高考数学第一轮复习:对数与对数函数
高考数学一轮复习第6讲 对数与对数函数

第6讲对数与对数函数1.对数的定义如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作01x=log a N,其中a叫做对数的底数,N叫做真数.2.对数的运算法则如果a>0,且a≠1,M>0,N>0,那么(1)log a(MN)=02log a M+log a N,(2)log a MN=03log a M-log a N,(3)log a M n=n log a M(n∈R).3.对数函数的定义函数04y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量.4.对数函数的图象与性质a>10<a<1 图象定义域05(0,+∞)值域R定点过点06(1,0)单调性07增函数08减函数函数值正负当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>05.反函数指数函数y=a x(a>0且a≠1)与对数函数y=09log a x(a>0且a≠1)互为反函数,它们的图象关于直线10y=x对称.1.对数的性质(a>0且a≠1)(1)log a1=0;(2)log a a=1;(3)a log aN=N.2.换底公式及其推论(1)log a b=logcblogca(a,c均大于0且不等于1,b>0);(2)log a b·log b a=1,即log a b=1logba(a,b均大于0且不等于1);(3)log am b n=nm log a b;(4)log a b·log b c·log c d=log a d.3.对数函数的图象与底数大小的比较如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.1.(2020·全国卷Ⅰ)设a log 34=2,则4-a =( ) A .116B .19C .18D .16答案 B解析 由a log 34=2可得log 34a=2,所以4a=9,所以4-a=19,故选B .2.已知a >0,a ≠1,函数y =a x 与y =log a (-x )的图象可能是( )答案 B解析 若a >1,则y =a x 是增函数,y =log a (-x )是减函数;若0<a <1,则y =a x 是减函数,y =log a (-x )是增函数,故选B .3.函数f (x )=错误!的定义域是( ) A .(-∞,1)∪(3,+∞) B .(1,3) C .(-∞,2)∪(2,+∞) D .(1,2)∪(2,3)答案 D解析 由题意知⎩⎪⎨⎪⎧-x2+4x -3>0,-x2+4x -3≠1,即⎩⎪⎨⎪⎧1<x<3,x≠2,故函数f (x )的定义域为(1,2)∪(2,3).故选D .4.(2021·菏泽高三月考)已知x =log 52,y =log 25,z =3,则下列关系正确的是( )A .x <z <yB .x <y <zC .z <x <yD .z <y <x答案 A解析 ∵x =log 52<log 55=12,y =log 25>1,z =3=13∈⎝ ⎛⎭⎪⎪⎫12,1.∴x <z <y .故选A .5.函数f (x )=ln (x 2-2x -8)的单调递增区间是( ) A .(-∞,-2) B .(-∞,1) C .(1,+∞) D .(4,+∞)答案 D解析 由x 2-2x -8>0,得x >4或x <-2.设t =x 2-2x -8,∵y =ln t 为增函数,∴要求函数f (x )的单调递增区间,即求函数t =x 2-2x -8的单调递增区间.∵当x ∈(4,+∞)时,函数t =x 2-2x -8为增函数, ∴函数f (x )的单调递增区间为(4,+∞).故选D . 6.计算:log 23×log 34+(3)log 34=________.答案 4解析 log 23×log 34+(3)log 34=lg 3lg 2×2lg 2lg 3+3log 34=2+3log 32=2+2=4.考向一 对数的化简与求值例1 (1)(2020·海口模拟)《千字文》是我国传统的启蒙读物,相传是南北朝时期梁武帝命人从王羲之的书法作品中选取1000个不重复的汉字,让周兴嗣编纂而成的,全文为四字句,对仗工整,条理清晰,文采斐然.已知将1000个不同汉字任意排列,大约有4.02×102567种方法,设这个数为N ,则lg N 的整数部分为( )A .2566B .2567C.2568 D.2569答案 B解析由题可知,lg N=lg (4.02×102567)=2567+lg 4.02.因为1<4.02<10,所以0<lg 4.02<1,所以lg N的整数部分为2567.(2)化简12lg3249-43lg 8+lg 245=________.答案1 2解析12lg3249-43lg 8+lg 245=12×(5lg 2-2lg 7)-43×32lg 2+12(lg 5+2lg 7)=52lg 2-lg 7-2lg 2+12lg 5+lg 7=12lg 2+12lg 5=12lg (2×5)=12.(3)设2a=5b=m,且1a+1b=2,则m=________.答案10解析因为2a=5b=m>0,所以a=log2m,b=log5m,所以1a+1b=1log2m+1log5m=log m2+log m5=log m10=2.所以m2=10,所以m=10.对数运算的一般思路(1)拆:把底数或真数进行变形,将对数式化为同底数对数的和、差、倍数运算.(2)合:逆用对数的运算性质,转化为同底对数真数的积、商、幂的运算.对数的运算性质以及有关公式都是在式子中所有的对数有意义的前提下才成立的,不能出现log212=log2[(-3)×(-4)]=log2(-3)+log2(-4)的错误.1.(2020·青岛质检)已知函数f (x )=⎩⎪⎨⎪⎧3x ,x≤0,-⎝ ⎛⎭⎪⎪⎫12x ,x>0,则f (f (log 23))=( )A .-9B .-1C .-13D .-127 答案 B解析 f (log 23)=-⎝ ⎛⎭⎪⎪⎫12log 23=-2log 23-1=-13<0,∴f (f (log 23))=f ⎝ ⎛⎭⎪⎪⎫-13=3×⎝ ⎛⎭⎪⎪⎫-13=-1.2.lg 52+23lg 8+lg 5×lg 20+(lg 2)2的值为________. 答案 3解析 原式=2lg 5+2lg 2+lg 5(1+lg 2)+(lg 2)2=2(lg 5+lg 2)+lg 5+lg 2(lg 2+lg 5)=2+lg 5+lg 2=3.3.若log 147=a,14b =5,则用a ,b 表示log 3528=________. 答案2-a a +b解析 ∵a =log 147,b =log 145,∴a +b =log 1435.又log 1428=log 141427=2-log 147=2-a ,∴log 3528=log1428log1435=2-a a +b.考向二 对数函数的图象及其应用例2 (1)(2020·泰安模拟)对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 在同一坐标系内的图象可能是( )答案 A解析 由对数函数y =log a x (a >0且a ≠1)与二次函数y =(a -1)x 2-x 可知,①当0<a <1时,此时a -1<0,对数函数y =log a x 为减函数,而二次函数y =(a -1)x 2-x 的图象开口向下,且其对称轴为x =错误!<0,故排除C ,D ;②当a >1时,此时a -1>0,对数函数y =log a x 为增函数,而二次函数y =(a -1)x 2-x 的图象开口向上,且其对称轴为x =错误!>0,故B 错误,而A 符合题意.故选A .(2)若方程4x =log a x 在⎝ ⎛⎦⎥⎥⎤0,12内有解,则实数a 的取值范围为________.答案 ⎝ ⎛⎦⎥⎥⎤0,22 解析 构造函数f (x )=4x 和g (x )=log a x .当a >1时不满足条件,当0<a <1时,画出两个函数的大致图象,如图所示.可知,只需两图象在⎝ ⎛⎦⎥⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎪⎫12≥g ⎝ ⎛⎭⎪⎪⎫12,即2≥log a 12,则0<a ≤22,所以实数a 的取值范围为⎝⎛⎦⎥⎥⎤0,22.利用对数函数的图象可求解的两类热点问题(1)对一些可通过平移、对称变换作出其对数型函数的图象,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.4.函数f (x )=log a |x |+1(0<a <1)的图象大致是( )答案 A解析 由于函数f (x )=log a |x |+1(0<a <1)是偶函数,故其图象关于y 轴对称.当x >0时,f (x )=log a |x |+1(0<a <1)是减函数;当x <0时,f (x )=log a |x |+1(0<a <1)是增函数.再由图象过点(1,1),(-1,1),可知应选A .5.(2020·河南洛阳高三阶段性测试)已知正实数a ,b ,c 满足⎝ ⎛⎭⎪⎪⎫12a =log 3a ,⎝ ⎛⎭⎪⎪⎫14b =log 3b ,c =log 32,则( )A .a <b <cB .c <b <aC .b <c <aD .c <a <b答案 B解析 在坐标系里画出y =⎝ ⎛⎭⎪⎪⎫12x ,y =⎝ ⎛⎭⎪⎪⎫14x 与y =log 3x 的图象,可得a >b >1.而c =log 32<1,故c <b <a .多角度探究突破考向三 对数函数的性质及其应用 角度1 比较对数值的大小例3 (1)(2020·聊城二模)已知a =π,b =ln π,c =log πe ,则a ,b ,c 的大小关系为( )A .a >c >bB .b >a >cC .c >a >bD .a >b >c答案 D解析 因为a =π>π0=1,b =lnπ=ln (π)=12ln π,c =log πe =log π(e )=12log πe ,又log π1<log πe<log ππ,即c ∈⎝ ⎛⎭⎪⎪⎫0,12,ln e<ln π<ln e 2,即b ∈⎝ ⎛⎭⎪⎪⎫12,1,所以a >b >c ,故选D .(2)(多选)若实数a ,b ,c 满足log a 2<log b 2<log c 2,则下列关系中可能成立的是( )A .a <b <cB .b <a <cC .c <b <aD .a <c <b答案 BCD解析 由log a 2<log b 2<log c 2的大小关系,可知a ,b ,c 有如下四种可能:①1<c <b <a ;②0<a <1<c <b ;③0<b <a <1<c ;④0<c <b <a <1.作出函数的图象(如图所示).由图象可知选项B ,C ,D 可能成立.(3)(2020·全国卷Ⅲ)已知55<84,134<85.设a=log53,b=log85,c=log138,则() A.a<b<c B.b<a<cC.b<c<a D.c<a<b答案 A解析∵a,b,c∈(0,1),ab=log53log85=lg 3lg 5·lg 8lg 5<错误!·错误!2=错误!2=错误!2<1,∴a<b.由b=log85,得8b=5,由55<84,得85b<84,∴5b<4,可得b<45.由c=log138,得13c=8,由134<85,得134<135c,∴5c>4,可得c>45.综上所述,a<b<c.故选A.比较对数值大小的方法6.(2021·长郡中学高三月考)已知实数a,b,c满足lg a=10b=1c,则下列关系式中不可能成立的是()A.a>b>c B.a>c>b C.c>a>b D.c>b>a 答案 D解析设lg a=10b=1c=t,t>0,则a=10t,b=lg t,c=1t,在同一坐标系中分别画出函数y=10x,y=lg x,y=1x的图象,如图,当t=x3时,a>b>c;当t=x2时,a>c >b ;当t =x 1时,c >a >b .故选D .7.(2020·全国卷Ⅱ)若2x -2y <3-x -3-y ,则( ) A .ln (y -x +1)>0 B .ln (y -x +1)<0 C .ln |x -y |>0 D .ln |x -y |<0答案 A解析 由2x -2y <3-x -3-y ,得2x -3-x <2y -3-y .令f (t )=2t -3-t ,∵y =2x 为R 上的增函数,y =3-x 为R 上的减函数,∴f (t )为R 上的增函数.∴x <y ,∴y -x >0,∴y -x +1>1,∴ln (y -x +1)>0,故A 正确,B 错误.∵|x -y |与1的大小关系不确定,故C ,D 无法确定.故选A .角度2 解简单的对数不等式例4 (1)设函数f (x )=错误!若f (a )>f (-a ),则实数a 的取值范围是( ) A .(-1,0)∪(0,1) B .(-∞,-1)∪(1,+∞) C .(-1,0)∪(1,+∞) D .(-∞,-1)∪(0,1) 答案 C解析 由题意可得⎩⎪⎨⎪⎧a>0,log2a>-log2a或错误!解得a >1或-1<a <0.故选C .(2)(2020·泰安四模)已知函数f (x )是定义在R 上的奇函数,当x ∈(-∞,0]时,f (x )=-x 2+2x ,若实数m 满足f (log 2m )≤3,则m 的取值范围是( )A .(0,2]B .12,2C .(0,8]D .18,8答案 A解析 根据题意,当x ∈(-∞,0]时,f (x )=-x 2+2x =-(x -1)2+1,则f (x )在区间(-∞,0]上为增函数,且f (-1)=(-1)+2×(-1)=-3,又f (x )为奇函数,则f (x )在区间[0,+∞)上为增函数,且f (1)=-f (-1)=3,故f (x )在R 上为增函数,f (log 2m )≤3⇒f (log 2m )≤f (1)⇒log 2m ≤1,解得0<m ≤2,即m 的取值范围为(0,2].故选A .解对数不等式的类型及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式.8.设函数f (x )=⎩⎪⎨⎪⎧21-x ,x≤1,1-log2x ,x>1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)答案 D解析 当x ≤1时,由21-x ≤2得1-x ≤1,∴0≤x ≤1.当x >1时,由1-log 2x ≤2得x ≥12,∴x >1.综上,x 的取值范围为[0,+∞).故选D .9.(2020·北京模拟)已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,则“不等式f (log 4x )>0的解集”是“⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12”的( )A .