=280―10×增加的销售单价,即可得到答案;(2)设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,列出一元二次方程即可得到答案;(3)设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,列出一元二次方程根据根的判别式判断即可.【详解】(1)解:280―(45―40)×10=230(件),故答案为:230;(2)解:设该纪念品的销售单价为x元,则当天的销售利润为[280―(x―10)×10]件,依题意得(x―30)[280―(x―40)×10]=2610,整理得x2―98x+2301=0,整理解得x1=39,x2=59,答:当该纪念品的销售单价定价为59元或39元时,该产品的当天销售利润是2610元.(3)解:不能,理由如下:设该纪念品的销售单价为y元,则当天的销售利润为[280―(y―10)×10]件,依题意得(y―30)[280―(y―40)×10]=2610,整理得y2―98y+2410=0,∵Δ=(―98)2―4×1×2410=―36<0,故该方程没有实数根,即该纪念品的当天利润不可能达到3700元.24.如图,正方形ABCD中,点P是线段BD上的动点.(1)当PE⊥AP交BC于E时,①如图1,求证:PA=PE.②如图2,连接AC 交BD 于点O ,交PE 于点F ,试探究线段PA 2、PO 2、PF 2之间用等号连接的数量关系,并说明理由;(2)如图3,已知M 为BC 的中点,PQ 为对角线BD 上一条定长线段,若正方形边长为4,随着P 的运动,CP +QM 的最小值为PQ 的长.【答案】(1)①见解析;②PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2【分析】(1)①连接PC ,根据SAS 证明△ABP≌△CBP (SAS),得到PA =PC ,∠BAP =∠BCP ,再求出∠BAP +∠BEP =180°,进一步证明∠BCP =∠PEC 得到PC =PE ,等量代换可得结果;②先根据PE ⊥AP 得到S △APF =12PO ⋅AF =12PA ⋅PF ,得到PO 2⋅AF 2=PA 2⋅PF 2,结合勾股定理得到PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)连接AC 交BD 于点O ,先根据正方形的性质得到AC ⊥BD ,BO =CO =P 与点O 重合时,CP 的最小值,QM 的最小值,以及此时QM ⊥BD ,QM∥AC ,最后根据M 为BC 中点得到Q 为BO 中点,即可求解.【详解】(1)解:①如图1,连接PC ,∵四边形ABCD 是正方形,∴AB =BC ,∠ABC =90°,∠ABD =∠CBD =45°,在△ABP 和△CBP 中,AB =BC ∠ABD =∠CBD BP =BP,∴△ABP≌△CBP (SAS),∴PA =PC ,∠BAP =∠BCP,∵PE ⊥AP ,∴∠APE =90°,又∠BAP +∠BEP +∠ABC +∠APE =360°,∴∠BAP +∠BEP =180°,∵∠PEC +∠BEP =180°,∴∠BAP =∠PEC ,∴∠BCP =∠PEC ,∴PC =PE ,∴PA =PE ;②如图,PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2,理由是:∵PE ⊥AP ,∴PA 2+PF 2=AF 2,∵四边形ABCD 是正方形,∴AC ⊥BD ,∵S △APF =12PO ⋅AF =12PA ⋅PF ,∴PO 2⋅AF 2=PA 2⋅PF 2,∴PO 2⋅(PA 2+PF 2)=PA 2⋅PF 2;(2)如图,连接AC 交BD 于点O ,∵四边形ABCD 是正方形,边长为4,∴AC ⊥BD ,BO =CO ==∴当点P 与点O 重合时,CP 的最小值为CO =∵CP +QM 的最小值为∴QM ∴当点P 与点O 重合时,QM ⊥BD ,如图,∴QM∥AC ,∵M 为BC 中点,∴Q 为BO 中点,∴PQ =12BO =12×=。
黑龙江省哈尔滨虹桥中学2023-2024学年九年级上学期月考数学试题(含简略答案)

虹桥中学初四学年11月份作业反馈(数学)一、选择题(每题3分,共30分)1.下列实数中是无理数是()A. B .3.14 CD .22.下列运算正确的是( )A .B .C .D .3.下列图形既是轴对称图形又是中心对称图形的是()A . B .C .D .4.用直角三角板检查半圆形的工件,下列工件哪个是合格的()A . B . C .D .5.把抛物线向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A .B .C .D .6.对于双曲线,当时,随的增大而减小,则的取值范围是( )A . B . C . D .7.如图,某游乐场一山顶滑梯的高为,滑梯的坡角为,那么滑梯长为()2531025a a a ÷=236a a a ⋅=222()a b a b +=+()()22a b a b a b +-=-2y x =-2(1)3y x =---2(1)3y x =-+-2(1)3y x =--+2(1)3y x =-++3k y x -=0x >y x k 3k <3k ≤3k >3k ≥h a mA. B . C . D .8.如图点在的边上,若,则下列比例式中错误的是( )。
A .B .C .D .9.如图,正方形绕着点O 逆时针旋转得到正方形,连接,则的度数是()A . B . C . D .10.如图,抛物线的对称轴为直线,且过点,下列结论:①;②;③;④;正确的有( )个.A .1B .2C .3D .4二、填空题(每小题3分,共计30分)11.将0.0000348用科学记数法可表示为______.12.函数中,自变量的取值范围为______.sin hαtan hαcos hαsin h α⋅D E F 、、ABC △,DE BC EF AB ∥∥ADAEAB AC =CECACF CB =DE AD BC BD =EF CFAB CB=OABC 40︒ODEF AF OFA ∠15︒20︒25︒30︒2y ax bx c =++1x =()3,00abc <0a b c -+>20a b +=240b ac -<121y x =--x13______.14.因式分解结果为______.15.不等式组的解集是______.16.一个扇形的圆心角为,这个扇形的直径是6,则这个扇形的面积是______.17.如图,在中,,则的内切圆半径______.18.小明的卷子夹里放了大小相同的试卷共15页,其中语文7页、数学6页、英语2页,他随机地从卷子夹中抽出1页,抽出的试卷恰好是数学试卷的概率为______.19.在矩形中,点在直线上,,若,则点到直线的距离为______.20.如图,在中,若,若,则的长为______.三、解答题(共60分)21.(本题7分)先化简,再求代数式的值,其中.22.(本题7分)如图,的顶点坐标分别为,+=33x y xy -20260x x ->⎧⎨-≤⎩60︒Rt ABC △90,3,4C AC BC ∠=︒==ABC △r =ABCD E BC 2BE CE =2,3AB AD ==A DE ABC △,902,ABC ACB AD BC ββ∠=∠=︒-⊥3,2BD CD ==AB 21123x x x x x ⎛⎫++÷- ⎪⎝⎭2sin 60tan 45x =︒+︒ABC △()()()3,6,1,3,4,2A B C(1)画出关于轴对称的;(2)将绕点顺时针旋转得到,在图中画出;(3)直接写出点所经过的路径弧的长。
11月初三上学期月考数学试卷(有答案)

11月初三上学期月考数学试卷(有答案)本学期的11月份的月考已经临近,各年级、各学科都已经进入到紧张的复习阶段。
复习是巩固和强化所学知识必不可少的手段。
查字典数学网小学生频道为大家准备了2019年11月初三上学期月考数学试卷,希望大家认真作答。
2019年11月初三上学期月考数学试卷(有答案)一、选择题(每题2分,共12分)1.一元二次方程x2﹣2x﹣1=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根2.AB是⊙O的直径,点C在⊙O上,若A=40 ,则B的度数为( )A.80B.60C.50D.403.用配方法解方程x2﹣2x﹣5=0时,原方程应变形为( )A.(x+1)2=6B.(x+2)2=9C.(x﹣1)2=6D.(x﹣2)2=94.下列说法:①直径不是弦;②相等的弦所对的弧相等;③三角形的外心是三角形中三边垂直平分线的交点;④三角形的外心到三角形各边的距离相等.其中正确的个数有( )A.1个B.2个C.3个D.4个5.某县为发展教育事业,加强了对教育经费的投入,2019年投入2019万元,预计到2019年共投入8000万元.设教育经费的年平均增长率为x,下面所列方程正确的是( )A.2019(1+x)2=8000B.2019(1+x)+2019(1+x)2 =8000C.2019x2=8000D.2019+2019(1+x)+2019(1+x)2=8000二.填空题(每题2分,共20分)7.一元二次方程x2=3x的解是:__________.8.若实数a是方程x2﹣2x+1=0的一个根,则2a2﹣4a+5=__________.9.一元二次方程x2﹣3x+1=0的两根为x1、x2,则x1+x2﹣x1x2=__________.10.小芳的衣服被一根铁钉划了一个呈直角三角形的洞,只知道该三角形有两边长分别为1cm和2cm,若用同色圆形布将此洞全部覆盖,那么这个圆布的直径最小应等于__________.11.写出一个以﹣3和7为根且二次项系数为1的一元二次方程__________.12.若关于x的一元二次方程kx2﹣2x+1=0有实数根,则k的取值范围是__________.三、解答题(共11题,共88分)17.解方程:(1)2x2﹣5x+2=0.(2)2(x+3)2=x+3.18.(1)化简:( )2+|1﹣|﹣( )﹣1(2)解不等式组:.19.计算或化简:(1) ﹣+ ;(2)先化简( ﹣) ,然后从,0,1,﹣1中选取一个你认为合适的数作为x的值代入求值.20.如图,在平面直角坐标系中,一段圆弧经过格点A、B、C.(1)请写出该圆弧所在圆的圆心O的坐标__________;(2)⊙O的半径为__________(结果保留根号);(3)求的长(结果保留).21.已知方程5x2+mx﹣10=0的一根是﹣5,求方程的另一根及m的值.22.如图所示,AB是⊙O的一条弦,ODAB,垂足为C,交⊙O于点D,点E在⊙O上.(1)若AOD=52,求DEB的度数;(2)若OC=3,OA=5,求AB的长.23.如图,把长为40cm,宽30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余的部分拆成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为多少?(单位:cm)(2)若折成的一个长方体盒于表面积是950cm2,求此时长方体盒子的体积.24.如图,在△ABC中,AC=BC,ACB=120.(1)求作⊙O,使:圆心O在AB上,且⊙O经过点A和点C(尺规作图,保留作图痕迹,不写作法)(2)判断BC与⊙O的位置关系,并说明理由.25.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?26.已知,如图,AB、AC是⊙O得切线,B、C是切点,过上的任意一点P作⊙O的切线与AB、AC分别交于点D、E(1)连接OD和OE,若A=50,求DOE的度数.(2)若AB=7,求△ADE的周长.27.配方法不仅可以用来解一元二次方程,还可以用来解决很多问题. 例如:因为3a20,所以3a2﹣1﹣1,即:3a2﹣1就有最小值﹣1.只有当a=0时,才能得到这个式子的最小值﹣1.同样,因为﹣3a20.所以﹣3a2+11,即:﹣3a2+1就有最大值1,只有当a=0时,才能得到这个式子的最大值1.(1)当x=__________时,代数式﹣2(x+1)2﹣1有最__________值(填大或小值为__________.单靠“死”记还不行,还得“活”用,姑且称之为“先死后活”吧。
九年级上学期月考数学试卷(11月份)附答案

九年级上学期月考数学试卷(11月份)一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=03.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=214.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.55.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+37.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为cm.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=;当x>6时,y与x的函数关系式为;(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.一、精心选一选(本大题共10小题,每小题4分,满分40分.在每小题给出的四个选项中只有一项是符合题目要求的,请在答题卷上把正确答案的代号涂黑)1.下列标志中,可以看作是中心对称图形有()A.1个B.2个C.3个D.4个考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:第三个图形,第四个图形为中心对称图形,共2个.故选B.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列方程是一元二次方程()A.x+2y=1 B.2x(x﹣1)=2x2+3 C.3x+=4 D.x2﹣2=0考点:一元二次方程的定义.分析:只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.解答:解:A、x+2y=1是二元一次方程,故错误;B、方程去括号得:2x2﹣2x=2x2+3,整理得:﹣2x=3,为一元一次方程,故错误;C、3x+=4是分式方程,故错误;D、x2﹣2=0,符合一元二次方程的形式,正确.故选D.点评:要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程.3.组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排3场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=21 B.x(x﹣1)=21 C.x(x+1)=21 D.x(x﹣1)=21考点:由实际问题抽象出一元二次方程.分析:关系式为:球队总数×每支球队需赛的场数÷2=3×7,把相关数值代入即可.解答:解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=21.故选:B.点评:本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.4.如图,已知⊙O的半径为10,弦AB长为16,则点O到AB的距离是()A.8B.7C.6D.5考点:垂径定理;勾股定理.分析:过点O作OD⊥AB于点D,根据垂径定理求出AD的长,再根据勾股定理求出OD的长即可.解答:解:过点O作OD⊥AB于点D,∵AB=16,∴AD=AB=8,∴OD===6.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.5.下列图形是中心对称图形,但不是轴对称图形的是()A.平行四边形B.等边三角形C.圆D.正方形考点:中心对称图形;轴对称图形.专题:常规题型.分析:根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.解答:解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项正确;B、等边三角形是轴对称图形,不是中心对称图形.故本选项错误;C、圆是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误.故选A.点评:本题考查了中心对称图形与轴对称图形的概念.轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.6.把二次函数y=2x2﹣4x+3的图象绕原点旋转180°后得到的图象的解析式为()A.y=﹣2x2+4x﹣3 B.y=﹣2x2﹣4x+3 C.y=﹣2x2﹣4x﹣3 D.y=﹣2x2+4x+3考点:二次函数图象与几何变换.分析:求出原抛物线的顶点坐标以及绕原点旋转180°后的抛物线的顶点坐标,再根据旋转后抛物线开口方向向下,利用顶点式解析式写出即可.解答:解:∵抛物线y=2x2﹣4x+3=2(x﹣1)2+1的顶点坐标为(1,1),∴绕原点旋转180°后的抛物线的顶点坐标为(﹣1,﹣1),∴所得到的图象的解析式为y=﹣2(x+1)2﹣1,即y=﹣2x2﹣4x﹣3.故选C.点评:本题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便.7.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB交于点D,则AD的长为()A.B.C.D.考点:垂径定理;勾股定理.专题:探究型.分析:先根据勾股定理求出AB的长,过C作CM⊥AB,交AB于点M,由垂径定理可知M为AD 的中点,由三角形的面积可求出CM的长,在Rt△ACM中,根据勾股定理可求出AM的长,进而可得出结论.解答:解:∵在Rt△ABC中,∠ACB=90°,AC=3,BC=4,∴AB===5,过C作CM⊥AB,交AB于点M,如图所示,∵CM⊥AB,∴M为AD的中点,∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=5,∴CM=,在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,解得:AM=,∴AD=2AM=.故选C.点评:本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.8.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=25°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=25°+45°=70°,由旋转的性质得∠B=∠A′B′C=70°.故选:A.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.9.x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,是否存在实数m使+=0成立?则正确的结论是()A.m=0时成立B.m=2时成立C.m=0或2时成立D.不存在考点:根与系数的关系.分析:先由一元二次方程根与系数的关系得出,x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,求出m=0,再用判别式进行检验即可.解答:解:∵x1,x2是关于x的一元二次方程x2﹣mx+m﹣2=0的两个实数根,∴x1+x2=m,x1x2=m﹣2.假设存在实数m使+=0成立,则=0,∴=0,∴m=0.当m=0时,方程x2﹣mx+m﹣2=0即为x2﹣2=0,此时△=8>0,∴m=0符合题意.故选:A.点评:本题主要考查了一元二次方程根与系数的关系:如果x1,x2是方程x2+px+q=0的两根时,那么x1+x2=﹣p,x1x2=q.10.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B 点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t的函数关系的图象是()A.B.C.D.考点:动点问题的函数图象.专题:动点型.分析:本题应分两段进行解答,①点P在AB上运动,点Q在BC上运动,②点P在AB上运动,点Q在CD上运动,依次得出S与t的关系式即可得出函数图象.解答:解:①点P在AB上运动,点Q在BC上运动,此时AP=t,QB=2t,故可得S=AP•QB=t2,函数图象为抛物线;②点P在AB上运动,点Q在CD上运动,此时AP=t,△APQ底边AP上的高保持不变,为正方形的边长4,故可得S=AP×4=2t,函数图象为一次函数.综上可得总过程的函数图象,先是抛物线,然后是一次增函数.故选:D.点评:此题考查了动点问题的函数图象,解答本题关键是分段求解,注意在第二段时,△APQ底边AP上的高保持不变,难度一般.二、细心填一填(本大题共5小题,每小题4分,满分20分.请把答案填在答题卷相应题号的横线上)11.