充分不必要条件B .充要条件C .必要不充分条件D .既不充分也不必要条件答案 C解析 ∵定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝ ⎛⎭⎪⎪⎫12=0,∴f (log 4x )>0,即f (log 4x )>f ⎝ ⎛⎭⎪⎪⎫12,即f (|log 4x |)>f ⎝ ⎛⎭⎪⎪⎫12,即|log 4x |>12,即log 4x >12或log 4x <-12,解得x >2或0<x <12.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x >2或0<x <12是⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|0<x <12的必要不充分条件.故选C .考向四 与对数有关的复合函数问题例5 (1)已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________.答案 ⎝⎛⎭⎪⎪⎫1,83解析 当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,解得1<a <83.当0<a <1时,f (x )在[1,2]上是增函数, 由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,得8-2a <0,a >4.a 不存在. 综上可知,实数a 的取值范围是⎝⎛⎭⎪⎪⎫1,83.(2)(2020·海南省高三第一次联考)已知函数f (x )=3+log 2x ,x ∈[1,16],若函数g (x )=[f (x )]2+2f (x 2).①求函数g (x )的定义域; ②求函数g (x )的最值.解 ①函数g (x )=[f (x )]2+2f (x 2)满足⎩⎪⎨⎪⎧1≤x≤16,1≤x2≤16,解得1≤x ≤4,即函数g (x )=[f (x )]2+2f (x 2)的定义域为[1,4].②因为x ∈[1,4],所以log 2x ∈[0,2]. g (x )=[f (x )]2+2f (x 2) =(3+log 2x )2+6+2log 2x 2=(log 2x )2+10×log 2x +15=(log 2x +5)2-10, 当log 2x =0时,g (x )min =15, 当log 2x =2时,g (x )max =39,即函数g (x )的最大值为39,最小值为15.利用对数函数的性质,求与对数函数有关的函数值域和复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.另外,解题时要注意数形结合、分类讨论、转化与化归思想的使用.10.若f (x )=lg (x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)答案 A解析 令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为直线x =a ,要使函数在(-∞,1]上单调递减,则有错误!即错误!解得1≤a <2,即a ∈[1,2).故选A .11.已知函数f (x )=log a (x +2)+log a (4-x )(a >0且a ≠1). (1)求函数f (x )的定义域;(2)若函数f (x )在区间[0,3]上的最小值为-2,求实数a 的值.解 (1)依题意得⎩⎪⎨⎪⎧x +2>0,4-x>0,解得-2<x <4,∴f (x )的定义域为(-2,4).(2)f (x )=log a (x +2)+log a (4-x ) =log a [(x +2)(4-x )],令t =(x +2)(4-x ),则变形得t =-(x -1)2+9, ∵0≤x ≤3,∴5≤t ≤9.若a >1,则log a 5≤log a t ≤log a 9,∴f (x )min =log a 5=-2,则a 2=15<1(舍去),若0<a <1,则log a 9≤log a t ≤log a 5, ∴f (x )min =log a 9=-2, 则a 2=19,又0<a <1,∴a =13.综上,a =13.一、单项选择题1.函数f (x )=错误!的定义域是( ) A .(-3,0)B .(-3,0]C .(-∞,-3)∪(0,+∞)D .(-∞,-3)∪(-3,0)答案 A解析 因为f (x )=错误!,所以要使函数f (x )有意义,需使错误!即-3<x <0. 2.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,且f (2)=1,则f (x )=()A.log2x B.1 2xC.log12x D.2x-2答案 A解析由题意知f(x)=log a x(x>0).∵f(2)=1,∴log a2=1.∴a=2.∴f(x)=log2x.3.(2020·北京市平谷区二模)溶液酸碱度是通过pH计算的,pH的计算公式为pH =-lg [H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,若人体胃酸中氢离子的浓度为2.5×10-2摩尔/升,则胃酸的pH是(参考数据:lg 2≈0.3010)() A.1.398 B.1.204C.1.602 D.2.602答案 C解析由题意可得,pH=-lg (2.5×10-2)=-(lg 2.5+lg 10-2)=-(1-2lg 2-2)=1+2lg 2≈1.6020.故选C.4.(2020·滨州二模)设a=0.30.1,b=log 15,c=log526,则a,b,c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a 答案 D解析∵0<0.30.1<0.30=1,∴0<a<1,∵b=log 15=log35,log33<log35<log39,∴1<b<2,∵c=log526>log525=2,∴c>2,∴c>b>a.故选D.5.在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()答案 A解析 由题意,知函数f (x )=2-ax (a >0,且a ≠1)为单调递减函数,当0<a <1时,函数f (x )=2-ax 的零点x =2a >2,且函数g (x )=log a (x +2)在(-2,+∞)上为单调递减函数;当a >1时,函数f (x )=2-ax 的零点x =2a <2,且x =2a >0,又g (x )=log a (x+2)在(-2,+∞)上是增函数.综上只有A 满足.6.若log a 23<1(a >0且a ≠1),则实数a 的取值范围是( )A .⎝⎛⎭⎪⎪⎫0,23B .⎝ ⎛⎭⎪⎪⎫23,+∞C .⎝ ⎛⎭⎪⎪⎫23,1∪(1,+∞)D .⎝⎛⎭⎪⎪⎫0,23∪(1,+∞)答案 D解析 因为log a 23<1,所以log a 23<log a a .若a >1,则上式显然成立;若0<a <1,则应满足0<a <23.所以实数a 的取值范围是⎝⎛⎭⎪⎪⎫0,23∪(1,+∞).故选D .7.(2020·泰安一模)已知定义在R 上的函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,则f (-log 36)+f (log 354)=( ) A .32B .32-log 32C .-12D .23+log 32答案 A解析 因为函数f (x )的周期为4,当x ∈[-2,2)时,f (x )=⎝ ⎛⎭⎪⎪⎫13x -x -4,∴f (-log 36)=f ⎝ ⎛⎭⎪⎪⎫log316=⎝ ⎛⎭⎪⎪⎫13log 3-log 316-4=2+log 36,f (log 354)=f (3+log 32)=f (log 32-1)=f ⎝ ⎛⎭⎪⎪⎫log323=⎝ ⎛⎭⎪⎪⎫13log 3-log 323-4=32-log 32+1-4=-32-log 32,∴f (-log 36)+f (log 354)=2+log 36-32-log 32=32.故选A .8.(2020·枣庄模拟)已知a >b >0,若log a b +log b a =52,a b=b a,则ab=( )A .2B .2C .22D .4答案 B解析 对a b =b a 两边取以a 为底的对数,得log a a b =log a b a ,即b =a log a b ,同理有a =b log b a ,代入log a b +log b a =52,得ba +ab =52,因为a >b >0,所以ab >1,所以ab =2,ba =12,故选B .9.(2020·海南模拟)函数f (x )=log 2x4·log 4(4x 2)的最小值为( )A .-94B .-2C .-32D .0答案 A解析 由题意知f (x )的定义域为(0,+∞).所以f (x )=(-2+log 2x )(1+log 2x )=(log 2x )2-log 2x -2=⎝⎛⎭⎪⎪⎫log2x -122-94≥-94.当x =2时,函数取得最小值.故选A .10.(2020·全国卷Ⅱ)设函数f (x )=ln |2x +1|-ln |2x -1|,则f (x )( ) A .是偶函数,且在⎝ ⎛⎭⎪⎪⎫12,+∞单调递增B .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-12,12单调递减C .是偶函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递增D .是奇函数,且在⎝ ⎛⎭⎪⎪⎫-∞,-12单调递减答案 D解析 f (x )=ln |2x +1|-ln |2x -1|的定义域为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x|x≠±12,关于坐标原点对称,又f (-x )=ln |1-2x |-ln |-2x -1|=ln |2x -1|-ln |2x +1|=-f (x ),∴f (x )为定义域上的奇函数,可排除A ,C ;当x ∈⎝ ⎛⎭⎪⎪⎫-12,12时,f (x )=ln (2x +1)-ln (1-2x ),∵y =ln (2x +1)在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,y =ln (1-2x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递减,∴f (x )在⎝ ⎛⎭⎪⎪⎫-12,12上单调递增,排除B ;当x ∈⎝⎛⎭⎪⎪⎫-∞,-12时,f (x )=ln (-2x -1)-ln (1-2x )=ln 2x +12x -1=ln⎝ ⎛⎭⎪⎪⎫1+22x -1,∵μ=1+22x -1在⎝ ⎛⎭⎪⎪⎫-∞,-12上单调递减,f (μ)=ln μ在定义域内单调递增,∴根据复合函数单调性可知f (x )在⎝⎛⎭⎪⎪⎫-∞,-12上单调递减,D 正确.故选D .二、多项选择题11.(2020·海南省普通高中高考调研测试)若10a =4,10b =25,则( ) A .a +b =2 B .b -a =1 C .ab >8(lg 2)2 D .b -a >lg 6答案 ACD解析 由10a =4,10b =25,得a =lg 4,b =lg 25,∴a +b =lg 4+lg 25=lg 100=2,∴b -a =lg 25-lg 4=lg254,∵b -a =lg254>lg 6,∴b -a >lg 6,∴ab =4lg 2×lg 5>4lg 2×lg 4=8(lg 2)2.故选ACD .12.(2020·泰安三模)已知直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),则下列结论正确的是( )A .x 1+x 2=2B .e x 1+e x 2>2eC .x 1ln x 2+x 2ln x 1<0D .x 1x 2>e 2答案 ABC解析 函数y =e x 与y =ln x 互为反函数,则y =e x 与y =ln x 的图象关于y =x 对称,将y =-x +2与y =x 联立,得x =1,y =1,由直线y =-x +2分别与函数y =e x 和y =ln x 的图象交于点A (x 1,y 1),B (x 2,y 2),作出函数图象如图:则A (x 1,y 1),B (x 2,y 2)的中点坐标为(1,1),对于A ,由x1+x22=1,解得x 1+x 2=2,故A 正确;对于B ,e x 1+e x 2≥2ex1·ex2=2ex1+x2=2e2=2e ,因为x 1≠x 2,即等号不成立,所以e x 1+e x 2>2e ,故B 正确;对于C ,将y =-x +2与y =e x 联立可得-x +2=e x ,即e x +x -2=0,设f (x )=e x +x -2,则函数为单调递增函数,因为f (0)=1+0-2=-1<0,f ⎝ ⎛⎭⎪⎪⎫12=e +12-2=e -32>0,故函数的零点在⎝ ⎛⎭⎪⎪⎫0,12上,即0<x 1<12,由x 1+x 2=2,则32<x 2<2,x 1ln x 2+x 2ln x 1=x 1ln x 2-x 2ln 1x1<x 1ln x 2-x 2ln x 2=(x 1-x 2)ln x 2<0,故C 正确;对于D ,x 1x 2=x 1(2-x 1)=2x 1-x 21,又x 1∈⎝ ⎛⎭⎪⎪⎫0,12,所以x 1x 2∈⎝⎛⎭⎪⎪⎫0,34,故D 错误.故选ABC .三、填空题13.计算:lg 5(lg 8+lg 1000)+(lg 2)2+lg 16+lg 0.06=________. 答案 1解析 原式=lg 5(3lg 2+3)+3(lg 2)2+lg ⎝ ⎛⎭⎪⎪⎫16×0.06=3lg 5·lg 2+3lg 5+3(lg 2)2-2=3lg 2+3lg 5-2=1.14.(2020·南昌三模)已知函数f (x )=2|x |+x 2,m =f ⎝ ⎛⎭⎪⎪⎫log213,n =f (7-0.1),p =f (log 425),则m ,n ,p 的大小关系是________.答案 p >m >n解析 因为f (x )=2|x |+x 2,则f (-x )=2|-x |+(-x )2=f (x ),即f (x )为偶函数,当x >0时,f (x )=2x+x 2单调递增,m =f ⎝⎛⎭⎪⎪⎫log213=f (log 23),n =f (7-0.1),p =f (log 425)=f (log 25),又log 25>2>log 23>1>7-0.1>0,故p >m >n .15.函数y =log 0.6(-x 2+2x )的值域是________. 答案 [0,+∞)解析 -x 2+2x =-(x -1)2+1≤1,又-x 2+2x >0,则0<-x 2+2x ≤1.函数y =log 0.6x 为(0,+∞)上的减函数,则y =log 0.6(-x 2+2x )≥log 0.61=0,所以所求函数的值域为[0,+∞).16.如图,已知过原点O 的直线与函数y =log 8x 的图象交于A ,B 两点,分别过A ,B 作y 轴的平行线与函数y =log 2x 图象交于C ,D 两点,若BC ∥x 轴,则四边形ABDC 的面积为________.答案433log 23解析 设点A ,B 的横坐标分别为x 1,x 2,由题设知,x 1>1,x 2>1.则点A ,B 的纵坐标分别为log 8x 1,log 8x 2.因为A ,B 在过点O 的直线上,所以log8x1x1=log8x2x2,点C ,D 的坐标分别为(x 1,log 2x 1),(x 2,log 2x 2).由BC 平行于x 轴,知log 2x 1=log 8x 2,即log 2x 1=13log 2x 2,∴x 2=x 31.代入x 2log 8x 1=x 1log 8x 2得x 31log 8x 1=3x 1log 8x 1.由x 1>1知log 8x 1≠0,∴x 31=3x 1.考虑x 1>1,解得x 1=3.于是点A 的坐标为(3,log 83),即A ⎝⎛⎭⎪⎪⎫3,16log23,∴B ⎝⎛⎭⎪⎪⎫33,12log23,C ⎝⎛⎭⎪⎪⎫3,12log23,D ⎝⎛⎭⎪⎪⎫33,32log23.∴梯形ABDC 的面积为S =12(AC +BD )×BC =12×⎝ ⎛⎭⎪⎪⎫13log23+log23×23=433log 23.四、解答题17.已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=log a (x +1)(a >0,且a ≠1).(1)求函数f (x )的解析式;(2)若-1<f (1)<1,求实数a 的取值范围. 解 (1)当x <0时,-x >0, 由题意知f (-x )=log a (-x +1),又f (x )是定义在R 上的偶函数,∴f (-x )=f (x ). ∴当x <0时,f (x )=log a (-x +1), ∴函数f (x )的解析式为f (x )=错误! (2)∵-1<f (1)<1,∴-1<log a 2<1, ∴log a 1a<log a 2<log a a .①当a >1时,原不等式等价于⎩⎪⎨⎪⎧1a<2,a >2,解得a >2;②当0<a <1时,原不等式等价于⎩⎪⎨⎪⎧1a>2,a <2,解得0<a <12.综上,实数a 的取值范围为⎝ ⎛⎭⎪⎪⎫0,12∪(2,+∞).18.已知函数f (x )=log 2⎝ ⎛⎭⎪⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解 (1)若函数f (x )是R 上的奇函数,则f (0)=0, ∴log 2(1+a )=0,∴a =0.当a =0时,f (x )=-x 是R 上的奇函数.所以a =0. (2)若函数f (x )的定义域是一切实数,则12x +a >0恒成立.即a >-12x 恒成立,由于-12x∈(-∞,0), 故只要a ≥0,则a 的取值范围是[0,+∞).(3)由已知得函数f (x )是减函数,故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝ ⎛⎭⎪⎪⎫12+a .由题设得log 2(1+a )-log 2⎝ ⎛⎭⎪⎪⎫12+a ≥2,则log 2(1+a )≥log 2(4a +2). ∴⎩⎪⎨⎪⎧1+a≥4a+2,4a +2>0,解得-12<a ≤-13.故实数a 的取值范围是⎝ ⎛⎦⎥⎥⎤-12,-13.19.(2021·荆州月考)已知函数f (x )=log 13(x 2-2mx +5).(1)若f (x )的值域为R ,求实数m 的取值范围;(2)若f (x )在(-∞,2]内为增函数,求实数m 的取值范围.解 (1)由f (x )的值域为R ,可得u =x 2-2mx +5能取得(0,+∞)内的一切值, 故函数u =x 2-2mx +5的图象与x 轴有公共点, 所以Δ=4m 2-20≥0,解得m ≤-5或m ≥5.故实数m 的取值范围为(-∞,-5]∪[5,+∞).(2)因为f (x )在(-∞,2]内为增函数,所以u =x 2-2mx +5在(-∞,2]内单调递减且恒正, 所以⎩⎪⎨⎪⎧m≥2,9-4m>0,解得2≤m <94.故实数m 的取值范围为2,94.20.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.解 (1)因为f (1)=1,所以log 4(a +5)=1, 因此a +5=4,a =-1, 此时f (x )=log 4(-x 2+2x +3). 由-x 2+2x +3>0得-1<x <3, 即函数f (x )的定义域为(-1,3). 令t =-x 2+2x +3,则t =-x 2+2x +3在(-1,1]上单调递增,在(1,3)上单调递减. 又y =log 4t 在(0,+∞)上单调递增,所以f (x )的单调递增区间是(-1,1],单调递减区间是(1,3). (2)存在.令h (x )=ax 2+2x +3,则h (x )有最小值1,因此应有⎩⎪⎨⎪⎧a>0,12a -44a =1,解得a =12.。
2025年高考数学一轮知识点复习-对数与对数函数【课件】

第四步:将 y=|log2(x+1)|的图象沿 y 轴向上平移 2 个单位长度,便得到 所求函数的图象,如图 4.
方法二:y=|log2(x+1)|+2 =l-oglo2(g2(x+x+ 1)1) ++ 2((x≥-0)1<,x<0), 分别作出函数在(-1,0)和[0,+∞)上的两段图象即得 y=|log2(x+1)|+2 的图象(如图 4).
(2)已知当 0<x≤14时,有 x<logax,则实数 a 的取值范围为__11_6_,__1__.
【解析】 若 x<logax 在 x∈0,14时成立,则 0<a<1,且 y= x的图象在
y=logax 图象的下方,则
0<a<1, 14<loga41,所以a12>14, 解得116<a<1.
即实数 a 的取值范围是116,1.
4.(2024·吉林永吉四中月考)函数f(x)=lg(x2-2x-3)的单调递增区间为
() A.(-∞,-1)
B.(1,+∞)
C√.(3,+∞)
D.(1,3)
解析 设 g(x)=x2-2x-3,可得函数 g(x)在(-∞,1)上单调递减,在(1,
+∞)上单调递增,又 x2-2x-3>0,解得 x<-1 或 x>3,根据复合函数的单调
方法二:可以画直线 y=1,直线与四个函数图象交点的位置自左向右, 其对应函数的底数由小到大.
3.(2021·新高考Ⅱ卷)已知 a=log52,b=log83,c=21,则下列判断正确
的是( )
数学(文)一轮复习:第二章 基本初等函数、导数及其应用 第讲对数与对数函数

第6讲对数与对数函数,)1.对数概念如果a x=N(a〉0,a≠1),那么数x叫做以a 为底N的对数,记作x=log a N.其中a叫做对数的底数,N叫做真数性质底数的限制:a>0,且a≠1对数式与指数式的互化:a x=N⇒log a N=x负数和零没有对数1的对数是零:log a1=0底数的对数是1:log a a=1对数恒等式:a log a N=N运算性质log a(M·N)=log a M+log a N a>0,且a≠1, log a错误!=log a M-log a Nlog a M n=n log a M(n∈R)M >0,N〉0 2.对数函数的图象与性质a〉10<a<1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x〉1时,y〉0当0〈x〈1时,y<0当x〉1时,y〈0当0<x<1时,y〉在(0,+∞)上是增函数在(0,+∞)上是减函数指数函数y=a x与对数函数y=log a x互为反函数,它们的图象关于直线y=x对称.1.辨明三个易误点(1)在运算性质中,要特别注意条件,底数和真数均大于0,底数不等于1。
(2)对公式要熟记,防止混用.(3)对数函数的单调性、最值与底数a有关,解题时要按0〈a 〈1和a〉1分类讨论,否则易出错.2.对数函数图象的两个基本点(1)当a>1时,对数函数的图象“上升”;当0<a〈1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),错误!,函数图象只在第一、四象限.3.换底公式及其推论(1)log a b=错误!(a,c均大于0且不等于1,b〉0);(2)log a b·log b a=1,即log a b=错误!(a,b均大于0且不等于1);(3)log am b n=错误!log a b(a〉0且a≠1,b>0,m≠0,n∈R);(4)log a b·log b c·log c d=log a d(a,b,c均大于0且不等于1,d>0).1.函数y=错误!ln(1-x)的定义域为()A.(0,1) B.D.B 因为y=错误!ln(1-x),所以错误!解得0≤x〈1.2.错误!(log29)·(log34)=()A.错误!B.错误!C.2 D.4D原式=错误!·错误!=4。
新高考数学一轮复习考点知识归类讲义 第12讲 对数与对数函数

新高考数学一轮复习考点知识归类讲义第12讲对数与对数函数1.对数的概念如果a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=log a N,其中a 叫做对数的底数,N叫做真数.2.对数的性质、运算性质与换底公式(1)对数的性质:①a log a N=N;②log a a b=b(a>0,且a≠1).(2)对数的运算性质如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN =log a M-log a N;③log a M n=n log a M(n∈R).(3)换底公式:log a b=log c blog c a(a>0,且a≠1,b>0,c>0,且c≠1).3.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0 在(0,+∞)上是增函数在(0,+∞)上是减函数4.指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.它们的定义域和值域正好互换.➢考点1 对数的化简求值[名师点睛]1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.a b =N ⇔b =log a N (a >0,且a ≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化. 1.(2022·浙江绍兴·模拟预测)己知lg 2,10b a b a +==,则=a _______;b =_________. 【答案】 10 1【解析】10log 10=⇒=ba ab ,∴1lg log 102log 10a a a b +=+=,解得log 10110=⇒=a a ,∴1b =﹒故答案为:10;1﹒2.(2022·全国·高三专题练习)化简求值(1)()3lg1log 233536log log 32145+-+;(2)()2lg 2lg5lg 2lg5ln1+⨯++;.(3)23722ln 2log 7log 81ln 2log 2log 8e +⋅--.(4)2log 33718182log 7log 9log 6log 3-⋅++.【解】(1))3lg1log 233536log log 3145+-+03log 921)2211=-+=-+=;(2)()2lg 2lg5lg 2lg5ln1+⨯++()lg2lg5lg2lg50lg2lg51=+⨯++=+=;(3)23722ln 2log 7log 81ln 2log log e +⋅--13422222ln 7ln 3ln 2ln ln 2log 2log 2ln 3ln 7e =++⋅---13ln 224ln 2422=++---=;(4)2log 33718182log 7log 9log 6log 3-⋅++()218lg 7lg 33log 633212lg 3lg 7=-⋅+⨯=-+=3.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值; (3)若185a =,18log 9b =,用a ,b ,表示36log 45.【解】(1)原式=()23lg 510lg25lg51lg26lg5lg26lg107++⨯+=+++=++=+=;(2)因为()23log log lg 1x ⎡⎤=⎣⎦,所以()3log lg 2x =,所以2lg 39x ==,所以x =109;(3)因为185a =,所以18log 5a =,所以()()()181818183618181818log 59log 45log 5log 9log 45log 36log 182log 18log 189⨯+====⨯+÷ 1818181818log 5log 9log 18log 18log 92a bb++=+--.[举一反三]1.(多选)(2021·全国·高三专题练习)设a ,b ,c 都是正数,且469a b c ==,那么( ) A .2ab bc ac +=B .ab bc ac +=C .221cab=+D .121cba=-【答案】AD【解析】由于a ,b ,c 都是正数,故可设469a b c M ===,∴4log a M =,6log b M =,9log c M =,则1log 4M a =,1log 6M b=,1log 9M c =.log 4log 92log 6M M M +=,∴112a c b +=,即121c b a=-,去分母整理得,2ab bc ac +=. 故选AD.2.(2022·山东滨州·二模)212log sin15log cos345︒-︒=__________. 【答案】2-【解析】解:因为()cos345cos 36015cos15︒=︒-︒=︒, 所以()212222log sin15log cos345log sin15log cos15log sin15cos15︒-︒=︒+︒=︒︒2211log sin 30log 224⎛⎫=︒==- ⎪⎝⎭,故答案为:2-.3.(2022·全国·高三专题练习)(1)2log 32-log 3329+log 38-5log 35; (2)(log 2125+log 425+log 85)·(log 52+log 254+log 1258). 【解】(1)原式=2log 32-5log 32+2+3log 32-3=-1.