在平面直角坐标系xOy中,已知点A(﹣3,﹣4),将OA绕坐标原点O逆时针旋转90°至OA′,则点A′的坐标是(4,﹣3).考点:坐标与图形变化-旋转.专题:数形结合.分析:先构建Rt△OAB,再把△OAB绕坐标原点O逆时针旋转90°得到△O A′B′,根据旋转的性质得到A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,然后写出A′点的坐标.解答:解:如图,把△OAB绕坐标原点O逆时针旋转90°得到△OA′B′,则A′B′=AB=3,OB′=OB=4,∠OB′A′=∠OBA=90°,所以点A′的坐标为(4,﹣3).故答案为(4,﹣3).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.通过把线段旋转的问题转化为直角三角形的性质解决问题.12.如图,在⊙O中,CD是直径,弦AB⊥CD,垂足为E,连接BC,若AB=4cm,∠BCD=22°30′,则⊙O的半径为4cm.考点:垂径定理;等腰直角三角形;圆周角定理.分析:连接OB,则可知∠BOD=2∠BCD=45°,由垂径定理可得BE=2,在Rt△OEB中BE=OE,利用勾股定理可求得OB.解答:解:连接OB,∵∠BCD=22°30′,∴∠BOD=2∠BCD=45°,∵CD是直径,弦AB⊥CD,∴BE=AE=AB=2cm,在Rt△BOE中,由勾股定理可求得OB=4cm,即⊙O的半径为4cm,故答案为:4.点评:本题主要考查垂径定理和圆周角定理,由条件得到∠BOD=45°且求得BE的长是解题的关键.13.如图在四边形ABCD中,∠B+∠D=180°,AB=AD,AC=2,∠ACD=60°,四边形ABCD的面积等于.考点:旋转的性质.分析:由于∠BAD=60°,AB=AD,则可把△ADC绕点A逆时针旋转60°得到△ABD′,根据旋转的性质得到∠ABC′=∠D,AC′=AC,∠C′AC=60°,而∠ABC+∠D=180°,则∠ABC+∠ABC′=180°,得到C′点在CB的延长线上,所以△ACC′为等边三角形,然后利用S四边形ABCD=S△AC′C=AC2进行计算即可.解答:如图,∵∠BAD=60°,AB=AD,∴把△ADC绕点A逆时针旋转60°得到△ABC′,∴∠ABC′=∠D,AC′=AC,∠C′AC=60°∵∠ABC+∠D=180°,∴∠ABC+∠ABC′=180°,∴C′点在CB的延长线上,而AC′=AC,∠C′AC=60°,∴△ACC′为等边三角形,∴S四边形ABCD=S△AC′C=AC2=×4=.故答案为:.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定和性质.14.如图,BC为⊙O的直径,BC=2,弧AB=弧AC,P为BC(包括B、C)上一动点,M为AB的中点,设△PAM的周长为m,则m的取值范围是1+≤m≤3+.考点:轴对称-最短路线问题;圆心角、弧、弦的关系.分析:连接CM则m的最大值为P移动到B、C点时△ACM的周长,根据勾股定理即可求得CM的长,进而求得△ACM的周长;作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;根据勾股定理求得AM′的长,进而求得△AP′M的周长,即可求得m的取值范围.解答:解:∵⊙O的直径BC=2,∴∠CAB=90°,∵=,∴∠B=∠C=45°,∴AC=AB=2,∴AM=AB=1,连接CM,则CM==,∴m的最大值为2+1+=3+,作AA′⊥BC,交⊙O于A′,连接A′B、A′C,则四边形ABA′C是正方形,作MM′⊥BC交A′B于M′,则M′与M关于BC对称,连接AM′交BC于P′,P′A+P′M=AM′,此时△PAM 的周长为m最小;∵A′B=AB=2,M为AB的中点,∴BM′=BM=1,∵AM′=,∴m的最小值为1+,∴m的取值范围是1+≤m≤3+.故答案为1+≤m≤3+.点评:本题考查了轴对称﹣最短路线问题以及轴对称的性质,勾股定理的应用,正方形的判定及性质,解决本题的关键是确定AP+PM的最大值和最小值.15.二次函数y=ax2+bx+c(a≠0)图象如图,下列结论:①a+b=0;②a﹣b+c>0;③当m≠1时,a+b >am2+bm;④3a+c>0;⑤若ax12+bx1=ax22+bx2,且x1≠x2,x1+x2=2.其中正确的有③⑤.考点:二次函数图象与系数的关系.专题:数形结合.分析:由抛物线的对称轴为直线x=﹣=1得到2a+b=0,则可对①进行判断;利用抛物线的对称性得到抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,则x=﹣1时,y<0,即a﹣b+c<0,可对②进行判断;根据二次函数的最大值对③进行判断;利用a﹣b+c<0,b=﹣2a得到3a+c<0,可对④进行判断;把ax12+bx1=ax22+bx2移项后分解因式得到(x1﹣x2)[a(x1+x2)+b]=0,则a(x1+x2)+b=0,可计算出x1+x2=2,于是可对⑤进行判断.解答:解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①错误;∵抛物线与x轴的一个交点在点(2,0)和(3,0)之间,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(0,0)和(﹣1,0)之间,∴x=﹣1时,y<0,即a﹣b+c<0,所以②错误;∵x=1时,y有最大值,∴a+b+c>am2+bm+c(m≠1),即a+b>am2+bm(m≠1),所以③正确;∵a﹣b+c<0,b=﹣2a,∴a+2a+c<0,即3a+c<0,所以④错误;∵ax12+bx1=ax22+bx2,∴ax12﹣ax22+bx1﹣bx2=0,(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,∴x1+x2=﹣=﹣=2,所以⑤正确.故答案为③⑤.点评:本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、专心解一解(本大题共8小题,满分90分.请认真读题,冷静思考.解答题应写出必要的文字说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)16.用适当的方法解下列方程:x2﹣4x+1=0.考点:解一元二次方程-配方法.分析:把常数项1移项后,再在左右两边同时加上一次项系数﹣4的一半的平方,再进行计算即可.解答:解:x2﹣4x+1=0,x2﹣4x=﹣1,x2﹣4x+4=﹣1+4,(x﹣2)2=3,x﹣2=,x1=2+,x2=2﹣;点评:此题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图:=,D、E分别是半径OA和OB的中点,求证:CD=CE.考点:圆心角、弧、弦的关系;全等三角形的判定与性质.分析:连接OC,构建全等三角形△COD和△COE;然后利用全等三角形的对应边相等证得CD=CE.解答:证明:连接OC.在⊙O中,∵=∴∠AOC=∠BOC,∵OA=OB,D、E分别是半径OA和OB的中点,∴OD=OE,∵OC=OC(公共边),∴△COD≌△COE(SAS),∴CD=CE(全等三角形的对应边相等).点评:本题考查了圆心角、弧、弦的关系,以及全等三角形的判定与性质.判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.如图,已知二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?考点:待定系数法求二次函数解析式;二次函数的性质;坐标与图形变化-旋转.分析:(1)由二次函数的对称性可知对称轴方程过线段OA的中点,可得出其对称轴方程;(2)由(1)可得出二次函数的顶点坐标为(2,2),再利用旋转的性质求得A′点的坐标与顶点坐标相同即可得出结论.解答:解:(1)设线段OA的中点为C,则C点坐标为(2,0),∵二次函数y=a(x﹣h)2+2的图象经过原点O(0,0),A(4,0),∴二次函数的对称轴过线段OA的中点,∴二次函数的对称轴为直线x=2;(2)由(1)可知h=2,可知二次函数的顶点坐标为(2,2),当线段OA绕点O逆时针旋转60°到OA′,则可知OA=OA′=4,所以△OAA′为等边三角形,如图,过A′作A′E′⊥OA,交OA于点E′,则可求得OE′=2,A′E′=2,所以A′为二次函数的顶点.点评:本题主要考查二次函数的对称轴和顶点坐标,掌握二次函数的顶点式方程,即y=a(x﹣h)2+k 是解题的关键,其中顶点坐标为(h,k).19.在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.考点:作图-旋转变换.专题:作图题.分析:(1)根据网格结构找出点B、C的对应点B1、C1的位置,然后与点A顺次连接即可;(2)以点B向右3个单位,向下5个单位为坐标原点建立平面直角坐标系,然后写出点A、C的坐标即可;(3)根据网格结构找出点A、B、C关于原点的对称点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△AB1C1如图所示;(2)如图所示,A(0,1),C(﹣3,1);(3)△A2B2C2如图所示,B2(3,﹣5),C2(3,﹣1).点评:本题考查了利用旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.20.已知⊙O的直径为5,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.(Ⅰ)如图①,若BC为⊙O的直径,AB=3,则AC=4,BD=;(Ⅱ)如图②,若∠CAB=60°,求BD的长.考点:圆周角定理;勾股定理.分析:(1)BC为直径可知△ABC为直角三角形,利用勾股定理可求得AC,再结合AD为角平分线,可得CD=BD,在Rt△CBD中可求得BD;(2)连接OB、OD,则可知∠BOD=2∠DAB=∠CAB=60°,可知△BOD为等边三角形,可知BD=OB,可求得BD的长.解答:解:(1)∵BC为直径,∴∠CAB=∠CDB=90°,∵AD平分∠CAB,∴∠CAD=∠BAD,∴CD=BD,在Rt△ABC中,BC=5,AB=3,由勾股定理可求得AC=4,在Rt△CBD中,BC=5,CD=BD,由勾股定理可求得BD=,故答案为:4;;(2)如图,连接OB、OD,∵AD平分∠CAB,∴∠CAD=∠BAD=30°,∴∠BOD=2∠BAD=60°,且OB=OD,∴△BOD为等边三角形,∴BD=OB,又直径为5,∴BD=2.5.点评:本题主要考查圆周角定理及等边三角形的判定和性质,掌握在同圆或等圆中相等的圆周角所对的弦相等是解题的关键.21.一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为4元,该店每天固定支出费用为200元(不含套餐成本).若每份售价不超过6元,每天可销售180份;若每份售价超过6元,每提高1元,每天的销售量就减少10份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)当x=6时,y=160;当x>6时,y与x的函数关系式为y=﹣10x2+280x﹣1160(x>6);(2)该店既要吸引顾客,使每天销售量较大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入为多少?考点:一元二次方程的应用.专题:销售问题.分析:(1)本题考查的是分段函数的知识点.当x=6时,y=180(6﹣4)﹣200;当x >6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200;(2)由题意可得y与x的函数关系式,用配方法求出最大值.解答:解:(1)由题意得:当x=6时,y=180×(6﹣4)﹣200=160;当x>6时,y=(x﹣4)[180﹣10(x﹣6)]﹣200=﹣10x2+280x﹣1160.即y=﹣10x2+280x﹣1160(x>6).故答案是:160;y=﹣10x2+280x﹣1160(x>6).(2)由题意得:y=﹣10x2+280x﹣1160=﹣10(x﹣14)2+800,故每份套餐的售价应定为14元,此时日净收入为800元.点评:本题考查的是二次函数的实际应用和一元二次方程的应用以及分段函数的有关知识,解题的关键是根据题目中的等量关系列出函数关系.22.某汽车销售公司1月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售有如下关系,若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售一部,所有出售的汽车的进价均降低0.1万元/部.月底厂家根据销售量一次性返利给销售公司,销售量在10部以内,含10部,每部返利0.5万元,销售量在10部以上,每部返利1万元.①若该公司当月卖出4部汽车,则每部汽车的进价为15.8万元;若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为﹣0.1m+16.1万元;②如果汽车的销售价位17万元/部,该公司计划当月盈利12万元,那么要卖出多少部汽车?(盈利=销售利润+返利)考点:一元二次方程的应用.专题:销售问题.分析:(1)根据若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,得出该公司当月售出3部汽车时,则每部汽车的进价为:16﹣0.1×2,该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1,即可得出答案;(2)利用设需要卖出x部汽车,由题意可知每部汽车的销售利润,根据当0≤x≤10,以及当x>10时,分别讨论得出即可.解答:解:(1)∵若当月仅售出1部汽车,则该部汽车的进价为16万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,∴若该公司当月售出3部汽车,则每部汽车的进价为:16﹣0.1×(3﹣1)=15.8,若该公司当月卖出m(1≤m≤20)部汽车,则每部汽车的进价为:16﹣0.1(m﹣1)=﹣0.1m+16.1;故答案为:15.8,﹣0.1m+16.1;(2)设需要卖出x部汽车,由题意可知,每部汽车的销售利润为:17﹣[16﹣0.1(m﹣1)]=(0.1x+0.9)(万元),当0≤x≤10,根据题意,得x•(0.1x+0.9)+0.5x=12,整理,得x2+14x﹣120=0,解这个方程,得x1=﹣20(不合题意,舍去),x2=6,当x>10时,根据题意,得x•(0.1x+0.9)+x=12,整理,得x2+19x﹣120=0,解这个方程,得x1=﹣24(不合题意,舍去),x2=5,因为5<10,所以x2=5舍去.答:需要卖出6部汽车.点评:本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系并进行分段讨论是解题关键.23.把一副三角板如图甲放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=6cm,DC=7cm 把三角板DCE绕点C顺时针旋转15°得到△D1CE1(如图乙).这时AB与CD1相交于点O,与D1E1相交于点F.(1)求∠OFE1的度数;(2)求线段AD1的长;(3)若把三角形D1CE1绕着点C顺时针再旋转30°得△D2CE2,这时点B在△D2CE2的内部,外部,还是边上?证明你的判断.考点:旋转的性质;勾股定理;等腰直角三角形.专题:压轴题.分析:(1)根据OFE1=∠B+∠1,易得∠OFE1的度数;(2)在Rt△AD1O中根据勾股定理就可以求得AD1的长;(3)设BC(或延长线)交D2E2于点P,Rt△PCE2是等腰直角三角形,就可以求出CB的长,判断B 在△D2CE2内.解答:解:(1)如图所示,∠3=15°,∠E1=90°,∴∠1=∠2=75°,又∵∠B=45°,∴∠OFE1=∠B+∠1=45°+75°=120°;(2)∵∠OFE1=120°,∴∠D1FO=60°,。
苏科版九年级上数学月考试卷含解析

—第一学期初三数学11月份检测试卷范围:九上第一章《一元二次方程》、九下第五章《二次函数》、第七章《锐角三角函数》;时间:120分钟;成绩:130分。
一、选择题:(共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的,把你认为正确的答案填在答题卷相应的空格内) 1.函数yx 的取值范围是( )A .x ≤;B .x ≠;C .x ≥;D .x < 2.一元二次方程x 2-x +14=0的根( )A .x 1=,x 2=-;B .x 1=2,x 2=-2;C .x 1=x 2=- ;D .x 1=x 2=3.(湖北荆州第4题3分)将抛物线y =x 2﹣2x +3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为( )A . y =(x ﹣1)2+4;B . y =(x ﹣4)2+4;C . y =(x +2)2+6;D . y =(x ﹣4)2+6 4.如图所示,在数轴上点A 所表示的数x 的范围是( )A .32sin30°<x <sin60°;B .cos30°<x < cos45°; C .32t a n30°<x <t a n45°;D .3cos60°<xa n60°。
(第4题)(第5题)5.(江苏苏州3分)如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .kmB .km C .km D .km6.上海世博会的某纪念品原价150元,连续两次涨价a %后售价为216元.下列所列方程中正确的是( )A .150(1+2a %)=216 ;B .150(1+a %)2=216;C .150(1+a %)×2=216;D .150(1+a %)+150(1+a %)2=216。
人教版九年级上册数学第一次月考试卷带答案

人教版九年级上册数学第一次月考试题一、选择题。
(每小题只有一个正确答案)1.如果x=4是一元二次方程x²-3x=a²的一个根,则常数a 的值是()A .2B .﹣2C .±2D .±42.用配方法解方程241x x =+,配方后得到的方程是()A .2(2)5x -=B .2(2)4x -=C .2(2)3x -=D .2(2)14x -=3.关于x 的一元二次方程(a ﹣1)x 2+2x ﹣1=0有两个实数根,则a 的取值范围为()A .a≥0B .a <2C .a≥0且a≠1D .a≤2且a≠14.下列抛物线中,顶点坐标为()2,1的是()A .()221y x =++B .()221y x =-+C .()221y x =+-D .()221y x =--5.抛物线231y x =--是由抛物线23(1)1y x =-++怎样平移得到的()A .左移1个单位上移2个单位B .右移1个单位上移2个单位C .左移1个单位下移2个单位D .右移1个单位下移2个单位6.教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )间的关系为21(4)312y x =--+,由此可知铅球推出的距离是()A .2mB .8mC .10mD .127.已知抛物线2231y ax ax a =-++()0a ≠图象上有两点()11,A x y 、()22,B x y ,当121x x <<-时,有12y y <;当112x -≤≤时,1y 最小值是6.则a 的值为()A .1-B .5-C .1或5-D .1-或5-8.某商场将每件进价为20元的玩具以30元的价格出售时,每天可售出300件.经调查当单价每涨1元时,每天少售出10件.若商场每天要获得3750元利润,则每件玩具应涨多少元?这道应用题如果设每件玩具应涨x 元,则下列说法错误..的是()A .涨价后每件玩具的售价是(30)x +元;B .涨价后每天少售出玩具的数量是10x 件C .涨价后每天销售玩具的数量是(30010)x -件D .可列方程为:(30)(30010)3750x x +-=9.某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长率为()A .10%B .15%C .20%D .25%10.二次函数y=ax 2+bx+c 的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b 2,③2a+b=0,④a -b+c>2,其中正确的结论的个数是()A .1B .2C .3D .4二、填空题11.当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,则m =_____.12.将二次函数()21132y x =++的图像沿x 轴对折后得到的图像解析式______.13.一元二次方程2280x x +-=的两根为12,x x ,则2112122x xx x x x ++=____________14.某一计算机的程序是:对于输入的每一个数,先计算这个数的平方的6倍,再减去这个数的4倍,再加上1,若一个数无论经过多少次这样的运算,其运算结果与输入的数相同,则称这个数是这种运算程序的不变数,这个运算程序的不变数是________.15.