(2)原式35522252255log 4log 8log 25log 5log 5log 2log 4log 8log 25log 125⎛⎫⎛⎫=++⋅++ ⎪ ⎪⎝⎭⎝⎭()5522252522552log 23log 22log 5log 513log 5log 231log 53log 22log 23log 22log 53log 53⎛⎫⎛⎫⎛⎫=++⋅++=++⋅ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭222log 213log 513log 5=⋅=. 4.(2022·全国·高三专题练习)化简求值: (1)()32log 533351log 5log 15log 53log 3⋅--+.(2)()92log 4lg 2lg 20lg53+⨯+;(3)ln 229lg 20lg 2log 3log 162sin 330e -+⋅-+.(4)22lg 25lg8lg5lg 20(lg 2).3++⋅+ (5)()()2539log 3log 3log 5log 5lg2+⋅+.【解】(1)()32log 533351log 5log 15log 53log 3⋅--+()()23333log 5log 53log 5log 55=⨯⨯--+ ()()23333log 51log 5log 5log 55=⨯+--+ ()()223333log 5log 5log 5log 555=+--+=;(2)()92log 4lg 2lg 20lg53+⨯+()()32log 2lg 2lg 21lg53=++⋅+ ()2lg 2lg 2lg5lg52=+⋅++()lg2lg2lg5lg52=+++lg 2lg523=++=;(3)ln 229lg 20lg 2log 3log 162sin 330e -+⋅-+︒()242320lglog 3log 222sin 302=+⋅-+-︒ 231lg10log 32log 222122102⎛⎫=+⋅⋅-+⋅-=+--= ⎪⎝⎭;(4)22lg25lg8lg5lg20(lg2)3++⋅+22lg52lg 2lg5lg(102)(lg 2)=++⋅⨯+()22(lg5lg2)lg51lg2(lg2)=++++2lg5lg 2(lg5lg 2)3=+++=;(5)()()2539log 3log 3log 5log 5lg2+⋅+lg3lg3lg5lg5lg 2lg 2lg5lg3lg9⎛⎫⎛⎫=+⋅+ ⎪ ⎪⎝⎭⎝⎭lg3(lg 2lg5)lg5(lg3lg9)lg 2lg 2lg5lg3lg9++=⋅⋅⋅⋅lg 32lg 332lg 32+⋅==.5.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值. (2)已知9log 5=a ,37b =,试用a ,b 表示21log 35【解】(1)原式()()()1233232355log 5log 2log 32log 53log 23log 3--=⋅⋅=-⋅⋅-lg5lg 2lg31818lg 2lg3lg5=⋅⋅⋅= (2)由37b =得到3log 7b =,由9log 5=a ,得到31log 52=a ,即3log 52=a .33321333log 35log 5log 72log 35log 21log 7log 31a bb ++===++.➢考点2 对数函数的图象及应用1.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是( )A .0a b +<B .1ab <-C .01b a <<D .log 0a b > 【答案】C【解析】由图象可知()f x 在定义域内单调递增,所以1a >,令()()log 0a f x x b =-=,即1x b =+,所以函数()f x 的零点为1b +,结合函数图象可知011b <+<,所以10b -<<,因此0a b +>,故A 错误;0-<<a ab ,又因为1a >,所以1a -<-,因此1ab <-不一定成立,故B 错误;因为10b a a a -<<,即11ba a <<,且101a<<,所以01b a <<,故C 正确;因为01b <<,所以log log 1a a b <,即log 0a b <,故D 错误, 故选:C.2.(2022·广东广州·二模)函数()sin ln 23f x x x π=--的所有零点之和为__________. 【答案】9【解析】由()0sin ln |23|x x f x π=⇔=-,令sin y x =π,ln 23y x =-, 显然sin y x =π与ln 23y x =-的图象都关于直线32x =对称, 在同一坐标系内作出函数sin y x =π,ln 23y x =-的图象,如图,观察图象知,函数sin y x =π,ln 23y x =-的图象有6个公共点,其横坐标依次为123456,,,,,x x x x x x ,这6个点两两关于直线32x =对称,有1625343x x x x x x +=+=+=,则1234569x x x x x x +++++=, 所以函数()sin ln 23f x x x π=--的所有零点之和为9. 故答案为:9 [举一反三]1.(2022·浙江绍兴·模拟预测)在同一直角坐标系中,函数()log a y x =-,()10a y a x-=>,且1a ≠的图象可能是( )A .B .C .D .【答案】C【解析】解:因为函数()log a y x =-的图象与函数log a y x =的图象关于y 轴对称,所以函数()log a y x =-的图象恒过定点()1,0-,故选项A 、B 错误;当1a >时,函数log a y x =在()0,∞+上单调递增,所以函数()log a y x =-在(),0∞-上单调递减, 又()11a y a x-=>在(),0∞-和()0,∞+上单调递减,故选项D 错误,选项C 正确. 故选:C.2.(2022·江苏·二模)已知实数a ,b ,c 满足12ln 2b a c -==,则下列关系式中不可能成立的是( ) A .a b c >>B .a c b >> C .c a b >>D .c b a >> 【答案】D【解析】设12ln 2b a c t -===,0t >, 则e t a =,2log b t =,21c t =,在同一坐标系中分别画出函数e x y =,2log y x =,21y x =的图象,当1t x =时,c a b >>, 当2t x =时,a c b >>, 当3t x =时,a b c >>,由此可以看出,不可能出现c b a >>这种情况,故选:D .➢考点3 对数函数的性质及应用1.(2022·浙江金华·三模)若函数()()22x x f x x -=-,设12a =,41log 3b =,51log 4c =,则下列选项正确的是( )A .()()()f a f b f c <<B .()()()f a f c f b <<C .()()()f b f a f c <<D .()()()f c f a f b << 【答案】A【解析】由题可知()()22x x f x x -=-()x R ∈,故()()22()x xf x x f x --=--=,∴函数()f x 为偶函数;易知,当0x >时,()f x 在(0,)+∞为单调递增函数; 又441log log 33b ==-,∴44()(log 3)(log 3)f b f f =-=,同理,5()(log 4)f c f =; 又441log 2log 32=<,222524lg 4log 4lg 4lg 4(lg 4)lg51lg3log 3lg5lg3lg5lg3lg 42⋅==≥=>⋅+⎛⎫ ⎪⎝⎭, 故451log 3log 42<<,故()()()f a f b f c <<. 故选:A.2.(2022·福建莆田·三模)已知0.1542,log 3,log 2a b c ===,则( )A .a c b >>B .b c a >>C .a b c >>D .b a c >> 【答案】C【解析】0.10221a =>=124324>>=,124411log 3log 42b ∴>=>=, 1225<12551log 2log 52c ∴=<= a b c ∴>>故选:C.3.(2022·湖北·二模)已知函数()lg(||1)22x x f x x -=-++,则使不等式(1)(2)f x f x +<成立的x 的取值范围是( ) A .,1(),)1(-∞-⋃+∞B .(2,1)--C .1,(1,)3⎛⎫-∞-+∞ ⎪⎝⎭D .(,2)(1,)-∞-+∞【答案】D【解析】由||10x ->得()f x 定义域为,1(),)1(-∞-⋃+∞,)lg(||1)22()(x x f x f x x -+=-+-=,故()f x 为偶函数,而lg(||1)y x =-,122x xy =+在(1,)+∞上单调递增, 故()f x 在(1,)+∞上单调递增,则(1)(2)f x f x +<可化为121121x xx x ⎧+<⎪+>⎨⎪>⎩,得222141111x x x x x ⎧++<⎨+>+<-⎩或 解得12x x ><-或 故选:D4.(2022·全国·高三专题练习)已知函数()2()log 14xf x x =+-,则下列说法正确的是( )A .函数()f x 在(],0-∞上为增函数B .函数()f x 的值域为RC .函数()f x 是奇函数D .函数()f x 是偶函数 【答案】D【解析】根据题意,函数()()2log 14f x x x =+-,其定义域为R , 有()()()221log 1log 144xf x x x x f x ⎛⎫-=++=+-= ⎪⎝⎭,所以函数()f x 是偶函数,则D 正确,C 错误,对于A ,()()251log 102f f -=>=,()f x 不是增函数,A 错误, 对于B ,22()log (14)log (x f x x =+-=12)2x x +,设1222x xt =+,当且仅当0x =时等号成立,则t 的最小值为2,故2()log 21f x =,即函数的值域为[1,)+∞,B 错误, 故选:D5.(2022·全国·高三专题练习)知函数()()()2log 260,1a f x kx x a a =-+>≠(1)若函数的定义域为R ,求实数k 的取值范围; (2)若函数()f x 在[1,2]上恒有意义,求k 的取值范围;(3)是否存在实数k ,使得函数()f x 在区间[2,3]上为增函数,且最大值为2?若存在,求出k 的值;若不存在,请说明理由 【解】解:(1)因为函数的定义域为R , 则2260kx x -+>在R 上恒成立,当0k =时,260x -+>,得3x <,不合题意舍去; 当0k ≠时,04240k k >⎧⎨∆=-<⎩,解得16k >,综合得16k >;(2)函数()f x 在[1,2]上恒有意义,即2260kx x -+>在[1,2]上恒成立226kx x ∴>-,226k x x ∴>-恒成立, 令1t x =,1,12t ⎡⎤∈⎢⎥⎣⎦,则262y t t =-+,当12t =时,2max 11162222y ⎛⎫=-⨯+⨯=- ⎪⎝⎭,12k ∴>-;(3)当1a >时,()012log 92362a k k k >⎧⎪⎪≤⎨⎪-⨯+=⎪⎩或()013log 92362a k k k <⎧⎪⎪≥⎨⎪-⨯+=⎪⎩,解得21,99a k k =>,当01a <<时,()013log 92362a k k k >⎧⎪⎪≥⎨⎪-⨯+=⎪⎩或()012log 92362a k k k <⎧⎪⎪≤⎨⎪-⨯+=⎪⎩,解得21,099a k k =<<.故存在实数29a k =,使得函数()f x 在区间[2,3]上为增函数,且最大值为2.[举一反三]1.(2022·湖南·岳阳一中一模)设5log 4a =,4log 3b =,0.614c ⎛⎫= ⎪⎝⎭,则( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 【答案】A【解析】22254lg3lg5lg 4()lg 4lg3lg 4lg3lg52log 4log 3lg5lg 4lg 4lg5lg 4lg5+---=-=≥0=>, 所以54log 4log 3>,441log 3log 22>=,而0.6 1.2111()()422=<,所以a b c >>. 故选:A .2.(2022·北京房山·二模)已知函数2()log x f x =,则不等式()2f x 的解集为( )A .(4,0)(0,4)-⋃B .(0,4)C .1,44⎛⎫ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭【答案】C【解析】2222()log 22l 222og f x x x x x -<⇒<<⇒∈=<⇒-<1,44⎛⎫ ⎪⎝⎭.故选:C ﹒3.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是( )A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞ 【答案】C【解析】由题设,()f x 对称轴为2x =且图象开口向下,则()f x 在(0,2)上递增,(2,)+∞上递减,由2()42(4)2f x ax ax ax x =-+=-+,即()f x 恒过(4,2)且(0)2f =, 所以(0,4)上()2f x >,(4,)+∞上()2f x ,而2log y x =在(0,)+∞上递增,且(0,4)上2y <,(4,)+∞上2y >, 所以2()log f x x >的解集为(0,4). 故选:C4.(2022·北京丰台·二模)已知偶函数()f x 在区间[)0,∞+上单调递减.若()()lg 1f x f >,则x 的取值范围是( )A .1,110⎛⎫⎪⎝⎭B .()10,1,10⎛⎫⋃+∞ ⎪⎝⎭C .1,1010⎛⎫⎪⎝⎭D .()10,10,10∞⎛⎫⋃+ ⎪⎝⎭【答案】C【解析】解:偶函数()f x 在区间[)0,∞+上单调递减,所以()f x 在区间(],0-∞上单调递增; 则()()lg 1f x f >等价于lg 1x <,即1lg 1x -<<, 即1lglg lg1010x <<,解得11010x <<,即原不等式的解集为1,1010⎛⎫ ⎪⎝⎭; 故选:C5.(2022·河北·高三阶段练习)已知函数()41,12log 1,11xx x x ⎧⎛⎫≥⎪ ⎪⎨⎝⎭⎪+-<<⎩,则()12f x x ≤的解集为( )A .(],0-∞B .(]1,0-C .(][1,01,)-⋃+∞D .[)1,+∞ 【答案】C【解析】作出函数()y f x =与12y x =的图象,如图,当1≥x 时,1122xx ⎛⎫≤ ⎪⎝⎭,作出函数12xy ⎛⎫= ⎪⎝⎭与12y x =的图象,由图象可知,此时解得[1,)x ∈+∞;当11x -<<时,()41log 12x x +≤,作出函数()4log 1y x =+与12y x =的图象,它们的交点坐标为()0,0、11,2⎛⎫⎪⎝⎭,结合图象知此时(]1,0x ∈-.