有两名流感病人,如果每轮传播中平均一个病人传染的人数相同,为了使两轮传播后,流感病人总数不超过288人,则每轮传播中平均一个病人传染的人数不能超过________人.16.学校组织学生去南京进行研学实践活动,小王同学发现在宾馆房间的洗手盘台面土有一瓶洗手液(如图①),于是好奇的小王同学进行了实地测量研究.当小王用一定的力按住顶部A 下压如图②位置时,洗手液从喷口B 流出,路线近似呈抛物线状,且a=118-.洗手液瓶子的截面图下部分是矩形CGHD .小王同学测得:洗手液瓶子的底面直径GH=12cm ,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,若小王不去接,则洗手液落在台面的位置距DH 的水平距离是________cm .三、解答题17.解方程:(1)2230x x --=(2)23210x x +-=18.如图,二次函数y=(x+2)2+m 的图象与y 轴交于点C ,点B 在抛物线上,且与点C 关于抛物线的对称轴对称,已知一次函数y=kx+b 的图象经过该二次函数图象上的点A (﹣1,0)及点B .(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b 的x 的取值范围.19.如图,利用一面墙(墙EF 最长可利用28米),围成一个矩形花园ABCD .与墙平行的一边BC 上要预留2米宽的入口(如图中MN 所示,不用砌墙)用60米长的墙的材料,当矩形的长BC 为多少米时,矩形花园的面积为300平方米;能否围成430平方米的矩形花园?20.已知关于x 的一元二次方程2(1)0x a x a +++=.(1)求证:此方程总有两个实数根;a的值,并求此时方程的根.(2)如果此方程有两个不相等...的实数根,写出一个满足条件的21.已知:如图,抛物线y=ax2+4x+c经过原点O(0,0)和点A(3,3),P为抛物线上的一个动点,过点P作x轴的垂线,垂足为B(m,0),并与直线OA交于点C.(1)求抛物线的解析式;(2)当点P在直线OA上方时,求线段PC的最大值.22.如图,抛物线y=x2+bx+c经过点(3,12)和(﹣2,﹣3),与两坐标轴的交点分别为A,B,C,它的对称轴为直线l.(1)求该抛物线的表达式;(2)P是该抛物线上的点,过点P作l的垂线,垂足为D,E是l上的点.要使以P、D、E 为顶点的三角形与△AOC全等,求满足条件的点P,点E的坐标.23.某服装批发市场销售一种衬衫,衬衫每件进货价为50元,规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w (元),那么售价定为多少元可获得最大利润?最大利润是多少?24.已知,在平面直角坐标系中,抛物线22221y x mx m m =-++-的顶点为A ,点B 的坐标为(3,5)(1)求抛物线过点B 时顶点A 的坐标(2)点A 的坐标记为(,)x y ,求y 与x 的函数表达式;(3)已知C 点的坐标为(0,2),当m 取何值时,抛物线22221y x mx m m =-++-与线段BC 只有一个交点25.已知点()1,0A 是抛物线2y ax bx m =++(,,a b m 为常数,0,0a m ≠<)与x 轴的一个交点.(1)当1,3a m ==-时,求该抛物线的顶点坐标;(2)若抛物线与x 轴的另一个交点为(),0M m ,与y 轴的交点为C ,过点C 作直线l 平行于x 轴,E 是直线l 上的动点,F 是y 轴上的动点,EF =①当点E 落在抛物线上(不与点C 重合),且AE EF =时,求点F 的坐标;②取EF 的中点N ,当m 为何值时,MN 的最小值是2?参考答案1.C 【分析】把x =4代入原方程得关于a 的一元一次方程,从而得解.【详解】把x =4代入方程223x x a -=可得16-12=2a ,解得a=±2,故选C .考点:一元二次方程的根.2.A 【分析】将方程的一次项移到左边,两边加上4变形后,即可得到结果.【详解】解:方程移项得:x 2−4x=1,配方得:x 2−4x+4=5,即(x−2)2=5.故选A .【点睛】本题考查了用配方法解一元二次方程,解题的关键是熟记完全平方公式.3.C 【分析】根据一元二次方程的定义及根与判别式的关系解答即可.【详解】∵一元二次方程()21210a x x -+-=有两个实数根,∴Δ=4+4(a-1)≥0且a-1≠0,解得:a≥0且a≠0,故选C.【点睛】本题考查一元二次方程的定义及根与判别式的关系:一元二次方程的二次项系数不能为0;方程有两个实数根,Δ≥0,没有实数根,Δ<0,熟练掌握相关知识是解题关键.4.B 【分析】根据各个选项中的函数解析式可以直接写出它们的顶点坐标,从而可以解答本题.【详解】解:()2y x 21=++的顶点坐标是()2,1-,故选项A 不符合题意,()2y x 21=-+的顶点坐标是()2,1,故选项B 符合题意,()2y x 21=+-的顶点坐标是()2,1--,故选项C 不符合题意,()2y x 21=--的顶点坐标是()2,1-,故选项D 不符合题意,故选:B .【点睛】本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.顶点式:y=a(x-h)²+k 抛物线的顶点P (h ,k ).5.D 【分析】根据二次函数()2y a x h k =-+的性质即可判断.【详解】抛物线()2311y x =-++经过右移1个单位下移2个单位,即()231112y x =-+-+-=231x --,故选D.【点睛】此题主要考查抛物线顶点式()2y a x h k =-+的特点,熟知顶点式的性质特点是解题的关键.6.C 【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x 的值即可.【详解】由题意可得y=0时,()214312x --+=0,解得:()24x -=36,即x 1=10,x 2=-2(舍去),所以铅球推出的距离是10m .故选C .7.B 【分析】先确定该抛物线的对称轴,再根据12121,<<-<x x y y 得到a <0,然后再根据112x -≤≤时,1y 最小值是6列出关于a 的一元二次方程并求解即可.【详解】解:∵2231y ax ax a =-++∴2239124y a x a a ⎛⎫=--++ ⎪⎝⎭,即该抛物线的对称轴为x=32∵121x x <<-时,12y y <∴a <0∵x=32在112x -≤≤范围内,∴当x=32时有最大值,x=-1时有最小值∴()()221311=6---++ a a a 整理得2450a a +-=,解得a=1(舍去)或a=-5故答案为B .【点睛】本题考查了二次函数图像的性质,掌握根据二次函数图像的性质求最值是解答本题的关键.8.D 【解析】A.涨价后每件玩具的售价是()30x +元,正确;B.涨价后每天少售出玩具的数量是10x 件,正确;C.涨价后每天销售玩具的数量是()30010x -件,正确;D.可列方程为:()()30300103750x x +-=,错误,应为(30+x-20)(300-10x)=3750,故选D.9.C 【分析】设平均每月的增长率为x ,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【详解】设平均每月的增长率为x ,根据题意得:200(1+x )2=288,(1+x )2=1.44,x 1=0.2=20%,x 2=-2.2(舍去),所以,平均每月的增长率为20%.故选C .【点睛】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a ,每次增长的百分率为x ,则第一次增长后为a (1+x );第二次增长后为a (1+x )2,即原数×(1+增长百分率)2=后来数.10.C 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc >0,所以①正确;②∵抛物线与x 轴有2个交点,∴△=b 2-4ac >0,∴4ac <b 2,所以②正确;③∵b =2a ,∴2a ﹣b =0,所以③错误;④∵x =﹣1时,y >0,∴a ﹣b +c >2,所以④正确.故选C .11.10【分析】根据题目中的函数解析式和二次函数的性质,可以求得m 的值,本题得以解决.【详解】∵二次函数y =x 2﹣4x+5=(x ﹣2)2+1,∴该函数开口向上,对称轴为x =2,∵当﹣1≤x≤3时,二次函数y =x 2﹣4x+5有最大值m ,∴当x =﹣1时,该函数取得最大值,此时m =(﹣1﹣2)2+1=10,故答案为:10.【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.12.()21y x 312=-+-【分析】根据关于x 轴对称的点的坐标特点进行解答即可.【详解】解:∵关于x 轴对称的点横坐标不变,纵坐标互为相反数,∴函数()21132y x =++的图象沿x 轴对折,得到的图象的解析式为-()21132y x =++,即()21312y x =-+-;故答案为:()21312y x =-+-.【点睛】此题考查了二次函数的图象与几何变换,解题的关键是抓住关于x 轴对称的点的坐标特点,即关于x 轴对称的点横坐标不变,纵坐标互为相反数.13.372-【分析】根据根与系数的关系表示出12x x +和12x x 即可;【详解】∵2280x x +-=,∴1a =,2b =,8c =-,∴12=-2b x x a +=-,12==-8c x x a,∴2221211212121222+++=+x x x x x x x x x x x x ,=()21212121222+-+x x x x x x x x ,=()()()2228372882--⨯-+⨯-=--.故答案为372-.【点睛】本题主要考查了一元二次方程根与系数的关系,准确利用知识点化简是解题的关键.14.12和13【分析】设这个输入的数为x ,根据题意可得6x 2-4x+1=x ,整理成一般式后利用因式分解法求解可得.【详解】解:设这个输入的数为x ,根据题意可得6x 2﹣4x+1=x ,即6x 2﹣5x+1=0,∴(2x ﹣1)(3x ﹣1)=0,则2x ﹣1=0或3x ﹣1=0,解得:x=12或x=13,故答案为:12和13.【点睛】本题考查了因式分解法解一元二次方程,根据题意列出关于x 的方程和熟练掌握解一元二次方程的基本方法是解题的关键.15.11【分析】设每轮传染中平均一人传染x 人,那么经过第一轮传染后有x 人被感染,那么经过两轮传染后有x (x+1)+x+1人感染,又知经过两轮传染共有288人被感染由此列出方程求解即可.