所以不等式1()2f x x ≤的解集为(]1,0-[1,)+∞. 故选:C6.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是( )A .3⎫⎪⎪⎝⎭B .3)C .3⎛ ⎝⎭D .(3,)+∞ 【答案】A【解析】解:依题意()()0,11,a ∈+∞且23410x ax -+->,所以216120a ∆=->,解得3a >或3a <()31,a ⎫∈+∞⎪⎪⎝⎭,令23410x ax -+-=的根为1x 、2x 且12x x <,()2341u x x ax =-+-,log a y u =, 若()1,a ∈+∞,则log a y u =在定义域上单调递增,()2341u x x ax =-+-在12,3a x ⎛⎫⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减, 根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减,函数不存在最小值,故舍去;若3a ⎫∈⎪⎪⎝⎭,则log a y u =在定义域上单调递减,()2341u x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递增,在22,3a x ⎛⎫⎪⎝⎭上单调递减, 根据复合函数的单调性可知,()2()log 341a f x x ax =-+-在12,3a x ⎛⎫ ⎪⎝⎭上单调递减,在22,3a x ⎛⎫⎪⎝⎭上单调递增,所以函数在23ax =取得最小值,所以a ⎫∈⎪⎪⎝⎭; 故选:A7.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是( ) A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2【答案】A【解析】由题意,函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤ ⎥⎝⎦,可得函数y 的最大值为116, 当0a =时,函数2414x y -+⎛⎫= ⎪⎝⎭显然不存在最大值;当0a >时,函数22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递增,在1,x a⎛⎫∈+∞ ⎪⎝⎭上单调递减,当1x a=时,函数y 有最大值,即12411416a a-+⎛⎫=⎪⎝⎭,解得12a =;当0a <时,22414ax x y -+⎛⎫= ⎪⎝⎭在1,x a ⎛⎫∈-∞ ⎪⎝⎭上单调递减,在1,x a⎛⎫∈+∞ ⎪⎝⎭上单调递增,此时函数y 无最大值,所以()()1122log 4log 2x xt t ⋅<-在[]1,2x ∈上恒成立, 即402042x xx x t t t t ⎧⋅>⎪->⎨⎪⋅>-⎩在[]1,2x ∈上恒成立, 由40x t ⋅>在[]1,2x ∈上恒成立,可得0t >;由20x t ->在[]1,2x ∈上恒成立,即2x t <在[]1,2上恒成立,可得2t <;由42x x t t ⋅>-在[]1,2x ∈上恒成立,即2114122x x x xt >=++在[]1,2上恒成立,令()122x xf x =+,可得函数()f x 在[]1,2上单调递增,所以()()min512f x f ==,即25t >, 综上可得225t <<,即实数t 的取值范围是2,25⎛⎫⎪⎝⎭.故选:A.8.(多选)(2022·江苏·高三专题练习)已知函数()2log f x x =-,下列四个命题正确的是( ).A .函数()f x 为偶函数B .若()()f a f b =,其中0a >,0b >,1a b <<,则1ab =C .函数()22f x x -+在()1,3上为单调递增函数D .若01a <<,则()()11f a f a +<- 【答案】ABD【解析】解:函数()2log f x x =-对于A ,()2log f x x =-,()()22log log f x x x f x -=--=-=,所以函数()f x 为偶函数,故A 正确;对于B ,若()()f a f b =,其中0a >,0b >,1a b <<,所以()()()f a f b f b ==-,22log log a b -=,即222log log log 0a b ab +==,得到1ab =,故B 正确;对于C ,函数()()2222log 2f x x x x -+=--+,由220x x -+>,解得02x <<,所以函数()22f x x -+的定义域为()0,2,因此在()1,3上不具有单调性,故C 错误;对于D ,因为01a <<,21110,011a a a ∴+>>-><-<,()()22log 10log 1a a ∴+>>-,故()()()()2211log 1log 1f a f a a a +--=-+---()()()2222log 1log 1log 10a a a =++-=-<,故D正确. 故选:ABD.9.(多选)(2022·全国·高三专题练习)已知()f x 为定义在R 上的偶函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+.给出下列命题,其中正确的命题的为( )A .()()201620170f f +-=B .函数()f x 在定义域上是周期为2的周期函数C .直线y x =与函数()f x 的图像有1个交点D .函数()f x 的值域为()1,1- 【答案】ACD【解析】根据题意,可在同一平面直角坐标系中画出直线y x =和函数()f x 的图象如图所示,根据图象可知选项A 中,()()()()20162017010f f f f +-=+=正确; 对于选项B ,函数()f x 在定义域上不是周期函数,所以B 不正确;对于选项C ,根据函数图象可知y x =与()f x 的图象有个交点,所以C 正确; 对于选项D ,根据图象,函数()f x 的值域是()1,1-,所以D 正确. 故选:ACD.10.(2022·全国·高三专题练习)已知函数2()23=-+f x x x ,2()log g x x m =+,对任意的1x ,2[1x ∈,4]有12()()f x g x >恒成立,则实数m 的取值范围是___________.【答案】(,0)-∞【解析】函数22()23(1)2=-+=-+f x x x x 在[1,4]上单调递增,2()log g x x m =+在[1,4]上单调递增,∴()()min 12f x f ==,()()max 42g x g m ==+, 对任意的1x ,2[1x ∈,4]有12()()f x g x >恒成立, ∴()()min max f x g x >,即22m >+,解得0m <, ∴实数m 的取值范围是(),0-∞. 故答案为:(,0)-∞.11.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ] (m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值; 【解】画出函数log a y x =的图像,如图所示,结合图像可知,要使log a y x =的值域是[0,1],其定义域可能是1,1a ⎡⎤⎢⎥⎣⎦、[]1,a 、1,a a ⎡⎤⎢⎥⎣⎦,且1111a a a a--=<-, 因此结合题意可知1516a -=,所以6a =.12.(2022·全国·高三专题练习)已知函数()()log 3a f x ax =-(0a >,且1a ≠). (1)求()f x 的定义域.(2)是否存在实数a ,使函数()f x 在区间[]1,2上单调递减,并且最大值为2?若存在,求出a 的值;若不存在,请说明理由. 【解】(1)由题意可得30ax ->,即3ax <, 因为0a >,所以解得3x a<.故()f x 的定义域为3,a ⎛⎫-∞ ⎪⎝⎭. (2)假设存在实数a ,使函数()f x 在区间[]1,2上单调递减,并且最大值为2. 设函数()3g x ax =-,由0a >,得0a -<,所以()g x 在区间[]1,2上为减函数且()0g x >恒成立, 因为()f x 在区间[]1,2上单调递减, 所以1a >且320a ->,即312a <<.又因为()f x 在区间[]1,2上的最大值为2, 所以()()()max 1log 32a f x f a ==-=,整理得230a a +-=,解得)0a a =>.因为34<,所以31,2a ⎛⎫⎪⎝⎭,所以存在实数a =,使函数()f x 在区间[]1,2上单调递减,并且最大值为2. 13.(2022·全国·高三专题练习)已知函数()log (2)log (4)a a f x x x =-++,其中1a >. (1)求函数()f x 的定义域; (2)求函数()f x 图像所经过的定点;(3)若函数()f x 的最大值为2,求a 的值.【解】解:(1)因为()log (2)log (4)a a f x x x =-++,所以2040x x ->⎧⎨+>⎩,解得42x -<<,所以函数()f x 的定义域{}42x x -<<.(2)因为()log (2)log (4)a a f x x x =-++, 所以()log (2)(4)a f x x x =-+,当()()241x x -+=时,即1x =-±时,()0f x =,函数图像所经过的定点()1-+,()1--.(3)令()(2)(4)g x x x =-+,()4,2x ∈-,则()22()2819g x x x x =--+=-++,所以(]()0,9g x ∈,若函数()log (2)(4)a f x x x =-+的最大值为2, 因为1a >,则()9g x =时最大值为2, 即max ()log 92a f x ==,则29a =,故3a =.14.(2022·北京·高三专题练习)已知函数()()4412log 2log 2f x x x ⎛⎫=-+ ⎪⎝⎭.(1)当[]1,16x ∈时,求该函数的值域; (2)求不等式()2f x >的解集;(3)若()4log f x m x <于[]4,16x ∈恒成立,求m 的取值范围. 【解】(1)令4t log x =,[]1,16x ∈,则[]0,2t ∈, 函数()f x 转化为()1222y t t ⎛⎫=-+ ⎪⎝⎭,[]0,2t ∈,则二次函数()1222y t t ⎛⎫=-+ ⎪⎝⎭,在10,4⎡⎤⎢⎥⎣⎦上单调递减,在]1,24⎛ ⎝上单调递增,所以当14t =时,y 取到最小值为98-,当2t =时,y 取到最大值为5,故当[]1,16x ∈时,函数()f x 的值域为9,58⎡⎤-⎢⎥⎣⎦.(2)由题得()4412220,2log x log x ⎛⎫-+-> ⎪⎝⎭,令4t log x =,则()122202t t ⎛⎫-+-> ⎪⎝⎭,即2230t t -->,解得32t >或1t <-,当32t >时,即432log x >,解得8x >;当1t <-时,即41log x <-,解得104x <<,故不等式()2f x >的解集为104x x ⎧<<⎨⎩或}8x >.(3)由于()4441222log x log x mlog x ⎛⎫-+< ⎪⎝⎭对于[]4,16x ∈上恒成立,令4t log x =,[]4,16x ∈,则[]1,2t ∈即()1222t t mt ⎛⎫-+< ⎪⎝⎭在[]1,2t ∈上恒成立,所以121m t t>--在[]1,2t ∈上恒成立,因为函数1y t=-在[]1,2上单调递增,2y t =也在[]1,2上单调递增, 所以函数121y t t =--在[]1,2上单调递增,它的最大值为52, 故52m >时,()4f x mlog x <对于[]4,16x ∈恒成立。
高考数学一轮复习 2.8 对数与对数函数教案

2.8 对数与对数函数●知识梳理 1.对数(1)对数的定义:如果a b=N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b=N ⇔log a N =b (a >0,a ≠1,N >0). 两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:①log a (MN )=log a M +log a N .②log aN M=log a M -log a N . ③log a M n=n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =bNa a log log (a >0,a ≠1,b >0,b ≠1,N >0).2.对数函数(1)对数函数的定义 函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). (2)对数函数的图象底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数. ●点击双基1.(2005年春季北京,2)函数f (x )=|log 2x |的图象是 解析:f (x )=⎩⎨⎧<<-≥.10,log ,1,log 22x x x x答案:A2.(2004年春季北京)若f -1(x )为函数f (x )=lg (x +1)的反函数,则f -1(x )的值域为___________________.解析:f -1(x )的值域为f (x )=lg (x +1)的定义域.由f (x )=lg (x +1)的定义域为(-1,+∞),∴f -1(x )的值域为(-1,+∞). 答案:(-1,+∞)3.已知f (x )的定义域为[0,1],则函数y =f [log 21(3-x )]的定义域是__________.解析:由0≤log 21(3-x )≤1⇒log 211≤log 21(3-x )≤log 2121⇒21≤3-x ≤1⇒2≤x ≤25.答案:[2,25] 4.若log x 7y =z ,则x 、y 、z 之间满足 A.y 7=x zB.y =x 7zC.y =7x zD.y =z x解析:由log x 7y =z ⇒x z=7y ⇒x 7z=y ,即y =x 7z.答案:B5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则 A.a <b <c B.a <c <b C.b <a <c D.c <a <b 解析:∵1<m <n ,∴0<log n m <1.∴log n (log n m )<0. 答案:D ●典例剖析【例1】 已知函数f (x )=⎪⎩⎪⎨⎧<+≥,4),1(,4,)21(x x f x x则f (2+log 23)的值为A.31B.61C.121D.241剖析:∵3<2+log 23<4,3+log 23>4,∴f (2+log 23)=f (3+log 23)=(21)3+log 23=241.答案:D【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间. 解:∵|x |>0,∴函数的定义域是{x |x ∈R 且x ≠0}.显然y =log 2|x |是偶函数,它的图象关于y 轴对称.又知当x >0时,y =log 2|x |⇔y =log 2x .故可画出y =log 2|x |的图象如下图.由图象易见,其递减区间是(-∞,0),递增区间是(0,+∞).评述:研究函数的性质时,利用图象更直观.深化拓展已知y =log 21[a 2x+2(ab )x -b 2x +1](a 、b ∈R +),如何求使y 为负值的x 的取值范围?提示:要使y <0,必须a 2x +2(ab )x -b 2x +1>1,即a 2x +2(ab )x -b 2x>0. ∵b 2x>0,∴(b a )2x +2(b a )x-1>0. ∴(b a )x >2-1或(b a )x<-2-1(舍去).再分b a >1,b a =1,ba<1三种情况进行讨论.答案:a >b >0时,x >log ba (2-1);a =b >0时,x ∈R ;0<a <b 时,x <log ba (2-1).【例3】 已知f (x )=log 31[3-(x -1)2],求f (x )的值域及单调区间.解:∵真数3-(x -1)2≤3,∴log 31[3-(x -1)2]≥log 313=-1,即f (x )的值域是[-1,+∞).又3-(x -1)2>0,得1-3<x <1+3,∴x ∈(1-3,1]时,3-(x -1)2单调递增,从而f (x )单调递减;x ∈[1,1+3)时,f (x )单调递增.特别提示讨论复合函数的单调性要注意定义域.●闯关训练 夯实基础1.(2004年天津,5)若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.42 B.22 C.41 D.21 解析:∵0<a <1,∴f (x )=log a x 是减函数.∴log a a =3·log a 2a .∴log a 2a =31.∴1+log a 2=31.∴log a 2=-32.∴a =42.答案:A2.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于A. 21B.-21C.2D.-2解析:y =log 2|ax -1|=log 2|a (x -a 1)|,对称轴为x =a 1,由a 1=-2得a =-21.答案:B评述:此题还可用特殊值法解决,如利用f (0)=f (-4),可得0=log 2|-4a -1|.∴|4a +1|=1.∴4a +1=1或4a +1=-1.∵a ≠0,∴a =-21.3.(2004年湖南,理3)设f -1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 23解析:∵f -1(x )=2x -1,∴[1+ f -1(a )][1+ f -1(b )]=2a ·2b =2a +b .由已知2a +b=8,∴a +b =3.答案:C4.(2004年春季上海)方程lg x +lg (x +3)=1的解x =___________________.解析:由lg x +lg (x +3)=1,得x (x +3)=10,x 2+3x -10=0. ∴x =-5或x =2. ∵x >0,∴x =2. 答案:25.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.解:∵a >0且a ≠1,∴t =3-ax 为减函数.依题意a >1,又t =3-ax 在[0,2]上应有t >0,∴3-2a >0.∴a <23.故1<a <23. 6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.解:f (x )、g (x )的公共定义域为(-1,1). |f (x )|-|g (x )|=|lg (1-x )|-|lg (1+x )|.(1)当0<x <1时,|lg (1-x )|-|lg (1+x )|=-lg (1-x 2)>0; (2)当x =0时,|lg (1-x )|-|lg (1+x )|=0;(3)当-1<x <0时,|lg (1-x )|-|lg (1+x )|=lg (1-x 2)<0.综上所述,当0<x <1时,|f (x )|>|g (x )|;当x =0时,|f (x )|=|g (x )|;当-1<x <0时,|f (x )|<|g (x )|.培养能力7.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是 解析:∵f (x )与g (x )都是偶函数,∴f (x )·g (x )也是偶函数,由此可排除A 、D.又由x →+∞时,f (x )·g (x )→-∞,可排除B. 答案:C8.若f (x )=x 2-x +b ,且f (log 2a )=b ,log 2[f (a )]=2(a ≠1). (1)求f (log 2x )的最小值及对应的x 值;(2)x 取何值时,f (log 2x )>f (1)且log 2[f (x )]<f (1)?解:(1)∵f (x )=x 2-x +b ,∴f (log 2a )=log 22a -log 2a +b .由已知有log 22a -log 2a +b =b ,∴(log 2a -1)log 2a =0. ∵a ≠1,∴log 2a =1.∴a =2.又log 2[f (a )]=2,∴f (a )=4. ∴a 2-a +b =4,b =4-a 2+a =2.故f (x )=x 2-x +2,从而f (log 2x )=log 22x -log 2x +2=(log 2x -21)2+47. ∴当log 2x =21即x =2时,f (log 2x )有最小值47. (2)由题意⎪⎩⎪⎨⎧<+->+-2)2(log 22log log 22222x x x x ⇒⎩⎨⎧<<-<<>⇒21102x x x 或0<x <1. 探究创新9.(2004年苏州市模拟题)已知函数f (x )=3x+k (k 为常数),A (-2k ,2)是函数y = f -1(x )图象上的点.(1)求实数k 的值及函数f -1(x )的解析式;(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )的图象,若2 f -1(x +m -3)-g (x )≥1恒成立,试求实数m 的取值范围.解:(1)∵A (-2k ,2)是函数y = f -1(x )图象上的点,∴B (2,-2k )是函数y =f (x )上的点.∴-2k =32+k .∴k =-3.∴f (x )=3x -3.∴y = f -1(x )=log 3(x +3)(x >-3).(2)将y = f -1(x )的图象按向量a =(3,0)平移,得到函数y =g (x )=log 3x (x >0),要使2 f -1(x +m -3)-g (x )≥1恒成立,即使2log 3(x +m )-log 3x ≥1恒成立,所以有x +x m +2m ≥3在x >0时恒成立,只要(x +x m+2m )min ≥3. 又x +x m ≥2m (当且仅当x =x m ,即x =m 时等号成立),∴(x +xm+2m )min =4m ,即4m ≥3.∴m ≥169.●思悟小结1.对数的底数和真数应满足的条件是求解对数问题时必须予以特别重视的.2.比较几个数的大小是对数函数性质应用的常见题型.在具体比较时,可以首先将它们与零比较,分出正负;正数通常都再与1比较分出大于1还是小于1,然后在各类中间两两相比较.3.在给定条件下,求字母的取值范围是常见题型,要重视不等式知识及函数单调性在这类问题上的应用.●教师下载中心 教学点睛1.本小节的重点是对数函数图象和性质的运用.由于对数函数与指数函数互为反函数,所以它们有许多类似的性质,掌握对数函数的性质时,与掌握指数函数的性质一样,也要结合图象理解和记忆.2.由于在对数式中真数必须大于0,底数必须大于零且不等于1,因此有关对数的问题已成了高考的热点内容.希望在讲解有关的例题时,要强化这方面的意识.拓展题例【例1】 求函数y =2lg (x -2)-lg (x -3)的最小值.解:定义域为x >3,原函数为y =lg 3)2(2--x x .又∵3)2(2--x x =3442-+-x x x =31)3(2)3(2-+-+-x x x =(x -3)+31-x +2≥4,∴当x =4时,y min =lg4.【例2】 (2003年北京宣武第二次模拟考试)在f 1(x )=x 21,f 2(x )=x 2,f 3(x )=2x,f 4(x )=log 21x 四个函数中,x 1>x 2>1时,能使21[f (x 1)+f (x 2)]<f (221x x +)成立的函数是A.f 1(x )=x 21B.f 2(x )=x 2C.f 3(x )=2xD.f 4(x )=log 21x解析:由图形可直观得到:只有f 1(x )=x 21为“上凸”的函数. 答案:A。
高考数学一轮复习第二章函数5对数与对数函数课件新人教A版22

则 logax2=2logax1,∴x2=12 ,
又 2logax2=logax1+3,∴2loga12 =logax1+3,∴x1=a,x2=a2.
∵四边形ABCD为正方形,∴|AB|=|BC|,
即x2-x1=(logax1+3)-2logax1,
∴a2-a=2,解得a=2或a=-1(舍去).
2
3
2 lg 2
3
2
=100lg 3-lg 2=100lg =(10 ) =102lg =10
lg
3 2
2
=
4
(2)原式=(lg 2)2+(1+lg 5)lg 2+lg 52=(lg 2+lg 5+1)lg 2+2lg 5=(1+1)lg
2+2lg 5=2(lg 2+lg 5)=2.
3
(3)∵f(x)=logax,∴f(4t)-f(t)=loga4t-logat=loga4=2loga2=3,∴loga2=2,
的底数.
故0<c<d<1<a<b,即在第一象限内从左到右底数逐渐增大.
-8知识梳理
双基自测
1
2
3
4
5
5.反函数
y=logax
指数函数y=ax(a>0,且a≠1)与对数函数
(a>0,且
y=x
a≠1)互为反函数,它们的图象关于直线
对称.
-9知识梳理
1
双基自测
2
3
4
5
6
1.下列结论正确的打“√”,错误的打“×”.
2
故选 B.
高考数学一轮复习7 第7讲 对数与对数函数
第7讲对数与对数函数最新考纲考向预测1.理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.3.知道对数函数是一类重要的函数模型.4.了解指数函数y=a x与对数函数y=log a x互为反函数(a>0且a≠1).命题趋势对数函数中利用性质比较对数值大小,求对数型函数的定义域、值域、最值等仍是高考考查的热点,题型多以选择、填空题为主,属中档题.核心素养数学运算、直观想象1.对数概念如果a x=N(a>0且a≠1),那么数x叫做以a为底数N的对数,记作x=log a N,其中a叫做对数的底数,N叫做真数,log a N叫做对数式性质对数式与指数式的互化:a x=N⇔x=log a N(a>0,且a≠1) log a1=0,log a a=1,a log a N=N(a>0且a≠1)运算法则log a(M·N)=log a M+log a Na>0,且a≠1,M>0,N>0 log aMN=log a M-log a Nlog a M n=n log a M(n∈R)换底公式log a b=logcblogca(a>0,且a≠1,c>0,且c≠1,b>0)a >1 0<a <1图象性质定义域:(0,+∞)值域:R过定点(1,0)当x >1时,y >0 当0<x <1时,y <0 当x >1时,y <0 当0<x <1时,y >0 在(0,+∞)上是增函数在(0,+∞)上是减函数3.反函数指数函数y =a x 与对数函数y =log a x 互为反函数,它们的图象关于直线y =x 对称.常用结论1.换底公式的三个重要结论①log a b =1logba ;②log a m b n =nm log a b ;③log a b ·log b c ·log c d =log a d . 2.对数函数图象的特点(1)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1,函数图象只在第一、四象限. (2)函数y =log a x 与y =log 1a x (a >0且a ≠1)的图象关于x 轴对称.(3)在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大. 常见误区1.在运算性质log a M n =n log a M 中,要特别注意M >0的条件,当n ∈N *,且n 为偶数时,在无M >0的条件下应为log a M n =n log a |M |.2.研究对数函数问题应注意函数的定义域.3.解决与对数函数有关的问题时,若底数不确定,应注意对a >1及0<a <1进行分类讨论.1.判断正误(正确的打“√”,错误的打“×”) (1)若MN >0,则log a (MN )=log a M +log a N .( )(2)对数函数y =log a x (a >0且a ≠1)在(0,+∞)上是增函数.( ) (3)函数y =log a x 2与函数y =2log a x 是相等函数.( ) (4)若M >N >0,则log a M >log a N .( )(5)对数函数y =log a x (a >0且a ≠1)的图象过定点(1,0),且过点(a ,1),⎝ ⎛⎭⎪⎫1a ,-1.( ) 答案:(1)× (2)× (3)× (4)× (5)√ 2.log 29·log 34=( ) A .14 B .12 C .2D .4解析:选D.原式=log 232×log 322=4log 23×log 32=4×lg 3lg 2×lg 2lg 3=4. 3.函数y =log 2(x +1)的图象大致是( )解析:选C.函数y =log 2(x +1)的图象是把函数y =log 2x 的图象向左平移一个单位长度得到的,图象过定点(0,0),函数定义域为(-1,+∞),且在(-1,+∞)上是增函数,故选C.4.(易错题)函数f (x )=1lg (x +1)+2-x 的定义域为________.解析:由f (x )=1lg (x +1)+2-x ,得⎩⎨⎧x +1>0,lg (x +1)≠0,2-x≥0,得x ∈(-1,0)∪(0,2].答案:(-1,0)∪(0,2]5.