【详解】设每轮传染中平均一个人传染不超过x 人,由题意得,2+2x+(2+2x )x=288,解得:x 1=11,x 2=-13,答:每轮传染中平均一个人传染了11个人.故答案为11.【点睛】本题考查了一元二次方程的应用,解答本题的关键在于读懂题意,设出合适的未知数,找出等量关系,列方程求解.16.【分析】根据题意得出各点坐标,进而利用待定系数法求抛物线解析式进而分析求解.【详解】解:如图,以GH 所在的直线为x 轴,GH 的垂直平分线所在的直线为y 轴建立平面直角坐标系,喷口B 为抛物线的顶点,B ,D ,H 所在的直线是抛物线的对称轴,∵GH=12,喷嘴位置点B 距台面的距离为16cm ,且B 、D 、H 三点共线.小王在距离台面15.5cm 处接洗手液时,手心Q到直线DH 的水平距离为3cm ,∴点G (-6,0),点H (6,0),BH=16,∴点B (6,16),点Q (9,15.5)∵a=118-设函数解析式为()22112y x 616x x 1418183=--+=-++当y=0时,()21x 616018--+=解之:12x 6x 6=+=-(舍去)∴洗手液落在台面的位置距DH 的水平距离为66+-=.故答案为:.【点睛】本题考查二次函数的应用,解决本题的关键是明确待定系数法求二次函数的解析式及准确进行计算.17.(1)1213x x =-=,;(2)11x =-,213x =【分析】(1)根据因式分解法即可求解;(2)根据因式分解法即可求解.【详解】解:(1)2230x x --=()()130x x +-=∴x+1=0或x-3=0∴121,3x x =-=(2)23210x x +-=()()1310x x +-=∴x+1=0或3x-1=0∴11x =-,213x =.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)抛物线解析式为y=x 2+4x+3,一次函数解析式为y=﹣x ﹣1;(2)由图象可知,满足(x+2)2+m≥kx+b 的x 的取值范围为x ≤﹣4或x≥﹣1.【分析】(1)先利用待定系数法求出m ,再根据对称性求出点B 坐标,然后利用待定系数法求出一次函数解析式;(2)根据二次函数的图象在一次函数图象的上面即可写出自变量x的取值范围.【详解】解:(1)∵抛物线y=(x+2)2+m经过点A(﹣1,0),∴0=1+m,∴m=﹣1,∴抛物线解析式为y=(x+2)2﹣1=x2+4x+3,∴点C坐标为(0,3),∵抛物线的对称轴是直线x=﹣2,且B、C关于对称轴对称,∴点B坐标为(﹣4,3),∵y=kx+b经过点A、B,∴43k bk b-+=⎧⎨-+=⎩,解得11kb=-⎧⎨=-⎩,∴一次函数解析式为y=﹣x﹣1,(2)由图象可知,满足(x+2)2+m≥kx+b的x的取值范围为x≤﹣4或x≥﹣1.【点睛】本题考查二次函数与不等式、待定系数法求函数的解析式等知识,解答的关键是灵活运用待定系数法确定函数的解析式,能充分利用函数的图象根据条件确定自变量的取值范围. 19.12米,能围成430平方米的矩形花园【分析】根据可以砌60m长的墙的材料,即总长度是60m,BC=xm,则AB=12(60-x+2)m,再根据矩形的面积公式列方程,解一元二次方程即可.【详解】解:设矩形花园BC的长为x米,则其宽为12(60-x+2)米,依题意列方程得:12(60-x+2)x=300,x 2-62x+600=0,解这个方程得:x 1=12,x 2=50,∵28<50,∴x 2=50(不合题意,舍去),∴x=12.12(60-x+2)x=430,x 2-62x+860=0,解这个方程得:x 1x 2,当>28,不符合题意,舍去;当<28,符合题意,∴能围成430平方米的矩形花园。
人教版九年级(上)第一次月考数学试题(含答案)

九年级第一次月考数学试题满分:150分 时间:120分钟 评卷人 得分一、选择题(每题4分,共40分)1.下列方程中是一元二次方程的是( )A .012=+xB .12=+x yC .012=+xD .0122=++x x2.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)3.方程23x ﹣8x ﹣10=0的二次项系数和一次项系数分别为( )A .3和8B .3和﹣8C .3和﹣10D .3和104.方程x (x -1)=0的根是( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 5.若将抛物线y =x 2向右平移2个单位,再向上平移3个单位,则所得抛物线的解析式为( )A.y =(x +2)2+3B.y =(x -2)2+3C.y =(x +2)2-3D.y =(x -2)2-36.一元二次方程2x ﹣5x +9=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .有一个实数根D .没有实数根7.方程2460x x +-=配方后变形为( )A .2(2)10x +=B .2(2)10x -=C .2(2)2x +=D .2(2)2x -=8.已知抛物线2)1(+-=x y 上的两点)()(2211y x B y x A ,和,,如果121-<<x x ,那么下列结论一定成立的是( )A.021<<y yB.210y y <<C.120y y <<D.012<<y y .9.关于x 的一元二次方程(m -2)x 2+x +m 2-4=0的一个根是0,则m 的值为( ) A .2或-2 B .12 C .-2 D .2. 10.若抛物线y =(x ﹣m )2+(m +1)的顶点在第一象限,则m 的取值范围为( ) A. m >1 B. m >0 C. m >﹣1 D.﹣1<m <0 11.一次函数与二次函数在同一坐标系中的图象可能是( ) 12.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分,对称轴为直线x =21,且经过点(2,0).下列说法:①abc <0;②a +b =0;③4a +2b +c <0;④若(-2,y 1),(25,y 2)是抛物线上的两点,则y 1<y 2,其中说法正确的是( ) ①②④ B.③④ C.①③④ D.①② 评卷人 得分 二、填空题(每题4分,共24分) 13.某地2005年外贸收入为2.5亿元,2007年外贸收入达到了4亿元,若平均每年的增长率为x ,则可以列出方程为 . 14.如果抛物线2(2)y a x =-的开口方向向上,那么a 的取值范围是 . 15.方程()229x -=的解是____________. 16.若一元二次方程(m -1)x ²-4x -5=0没有实数根,则m 的取值范围是___________. 17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为 .第17题图18.如图,平行于x 轴的直线AC 分别交抛物线21x y =(x ≥0)与322x y =(x ≥0)于B 、C 两点,过点C 作y 轴的平行线交1y 于点D ,直线DE ∥AC ,交2y 于点E ,则AB DE = _______.评卷人得分 三、解答题(每题8分,共16分) 19.解方程:(1)23410x x --= (2)()33x x x -=-+ 20.如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.求a 的值及点B 的坐标.评卷人得分 四、解答题(21-25题,每题10分,26题12分,共52分)20.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元. (1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款? 22.已知二次函数342+-=x x y (1)求函数的顶点C 的坐标,并描述该函数的函数值随自变量的增减而增减的情况; (2)求函数图象与x 轴的交点A ,B 的坐标及△ABC 的面积. 23.已知关于x 的方程22220x mx m m -++-=有两个不相等的实数根. (1)求m 的取值范围;(2)当m 为正整数时,求方程的根. 24.如图,已知抛物线y =x 2+bx +c 经过矩形ABCD 的两个顶点A 、B ,AB 平行于x 轴,对角线BD 与抛物线交于点P ,点A的坐标为(0,2),AB =4.(1)求抛物线的解析式;(2)若S △APO =,求矩形ABCD 的面积.25. 俗话说“一铺养三代”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东省东莞市东方明珠学校2020-2021学年度九年级(上)数学第一次月考试题(11月份)学校:___________姓名:___________班级:___________考号:___________一、单选题1.有同一三角形地块的甲,乙两地图,比例尺分别为1:100和1:500,那么甲地图与乙地图表示这一块的三角形面积比是( )A .25:1B .5:1C .125D .152.如图,△ABC 中,D 、E 是BC 边上的点,BD :DE :EC=3:2:1,M 在AC 边上,CM :MA=1:2,BM 交AD ,AE 于H ,G ,则BH :HG :GM 等于( )A .4:2:1B .5:3:1C .25:12:5D .51:24:10 3.如图,E 、F 分别在矩形ABCD 的边CD 、AB 上,EF ⊥AB ,G 、H 分别是BC 、EF 的中点,EH >HG ,除矩形EFBC 外,图中4个矩形都彼此相似,若BC =1,则AB 等于( )A .2 B. CD. 4.如图,矩形ABCD 中,已知点M 是线段AB 的黄金分割点,且AM >BM ,AD=AM ,FB=BM ,EF 和GM 把矩形ABCD 分成四个小矩形,其面积分别用S 1,S 2,S 3,S 4表示,EF 与MG 相交与点N ,则以下结论正确的有( )①N 是GM 的黄金分割点 ②S 1=S 4③23S S =.A.①②B.①③C.③D.①②③5.将x=23代入反比例函数y=﹣1x中,所得函数记为y1,又将x=y1+1代入函数中,所得函数记为y2,再持x=y2+1代入函数中,所得函数记为y3,如此继续下去,则y2009值为()A.2B.-13C.32D.236.如图所示是两根标志杆在地面上的影子,根据这些地面上的投影,你能判断出在灯光下的影子的是()A.(1)和(2)B.(2)和(3)C.