(易错题)函数y =log a x (a >0,a ≠1)在[2,4]上的最大值与最小值的差是1,则a =________.解析:分两种情况讨论:①当a >1时,有log a 4-log a 2=1,解得a =2;②当0<a <1时,有log a 2-log a 4=1,解得a =12.所以a =2或a =12.答案:2或12对数式的化简与求值[题组练透]1.(2020·高考全国卷Ⅰ)设a log 34=2,则4-a =( ) A.116 B.19 C.18D.16解析:选B.方法一:因为a log 34=2,所以log 34a =2,则有4a =32=9,所以4-a =14a =19,故选B.方法二:因为a log 34=2,所以-a log 34=-2,所以log 34-a =-2,所以4-a =3-2=132=19,故选B.方法三:因为a log 34=2,所以a 2=1log34=log 43,所以4a2=3,两边同时平方得4a =9,所以4-a =14a =19,故选B.方法四:因为a log 34=2,所以a =2log34=log39log34=log 49,所以4-a =14a =19,故选B.方法五:令4-a =t ,两边同时取对数得log 34-a =log 3t ,即a log 34=-log 3t =log 31t ,因为a log 34=2,所以log 31t =2,所以1t =32=9,所以t =19,即4-a =19,故选B.方法六:令4-a =t ,所以-a =log 4t ,即a =-log 4t =log 41t .由a log 34=2,得a =2log34=log39log34=log 49,所以log 41t =log 49,所以1t =9,t =19,即4-a =19,故选B. 2.计算:lg 427-lg 823+lg 75=________.解析:原式=lg 4+12lg 2-lg 7-23lg 8+lg 7+12lg 5=2lg 2+12(lg 2+lg 5)-2lg 2=12. 答案:12 3.计算:(1)⎝⎛⎭⎪⎫lg 14-lg 25÷100-12;(2)(1-log63)2+log6 2·log618log64.解:(1)原式=(lg 2-2-lg 52)×10012=lg ⎝ ⎛⎭⎪⎫122×52×10=lg 10-2×10=-2×10=-20.(2)原式=1-2log63+(log63)2+log663·log6(6×3)log64=1-2log63+(log63)2+1-(log63)2log64=2(1-log63)2log62=log66-log63log62=log62log62=1.[提醒] 对数的运算性质以及有关公式都是在式子中所有的对数符号有意义的前提下才成立的,不能出现log 212=log 2[(-3)×(-4)]=log 2(-3)+log 2(-4)的错误.对数函数的图象及应用(1)若函数y =a |x |(a >0且a ≠1)的值域为{y |y ≥1},则函数y =log a |x |的图象大致是( )(2)若方程4x=log a x 在⎝ ⎛⎦⎥⎤0,12上有解,则实数a 的取值范围为____________.【解析】 (1)由于y =a |x |的值域为{y |y ≥1},所以a >1,则y =log a |x |在(0,+∞)上是增函数,又函数y =log a |x |的图象关于y 轴对称.因此y =log a |x |的图象大致为选项B.(2)构造函数f (x )=4x 和g (x )=log a x , 当a >1时不满足条件, 当0<a <1时,画出两个函数在⎝⎛⎦⎥⎤0,12上的图象,可知,只需两图象在⎝⎛⎦⎥⎤0,12上有交点即可,则f ⎝ ⎛⎭⎪⎫12≥g ⎝ ⎛⎭⎪⎫12,即2≥log a 12,则a ≤22, 所以a 的取值范围为⎝ ⎛⎦⎥⎤0,22.【答案】 (1)B (2)⎝ ⎛⎦⎥⎤0,22对数函数图象的识别及应用方法(1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.(2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.函数y =2log 4(1-x )的图象大致是( )解析:选 C.函数y =2log 4(1-x )的定义域为(-∞,1),排除A ,B ;函数y =2log 4(1-x )在定义域上单调递减,排除D.选C.对数函数的性质及应用 角度一 比较对数值的大小(2020·高考全国卷Ⅲ)设a =log 32,b =log 53,c =23,则( ) A .a <c <b B .a <b <c C .b <c <aD .c <a <b【解析】 因为23<32,所以2<323,所以log 32<log 3323=23,所以a <c .因为33>52,所以3>523,所以log 53>log 5523=23,所以b >c ,所以a <c <b ,故选A.【答案】 A比较对数值的大小的方法角度二 解简单的对数不等式或方程(1)已知函数f (x )为奇函数,当x >0时,f (x )=log 3x ,则满足不等式f (x )>0的x的取值范围是________.(2)设函数f (x )=⎩⎪⎨⎪⎧log2x ,x>0,log 12(-x ),x<0,若f (a )<f (-a ),则实数a 的取值范围是________.【解析】 (1)由题意知y =f (x )的图象如图所示,所以满足f (x )>0的x 的取值范围是(-1,0)∪(1,+∞).(2)由f (a )<f (-a )得⎩⎨⎧a>0,log2a<log 12a 或⎩⎨⎧a<0,log2(-a )>log 12(-a ),即⎩⎪⎨⎪⎧a>0,log2a<-log2a 或 ⎩⎪⎨⎪⎧a<0,log2(-a )>-log2(-a ),解得0<a <1或a <-1. 【答案】 (1)(-1,0)∪(1,+∞)(2)(-∞,-1)∪(0,1)解对数不等式的函数及方法(1)形如log a x >log a b 的不等式,借助y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论;(2)形如log a x >b 的不等式,需先将b 化为以a 为底的对数式的形式. 角度三 对数型函数的综合问题(1)(多选)已知函数f (x )=ln(x -2)+ln(6-x ),则( ) A .f (x )在(2,6)上单调递增 B .f (x )在(2,6)上的最大值为2ln 2 C .f (x )在(2,6)上单调递减D .y =f (x )的图象关于直线x =4对称(2)若f (x )=lg(x 2-2ax +1+a )在区间(-∞,1]上单调递减,则a 的取值范围为( )A .[1,2)B .[1,2]C .[1,+∞)D .[2,+∞)【解析】 (1)f (x )=ln(x -2)+ln(6-x )=ln[(x -2)(6-x )],定义域为(2,6).令t =(x -2)(6-x ),则y =ln t .因为二次函数t =(x -2)(6-x )的图象的对称轴为直线x =4,又f (x )的定义域为(2,6),所以f (x )的图象关于直线x =4对称,且在(2,4)上单调递增,在(4,6)上单调递减,当x =4时,t 有最大值,所以f (x )max =ln(4-2)+ln(6-4)=2ln 2,故选BD.(2)令函数g (x )=x 2-2ax +1+a =(x -a )2+1+a -a 2,对称轴为x =a ,要使函数在(-∞,1]上递减,则有⎩⎪⎨⎪⎧g (1)>0,a≥1,即⎩⎪⎨⎪⎧2-a>0,a≥1,解得1≤a <2,即a ∈[1,2).【答案】 (1)BD (2)A解与对数函数有关的函数的单调性问题的步骤1.已知函数f (x )=log 2(1+2-x ),则函数f (x )的值域是( ) A .[0,2) B .(0,+∞) C .(0,2)D .[0,+∞)解析:选B.f (x )=log 2(1+2-x ),因为1+2-x >1,所以log 2(1+2-x )>0,所以函数f (x )的值域是(0,+∞),故选B.2.已知函数f (x )=log a |x |在(0,+∞)上单调递增,则f (-2)________f (a +1).(填“<”“=”或“>”)解析:因为f (x )=log a |x |在(0,+∞)上单调递增,所以a >1,所以a +1>2.因为f (x )是偶函数,所以f (-2)=f (2)<f (a +1).答案:<3.已知a >0,若函数f (x )=log 3(ax 2-x )在[3,4]上是增函数,则a 的取值范围是________.解析:要使f (x )=log 3(ax 2-x )在[3,4]上单调递增, 则y =ax 2-x 在[3,4]上单调递增, 且y =ax 2-x >0恒成立, 即⎩⎨⎧12a ≤3,9a -3>0,解得a >13.答案:⎝ ⎛⎭⎪⎫13,+∞思想方法系列5 换元法的应用换元法又称变量代换法.通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者将题目变为熟悉的形式,简化复杂的计算和推证.若x ,y ,z ∈R +,且3x =4y =12z ,x +yz ∈(n ,n +1),n ∈N ,则n 的值是( ) A .2 B .3 C .4D .5【解析】 设3x =4y =12z =t (t >1), 则x =log 3t ,y =log 4t ,z =log 12t , 所以x +y z =log3t +log4t log12t =log3t log12t +log4t log12t =log 312+log 412 =2+log 34+log 43.因为1<log 34<2,0<log 43<1, 所以1<log 34+log 43<3.又log 34+log 43>2log34·log43=2, 所以4<2+log 34+log 43<5, 即x +yz ∈(4,5). 所以n =4. 【答案】 C换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中再研究,从而使非标准型问题标准化、复杂问题简单化.换元法经常用于研究指数型、对数型函数的性质、三角函数式的化简求值、解析几何中计算等.函数f (x )=log 2x ·log 2(2x )的最小值为________.解析:依题意得f (x )=12log 2x ·(2+2log 2x )=(log 2x )2+log 2x =⎝⎛⎭⎪⎫log2x +122-14≥-14,当log 2x =-12,即x =22时等号成立,所以函数f (x )的最小值为-14.答案:-14[A 级 基础练]1.已知log a 12=m ,log a 3=n ,则a m +2n =( ) A .3 B .34 C .9D .92解析:选D.因为log a 12=m ,log a 3=n ,所以a m =12,a n =3. 所以a m +2n =a m ·a 2n =a m ·(a n )2=12×32=92.2.函数y =log3(2x -1)+1的定义域是( ) A .[1,2]B .[1,2)C .⎣⎢⎡⎭⎪⎫23,+∞D .⎝⎛⎭⎪⎫23,+∞解析:选C.由⎩⎪⎨⎪⎧log3(2x -1)+1≥0,2x -1>0,即⎩⎪⎨⎪⎧log3(2x -1)≥log 313,x>12,解得x ≥23.故选C.3.(2021·河北九校第二次联考)设a =4-12,b =log 1213,c =log 32,则a ,b ,c 的大小关系是( )A .a <b <cB .a <c <bC .c <a <bD .c <b <a解析:选B.a =4-12=1412=12,b =log 1213=log 23>log 22=1,c =log 32>log 33=12,且c =log 32<log 33=1,即12<c <1,所以a <c <b ,故选B.4.(多选)在同一平面直角坐标系中,f (x )=kx +b 与g (x )=log b x 的图象如图,则下列关系不正确的是( )A .k <0,0<b <1B .k >0,b >1C .f ⎝ ⎛⎭⎪⎫1x g (1)>0(x >0)D .x >1时,f (x )-g (x )>0解析:选ABC.由直线方程可知,k >0,0<b <1,故A ,B 不正确;而g (1)=0,故C 不正确;而当x >1时,g (x )<0,f (x )>0,所以f (x )-g (x )>0.所以D 正确.5.(多选)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的为( )A .h (x )的图象关于原点对称B .h (x )的图象关于y 轴对称C .h (x )的最大值为0D .h (x )在区间(-1,1)上单调递增解析:选BC.函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称, 所以f (x )=log 2x ,h (x )=log 2(1-|x |),为偶函数,不是奇函数, 所以A 错误,B 正确; 根据偶函数性质可知D 错误;因为1-|x |≤1,所以h (x )≤log 21=0,故C 正确. 6.设2a =5b =m ,且1a +1b =2,则m =________.解析:因为2a =5b =m >0,所以a =log 2m ,b =log 5m ,所以1a +1b =1log2m +1log5m =log m 2+log m 5=log m 10=2.所以m 2=10, 所以m =10. 答案:107.(2021·贵州教学质量测评改编)已知函数y =log a (x +3)-89(a >0,a ≠1)的图象恒过定点A ,则点A 的坐标为________;若点A 也在函数f (x )=3x +b 的图象上,则f (log 32)=________.解析:令x +3=1可得x =-2,此时y =log a 1-89=-89,可知定点A 的坐标为⎝⎛⎭⎪⎫-2,-89.点A 也在函数f (x )=3x +b 的图象上,故-89=3-2+b ,解得b =-1.所以f (x )=3x -1,则f (log 32)=3log 32-1=2-1=1.答案:⎝ ⎛⎭⎪⎫-2,-89 18.已知函数f (x )=⎩⎨⎧ln x +b ,x>1,ex -2,x≤1,若f (e)=-3f (0),则b =________,函数f (x )的值域为________.解析:由f (e)=-3f (0)得1+b =-3×(-1),即b =2,即函数f (x )=⎩⎪⎨⎪⎧ln x +2,x>1,ex -2,x≤1.当x >1时,y =ln x +2>2;当x ≤1时,y =e x -2∈(-2,e -2].故函数f (x )的值域为(-2,e -2]∪(2,+∞).答案:2 (-2,e -2]∪(2,+∞) 9.