(2)和(4)D.(3)和(4)7.从早上太阳升起的某一时刻开始到晚上,旭日广场的旗杆在地面上的影子的变化规律是()A.先变长,后变短B.先变短,后变长C.方向改变,长短不变D.以上都不正确8.如果△ABC∽△A′B′C′,BC=3,B′C′=1.8,则△A′B′C′与△ABC的相似比为( ) A.5∶3 B.3∶2 C.2∶3 D.3∶59.如右图是用八块完全相同的小正方体搭成的几何体,从正面看几何体得到的图形是()A.B.C.D.二、填空题10.如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,BC⊥AC于点C.已知AC=8,BC=3.(1)线段AC的中点到原点的距离是_____;(2)点B到原点的最大距离是_____.11.如图,要拼出和图中的菱形相似的较长对角线为88cm的大菱形(如图)需要图1中的菱形的个数为________.12.当太阳斜照或直照时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是_____.13.如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=2x图象上,则图中过点A的双曲线解析式是_____.14.小刚和小明在太阳光下行走,小刚身高1.75米,他的影长为2.0m,小刚比小明矮5cm,此刻小明的影长是________m.15.如图,已知CO1是△ABC的中线,过点O1作O1E1∥AC交BC于点E1,连接AE1交CO1于点O2;过点O2作O2E2∥AC交BC于点E2,连接AE2交CO1于点O3;过点O3作O3E3∥AC交BC于点E3,…,如此继续,可以依次得到点O4,O5,…,O n和点E4,E5,…,E n.则O n E n=______AC.(用含n的代数式表示)16.已知Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB中点,点E是直线AC上一点,若以C、D、E为顶点的三角形与△ABC相似,则AE的长度为_____.17.如图,点P是Rt△ABC斜边AB上的任意一点(A、B两点除外),过点P作一条直线,使截得的三角形与Rt△ABC相似,这样的直线可以作_____条.18.如图,△ABC的内接正方形EFGH中,EH∥BC,其中BC=4,高AD=6,则正方形的边长为_____.19.如图△ABC中,边BC=12cm,高AD=6cm,边长为x的正方形PQMN的一边在BC上,其余两个顶点分别在AB、AC上,则正方形的边长x=_____cm.三、解答题20.确定图中路灯灯泡的位置,并画出小赵在灯光下的影子.21.已知:如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AD和BC相交于点E,EF⊥BD,垂足为F,我们可以证明111AB CD EF+=成立(不要求考生证明).若将图中的垂线改为斜交,如图,AB∥CD,AD,BC相交于点E,过点E作EF∥AB交BD 于点F,则:(1)111AB CD EF+=还成立吗?如果成立,请给出证明;如果不成立,请说明理由;(2)请找出S△ABD,S△BED和S△BDC间的关系式,并给出证明.22.列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1 500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.23.如图,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,求AP的长.24.小明和几位同学做手的影子游戏时,发现对于同一物体,影子的大小与光源到物体的距离有关.因此,他们认为:可以借助物体的影子长度计算光源到物体的位置.于是,他们做了以下尝试.()1如图1,垂直于地面放置的正方形框架ABCD,边长AB为30cm,在其正上方有D C的长度和为6cm.那么一灯泡,在灯泡的照射下,正方形框架的横向影子'A B,'灯泡离地面的高度为________.()2不改变图1中灯泡的高度,将两个边长为30cm的正方形框架按图2摆放,请计算此D C的长度和为多少?时横向影子'A B,'()3有n个边长为a的正方形按图3摆放,测得横向影子'A B,'D C的长度和为b,求灯泡离地面的距离.(写出解题过程,结果用含a,b,n的代数式表示)25.如图,在△ABC中,∠C=90°,AB=10,BC=8,P、Q分别是AB、BC边上的点,且AP=BQ=a (其中0<a<8).(1)若PQ⊥BC,求a的值;(2)若PQ=BQ,把线段CQ绕着点Q旋转180°,试判别点C的对应点C’是否落在线段QB上?请说明理由.26.如图,点M是△ABC内一点,过点M分别作直线平行于△ABC的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是1、4、25.则△ABC的面积是.27.已知反比例函数y=kx的图象与一次函数y=kx+m的图象相交于点A(2,1).(1)分别求出这两个函数的解析式;(2)当x取什么范围时,反比例函数值大于0;(3)若一次函数与反比例函数另一交点为B,且纵坐标为﹣4,当x取什么范围时,反比例函数值大于一次函数的值;(4)试判断点P(﹣1,5)关于x轴的对称点P′是否在一次函数y=kx+m的图象上.参考答案1.A【解析】根据面积比是比例尺的平方比,得它们的面积比即是比例尺的平方比,那么甲地图与乙地图表示这一块的三角形面积比是21100⎛⎫⎪⎝⎭:21500⎛⎫⎪⎝⎭=25:1,故选A.2.D【解析】连接EM,∵CE:CD=CM:CA=1:3∴EM平行于AD∴△BHD∽△BME,△CEM∽△CDA∴HD:ME=BD:BE=3:5,ME:AD=CM:AC=1:3∴AH=(3﹣35)ME,∴AH:ME=12:5∴HG:GM=AH:EM=12:5 设GM=5k,GH=12k,∵BH:HM=3:2=BH:17k∴BH=512K,∴BH:HG:GM=512k:12k:5k=51:24:10,故选D.点睛:本题主要考查相似三角形的判定和性质.在判定两个三角形相似时,应注意利用图中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;或依据基本图形对图形进行分解、组合;或作辅助线构造相似三角形.3.C【解析】GC =12,BC =0.5,设AB =CD =x ,CE =y ,则DE =x -y , ∵矩形ABCD ∽矩形EHGC , ∴AB BC GC HG=,即10.5x y =(1), ∵矩形ABCD ∽矩形ADEF , ∴AD DE AB AD =,即11x y X -=(2), 由(1)(2)解得:x =故选C.4.A【解析】因为四边形ABCD 是矩形,AM =AD ,BM=BF , 所以四边形AMGD ,四边形BMNF 都是正方形, 所以AM=AD=MG=BC ,MB-BF=MN=FN , 因为点M 是线段AB 的黄金分割点,AM>BM, 所以2BM AB AM =,所以1334S S S S +=+,所以14S S =,故②正确,所以2GN GD NG GM MN ==, 所以N 是GM 的黄金分割点,故①正确, 因为21S GN FN GN S AM MN GM==, 因为12MN GM =,所以GN GM ==故③错误, 故选A.5.A【解析】根据题意可得, 当23x =时,132y =-,31122x =-+=-, 当12x =-时,22y =,213x =+=, 当3x =时,313y =-,12133x =-+=, 当22x =时,432y =-,按照规律,5 2y =,我们发现,y 的值三个一循环2009÷3=669……2, 200922y y ==,故选A.6.D【解析】根据物体的顶端和影子顶端的连线必经过光源可得图中连接物的顶端与影子的顶端的两条直线应有交点,故只有(3)(4)符合题意,故选D.7.B【解析】解:旭日广场的旗杆在地面上的影子的变化规律是先变短,后变长.故选B . 点睛:根据太阳的运动规律和平行投影的特点和规律解题.8.D【分析】根据相似三角形的对应边的比等于相似比即可得到结果.【详解】∵△ABC∽△A′B′C′,BC=3,B′C′=1.8∴△A′B′C′与△ABC的相似比= B′C′∶BC=1.8∶3=3∶5故选D.【点睛】本题是相似三角形的性质的基础应用题,难度一般,学生在解题时只需注意对应字母写在对应位置上,即可轻松解答.9.B【分析】找到从正面看所得到的图形即可,注意所有从正面看到的棱都应表现在主视图中.【详解】解:从正面看该几何体,有3列正方形,分别有:2个,2个,2个,如图.故选B.【点睛】本题考查了三视图的知识,主视图是从物体的正面看到的视图,属于基础题型.10.49【解析】(1)因为∠AOC=90°,AC=8,所以线段AC的中点到原点的距离是:12,AC=4,(2)取AC的中点E,连接BE,OE,OB,因为∠AOC=90°,AC=8,所以OE=CE=12,AC=4,因为BC⊥AC,BC=3,所以BE=5,若点O,E,B不在一条直线上,则OB<OE+BE=9,若点O,E,B在一条直线上,则OB=OE+BE=9,故答案为:4,9.11.121【解析】小菱形的对角线长为8,大菱形的对角线长为88,相似比为8:88=1:11,设小菱形的面积为单位1,则大菱形的面积为112=121个单位,菱形的个数为121,故答案为:121.12.矩形,五边形或六边形【解析】当太阳斜照或直射时,一个放在水平地面上的长方形状的箱子在地面上留下的影子是矩形,无边形或六边形.13.y=﹣8x【分析】要求函数的解析式只要求出点A 的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),然后用待定系数法即可.【详解】过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点B 的坐标是(m,n ),因为点B 在函数y =2x的图象上,则mn =2, 则BD =n ,OD =m ,则AC =2m ,OC =2n ,设过点A 的双曲线解析式是y =k x , A 点的坐标是(-2n ,2m ), 把它代入得到:2m =2k n -, 则k =-4mn =-8,则图中过点A 的双曲线解析式是y=8x -. 故答案为:y=8x-. 14. 【解析】分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似.从而求出小明的身高从而可以求出小明的影长. 详解:∵小刚身高1.75米,小刚比小明矮5cm ,∴小明的身高为=1.8m ,∵△ADE ∽△ABC∴=,即=,设小明的影长是x ,则x==m .∴小明的影长是m .点睛:本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题15.11n +. 【解析】【分析】先根据平行相似证明△BO 1E 1∽△BAC ,列比例式得:111O E BO AC AB=,再根据中点的定义得:112BO AB =,所以1112O E AC =,同理可得:2233111,,,341n n O E AC O E AC O E AC n ==⋯=+. 【详解】∵O 1E 1∥AC ,∴△BO 1E 1∽△BAC ,111O E BO AC AB∴=, ∵O 1是AB 的中点,112BO AB ∴=, 1112O E AC ∴=, 1112O E AC ∴=,11//O E AC ,1122O E O CAO ∴, 1112112O E E O AC E A ∴==, 12113E O E A ∴=, 22//O E AC ,1221E O E E AC ∴, 2212113O E E O AC E A ∴==, 2213O E AC ∴=, 同理得:3323214O E E O AC E A == …11n n O E AC n ∴=+. 故答案是:11n +. 【点睛】考查了三角形相似的性质和判定,熟练掌握平行相似的判定是本题的关键,也可以利用中位线定理得出第一个结论.16.3或73【解析】∵∠ACB =90°,AC =6,BC =8,∴AB =62+82=10,∵点D 是AB 中点,∴CD =5,∵CD=AD,∴∠A =∠ACD,∴C,D,E为顶点的三角形与△ABC相似,应分△ABC∽△CDE和△ABC∽△CED两种情况进行讨论:当△ABC∽△CDE时:AB AC CD CE=,则1065CE=,即CE=3,得到:AE=3,当△ABC∽△CED时:AB AC CE CD=,则1065CE=,即CE=253,得到AE=257633-=,∴AE的长为3或7 3 ,故答案为: 3或7 3 .17.3【解析】过点P分别作三边的垂线,所得△ADP, △AEP, △BPF与RtΔABC相似. 所以这样的直线能做三条.18.12 5【解析】∵EH∥BC,∴△AEH∽△ABC,设正方形的边长为x,则:646x x-=,解得x=2.4, 故答案为2.4. 19.4【解析】试题解析:如图所示:由题意可得:APN ABC ∽,则,AE PN AD BC= 即:6.612x x -= 解得: 4.x =故答案为4.20.见解析【分析】根据中心投影的特点可知,连接物体和它影子的顶端所形成的直线必定经过点光源.所以分别把已知影长的两个人的顶端和影子的顶端连接并延长可交于一点,即点光源的位置,再由点光源出发连接小赵顶部的直线与地面相交即可找到小赵影子的顶端.【详解】如图所示.21.(1)成立(2)111ABD BDC BED S S S +=【解析】 试题分析: (1)∵ AB ∥EF ,所以EF DF AB DB =,∵CD ∥EF,∴EF BF CD DB=,∴EF EF BF DF AB CD DB DB +=+=1,∴111AB CD EF+=, (2)分别过A 作AM ⊥BD 于M ,过E 作EN ⊥BD 于N ,过C 作CK ⊥BD 交BD 的延长线于K,由题设可得:111AM CK EN +=,∴222AM BD CK CK EN DB +=,又∵12•BD•AM =S △ABD ,1 2BD CK =S △BCD ∴12BD•EN=S △BED,∴111ABD BDC BED S S S ==. 试题解析:(1)成立.证明:∵ AB ∥EF ,所以EF DF AB DB=, ∵CD ∥EF, ∴EF BF CD DB=, ∴EF EF BF DF AB CDDB DB +=+=1, ∴111AB CD EF +=, (2)关系式为:111ABD BDC BED S S S +=,证明如下:分别过A 作AM ⊥BD 于M ,过E 作EN ⊥BD 于N ,过C 作CK ⊥BD 交BD 的延长线于K,由题设可得:111AM CK EN+=, ∴222AM BD CK CK EN DB+=, 又∵12•BD•AM =S △ABD ,1 2BD CK =S △BCD ∴12BD•EN=S △BED, ∴111ABD BDC BED S S S ==.22.(1)见解析;(2)见解析;(3)见解析. 【解析】试题分析: (1)由平均数,得x=1500y,即y=1500x是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=100v,即t=100v是反比例函数.试题解析:(1)由平均数,得x=1500y,即y=1500x是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=100v,即t=100v是反比例函数.23.AP=247或AP=2或AP=6【分析】由AD//BC,∠B=90°,可证∠P AD=∠PBC=90°, 又由AB=8,AD=3,BC=4,设AP的长为x,则BP 长为8-x,然后分别从APD∽△BPC与△APD∽△BCP去分析,利用相似三角形的对应边成比例求解即可求得答案.【详解】解:∵AB⊥BC,∴∠B=90°,∵AD∥BC,∴∠A=180°﹣∠B=90°,∴∠P AD=∠PBC=90°,AB=8,AD=3,BC=4,设AP的长为x,则BP长为8﹣x,若AB边上存在P点,使△P AD与△PBC相似,那么分两种情况:若△APD∽△BPC,则AP:BP=AD:BC,即x:(8﹣x)=3:4,解得x=24 7,若△APD∽△BCP,则AP:BC=AD:BP,即x:4=3:(8﹣x), 解得x=2或x=6,所以AP =247或AP =2或AP =6. 24.(1)180cm ;(2)12cm ;(3)2na ab b+. 【分析】(1)设灯泡的位置为点P ,易得△PAD ∽△PA′D′,设出所求的未知数,利用相似三角形的对应边的比等于对应高的比,可得灯泡离地面的高度;(2)同法可得到横向影子A′B ,D′C 的长度和;(3)按照相应的三角形相似,利用相似三角形的对应边的比等于对应高的比,用字母表示出其他线段,即可得到灯泡离地面的距离.【详解】()1设灯泡离地面的高度为xcm ,∵AD //A'D',∴PAD PA'D'∠∠=,PDA PD'A'∠∠=.∴PAD PA'D'∽. 根据相似三角形对应高的比等于相似比的性质,可得AD PN A'D'PM =, ∴30x 3036x-=, 解得x 180=,故答案为180cm ;()2设横向影子A'B ,D'C 的长度和为ycm , 同理可得∴6015060y 180=+, 解得y 12cm =;()3记灯泡为点P ,如图:∵AD //A'D',∴PAD PA'D'∠∠=,PDA PD'A'∠∠=,∴PAD PA'D'∽, 根据相似三角形对应高的比等于相似比的性质,可得AD PN A'D'PM=, 设灯泡离地面距离为x ,由题意,得PM x =,PN x a =-,AD na =,A'D'na b =+, ∴na x a a 1na b x x-==-+, a na 1x na b=-+, 2na ab x b+=. 【点睛】本题考查了相似三角形的应用,涉及相似三角形的判定与性质,熟知相似三角形对应高的比等于相似比这个性质是解题的关键.25.(1)409(2)点C′不落在线段QB 上 【解析】试题分析: (1)∵∠B =∠B ,∠PQB =∠C =90°∴△BQP ∽△BCA, ∴BP BQ AB BC =,10108a a -=,解得:a =409, (2) 作QH ⊥AB 于H ,∵PQ=BQ ,∴BH=HP ,∵∠B =∠B ,∠BHQ =∠C,∴△BQH ∽△BAC, ∴BH:BC =BQ:AB 可得:12(10﹣a ):a =8:10,解得a =5013,CQ =(8﹣a )=5413, ∴BQ <QC,∴点C ′不落在线段QB 上.试题解析:(1)∵∠B =∠B ,∠PQB =∠C =90°∴△BQP ∽△BCA, ∴BP BQ AB BC =,10108a a -=, 解得:a =409, (2)点C ′不落在线段QB 上,作QH ⊥AB 于H ,∵PQ=BQ ,∴BH=HP ,∵∠B=∠B,∠BHQ=∠C, ∴△BQH∽△BAC,∴BH:BC=BQ:AB可得:12(10﹣a):a=8:10,解得a=50 13,CQ=(8﹣a)=54 13,∴BQ<QC,∴点C′不落在线段QB上.26.64【分析】试题分析:根据平行可得三个三角形相似,再由它们的面积比等于相似比的平方,设其中一边为一求未知数,然后计算出最大的三角形与最小的三角形的相似比,从而求面积比.【详解】如图,,过M作BC的平行线交AB,AC于D,E,过M作AC平行线交AB,BC于F,H,过M作AB平行线交AC,BC于I,G,根据题意得,△1∽△2∽△3,∵S△1:S△2=1:4,S△1:S△3=1:25,∴DM:EM:GH=1:2:5,又∵四边形BDMG与四边形CEMH为平行四边形,∴DM=BG,EM=CH,设DM为x,则BC=BG+GH+CH=x+5x+2x=8x, ∴BC:DM=8:1,∴S△ABC:S△FDM=64:1,∴S△ABC=1×64=64,故答案为:64.27.(1)y=2x,y=2x﹣3;(2)x>0;(3)x<﹣0.5或0<x<2;(4)点P′在直线上.【详解】试题分析:(1)根据题意,反比例函数y=kx的图象过点A(2,1),可求得k的值,进而可得解析式;一次函数y=kx+m的图象过点A(2,1),代入求得m的值,从而得出一次函数的解析式;(2)根据(1)中求得的解析式,当y>0时,解得对应x的取值即可;(3)由题意可知,反比例函数值大于一次函数的值,即可得2x>2x﹣3,解得x的取值范围即可;(4)先根据题意求出P′的坐标,再代入一次函数的解析式即可判断P′是否在一次函数y=kx+m的图象上..试题解析:解:(1)根据题意,反比例函数y=kx的图象与一次函数y=kx+m的图象相交于点A(2,1),则反比例函数y=kx中有k=2×1=2,y=kx+m中,k=2,又∵过(2,1),解可得m=﹣3;故其解析式为y=2x,y=2x﹣3;(2)由(1)可得反比例函数的解析式为y=2x,令y>0,即2x>0,解可得x>0.(3)根据题意,要反比例函数值大于一次函数的值,即2x>2x﹣3,解可得x<﹣0.5或0<x<2.(4)根据题意,易得点P(﹣1,5)关于x轴的对称点P′的坐标为(﹣1,﹣5)在y=2x﹣3中,x=﹣1时,y=﹣5;故点P′在直线上.考点:反比例函数与一次函数的交点问题.。