已知函数f (x -3)=log a x6-x (a >0,a ≠1).(1)求f (x )的解析式;(2)判断f (x )的奇偶性,并说明理由.解:(1)令x -3=u ,则x =u +3,于是f (u )=log a 3+u 3-u(a >0,a ≠1,-3<u <3),所以f (x )=log a 3+x3-x (a >0,a ≠1,-3<x <3).(2)f (x )是奇函数,理由如下:因为f (-x )+f (x )=log a 3-x 3+x +log a 3+x3-x =log a 1=0,所以f (-x )=-f (x ),又定义域(-3,3)关于原点对称. 所以f (x )是奇函数.10.设f (x )=log a (1+x )+log a (3-x )(a >0且a ≠1),且f (1)=2. (1)求实数a 的值及f (x )的定义域;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值.解:(1)因为f (1)=2,所以log a 4=2(a >0,a ≠1),所以a =2.由⎩⎪⎨⎪⎧1+x>0,3-x>0,得-1<x <3, 所以函数f (x )的定义域为(-1,3).(2)f (x )=log 2(1+x )+log 2(3-x )=log 2[(1+x )(3-x )]=log 2[-(x -1)2+4], 所以当x ∈(-1,1]时,f (x )是增函数;当x ∈(1,3)时,f (x )是减函数,故函数f (x )在区间⎣⎢⎡⎦⎥⎤0,32上的最大值是f (1)=log 24=2.[B 级 综合练]11.若函数y =log a (x 2-ax +1)有最小值,则a 的取值范围是( ) A .0<a <1 B .0<a <2,a ≠1 C .1<a <2D .a ≥2解析:选C.当a >1时,y 有最小值,则说明x 2-ax +1有最小值,故x 2-ax +1=0中Δ<0,即a 2-4<0,所以2>a >1.当0<a <1时,y 有最小值,则说明x 2-ax +1有最大值,与二次函数性质相互矛盾,舍去.综上可知,故选C.12.(多选)已知函数f (x )=⎩⎨⎧log2(x -1),x>1,⎝ ⎛⎭⎪⎫12x ,x≤1,则()A .若f (a )=1,则a =0B .f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=2 019C .若f (f (a ))=2-f (a ),则0≤a ≤3D .若方程f (x )=k 有两个不同的实数根,则k ≥1解析:选BC.由f (a )=1,得⎩⎪⎨⎪⎧a>1,log2(a -1)=1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a =1,解得a =3或a =0,故选项A 不正确;f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫2 0202 019=f ⎝ ⎛⎭⎪⎫log212 019=⎝ ⎛⎭⎪⎫12log212 019=2log 22 019=2 019,选项B 正确;f (f (a ))=2-f (a )=⎝ ⎛⎭⎪⎫12f (a ),所以f (a )≤1,得⎩⎪⎨⎪⎧a>1,log2(a -1)≤1或⎩⎨⎧a≤1,⎝ ⎛⎭⎪⎫12a ≤1,解得0≤a ≤3,选项C 正确;作出函数f (x )的图象(如图),结合函数图象可知,当方程f (x )=k 有两个不同的实数根时,k ≥12,选项D 不正确.13.已知函数f (x )=-log 2x ,则下列四个结论中正确的是________.(填序号) ①函数f (|x |)为偶函数;②若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则ab =1;③函数f (-x 2+2x )在(1,3)上单调递增.解析:对于①,f (|x |)=-log 2|x |,f (|-x |)=-log 2|-x |=-log 2|x |=f (|x |),所以函数f (|x |)为偶函数,故①正确;对于②,若f (a )=|f (b )|,其中a >0,b >0,a ≠b ,则f (a )=|f (b )|=-f (b ),即-log 2a =log 2b ,即log 2a +log 2b =log 2ab =0,得到ab =1,故②正确;对于③,函数f (-x 2+2x )=-log 2(-x 2+2x ),由-x 2+2x >0,解得0<x <2,所以函数f (-x 2+2x )的定义域为(0,2),因此在(1,3)上不具有单调性,故③错误.答案:①②14.已知函数f (x )=log 2⎝⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.解:(1)因为函数f (x )是R 上的奇函数, 所以f (0)=0,求得a =0.当a =0时,f (x )=-x 是R 上的奇函数. 所以a =0为所求.(2)因为函数f (x )的定义域是一切实数, 所以12x +a >0恒成立.即a >-12x 恒成立, 由于-12x ∈(-∞,0), 故只要a ≥0即可.(3)由已知得函数f (x )是减函数.故f (x )在区间[0,1]上的最大值是f (0)=log 2(1+a ),最小值是f (1)=log 2⎝⎛⎭⎪⎫12+a .由题设得log 2(1+a )-log 2⎝⎛⎭⎪⎫12+a ≥2⇒⎩⎨⎧a +12>0,a +1≥4a +2.故-12<a ≤-13.[C 级 创新练]15.形如y =1|x|-1的函数因其图象类似于汉字中的“囧”字,故我们把其生动地称为“囧函数”.若函数f (x )=log a (x 2+x +1)(a >0,a ≠1)有最小值,则“囧函数”与函数y =log a |x |的图象的交点个数为( )A .1B .2C .4D .6解析:选 C.令u =x 2+x +1,则函数f (x )=log a u (a >0,a ≠1)有最小值.因为u =⎝ ⎛⎭⎪⎫x +122+34≥34,所以当函数f (x )是增函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上有最小值;当函数f (x )是减函数时,f (x )在⎣⎢⎡⎭⎪⎫34,+∞上无最小值.所以a >1,此时“囧函数”y =1|x|-1与函数y =log a |x |在同一平面直角坐标系内的图象如图,由图象可知,它们的图象的交点个数为4.故选C.16.我们知道,互为反函数的指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)的图象关于直线y =x 对称;而所有偶函数的图象都关于y 轴对称.现在我们定义:如果函数y =f (x )的图象关于直线y =x 对称,即已知函数f (x )的定义域为D ,∀x ∈D ,若y =f (x ),x =f (y )也成立,则称函数f (x )为“自反函数”.显然斜率为-1的一次函数f (x )=-x +b 都是“自反函数”,它们都是单调递减的函数.你认为是否还存在其他的“自反函数”?如果有,请举例说明,并对该“自反函数”的基本性质提出一些猜想;如果没有,请说明理由.解:有.举例如下:根据“自反函数”的定义,函数f (x )=kx (k ≠0)是“自反函数”.“自反函数”f (x )=kx (k ≠0)的定义域、值域均为(-∞,0)∪(0,+∞);当k >0时,f (x )=k x 在区间(-∞,0),(0,+∞)上为减函数;当k <0时,f (x )=kx 在区间(-∞,0),(0,+∞)上为增函数;f (x )=kx (k ≠0)是奇函数,但不是周期函数.。
高中数学高考高三理科一轮复习资料第1章 1.8 对数与对数函数
性 质
4.反函数 28__________互为反函数,它 指数函数 y=ax 与对数函数○ 29__________对称. 们的图象关于直线○
答案: ①ax=N(a>0 且 a≠1) ②x=logaN ③a ④N ⑤ logaN ⑥ 10 ⑦ lgN ⑧ e ⑨ lnN ⑩ N ⑪ N ⑫ logbN = logaN logab ⑬logad ⑭logaM+logaN ⑮logaM-logaN ⑯nlogaM 210 ○ 22y>0 ○ 23y<0 ○ 24y ⑰(0, +∞) ⑱R ⑲(1,0) ⑳1 ○ 25y>0 ○ 26增函数 ○ 27减函数 ○ 28y=logax ○ 29y=x <0 ○
续表 a>1 0<a<1 (1)定义域:⑰__________ (2)值域:⑱__________ 21____ (3)过点⑲____,即 x=⑳____时,y=○ 24 (4)当 x>1 时,○ 22______ (4)当 x>1 时,○ ______ 23______ 25 当 0<x<1 时,○ 当 0<x<1 时,○ ______ (5)是(0,+∞)上的 26____ (5)是(0,+∞)上的○ 27____ ○
考点自测 1.设 a=log54,b=(log53)2,c=log45,则( A.a<c<b B.b<c<a C.a<b<c D.b<a<c
)
ቤተ መጻሕፍቲ ባይዱ
解析:∵log 1 b<log 1 a>log 1 C,∴b>a>c, ∴2b>2a>2c.故应选 A. 答案:A
2 2 2
1 2.函数 f(x)= 的定义域为( 2 log2-x +4x-3 A.(1,2)∪(2,3) B.(-∞,1)∪(3,+∞) C.(1,3) D.[1,3]
第12讲 对数与对数函数(课件)高考数学大一轮复习核心题型讲与练+易错重难点专项突破(新高考版)
3
2
所以( ) m 与( ) n 均为方程 t 2+ t -1=0的实数根,由 t 2+ t -1=0,解得 t =
3
2
3
2
3
2
3
2
因为( ) m >0,( ) n >0,所以( ) m =( ) n =
所以 m = n , =
6
4
3
2
=( ) m =
−1+ 5
2
−1+ 5
2
,故选B.
3
2
−1+ 5
∴ f ( x )是偶函数,∴由 f (ln x )+ f (-ln x )<2可得2 f (ln x )<2,即 f (ln x )<1.
当 x >0时, f ( x )=log2 x + x 2.∵ y =log2 x 和 y = x 2在(0,+∞)上都是单调递增的,
1
∴ f ( x )在(0,+∞)上单调递增,又 f (1)=1,∴|ln x |<1且ln x ≠0,∴ < x <e且 x ≠1,
<1时相反.
(2)研究 y = f (log ax )型的复合函数的单调性,一般用换元法,即令 t =log
ax ,则只需研究
注意
t =log ax 及 y = f ( t )的单调性即可.
研究对数型复合函数的单调性,一定要坚持“定义域优先”原则,
否则所得范围易出错.
角度1
例3
比较大小
1
(1)[2021新高考卷Ⅱ]若 a =log52, b =log83, c = ,则( C
f (-ln x )<2的解集为(
1
D
1
A. ( ,1)
2024届高考一轮复习数学课件(新教材新高考新人教A版) 对数与对数函数
所以a+2b>3, 所以a+2b的取值范围为(3,+∞).
思维升华
对数函数图象的识别及应用方法 (1)在识别函数图象时,要善于利用已知函数的性质、函数图象上的 特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项. (2)一些对数型方程、不等式问题常转化为相应的函数图象问题,利 用数形结合法求解.
思考辨析
判断下列结论是否正确(请在括号中打“√”或“×”)
(1)若M=N,则logaM=logaN.( × )
(2)函数y=loga2x(a>0,且a≠1)是对数函数.( × )
(3)对数函数y=logax(a>0,且a≠1)在(0,+∞)上是增函数.( × )
(4)函数y=log2x与y=log 1
C.(0,1)
B.(1,3) D.(1,+∞)
令t(x)=6-ax,因为a>0,所以t(x)=6-ax为减函数. 又由函数f(x)=loga(6-ax)在(0,2)上单调递减, 可得函数t(x)=6-ax>0在(0,2)上恒成立,且a>1, 故有a6>-12,a≥0, 解得 1<a≤3.
(2)(2022·惠州模拟)若函数f(x)=logax2-ax+12 (a>0,且a≠1)有最小值, 则实数a的取值范围是_(_1_,___2_)_.
命题点3 对数函数的性质及应用 例5 (2023·郑州模拟)设函数f(x)=ln|x+3|+ln|x-3|,则f(x)
√A.是偶函数,且在(-∞,-3)上单调递减
B.是奇函数,且在(-3,3)上单调递减 C.是奇函数,且在(3,+∞)上单调递增 D.是偶函数,且在(-3,3)上单调递增
函数f(x)的定义域为{x|x≠±3}, f(x)=ln|x+3|+ln|x-3|=ln|x2-9|, 令g(x)=|x2-9|, 则f(x)=ln g(x), 函数g(x)的单调区间由图象(图略)可知, 当x∈(-∞,-3),x∈(0,3)时,g(x)单调递减, 当x∈(-3,0),x∈(3,+∞)时,g(x)单调递增, 由复合函数单调性同增异减得单调区间. 由f(-x)=ln|(-x)2-9|=ln|x2-9|=f(x)得f(x)为偶函数.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.6 对数与对数函数
一、选择题
1.若点(a ,b )在y =lg x 图象上,a ≠1,则下列点也在此图象上的是( ) A .(1
a
,b )
B .(10a,1-b )
C .(
10
a
,b +1)
D .(a 2,2b )
解析:当x =a 2时,y =lg a 2=2lg a =2b ,所以点(a 2,2b )在函数y =lg x 的图象上. 答案:D
2.下列函数中既不是奇函数,又不是偶函数的是( ). A .y =2|x | B .y =lg(x +x 2+1) C .y =2x +2-x D .y =lg
1
x +1
解析 依次根据函数奇偶性定义判断知,A ,C 选项对应函数为偶函数,B 选项对应函数为奇函数,只有D 选项对应函数定义域不关于原点对称,故为非奇非偶函数. 答案 D
3.设a =log 13 12,b =log 13 23,c =log 34
3,则a 、b 、c 的大小关系是( )
A .a <b <c
B .c <b <a
C .b <a <c
D .b <c <a
解析 ∵a =log 13 12,b =log 13 2
3, ∵log 13
x 单调递减而12<2
3
∴a >b 且a >0,b >0,又c <0.故c <b <a . 答案 B 4.若12
1
()log (21)
f x x =
+,则()f x 的定义域为( )
A.1(,0)2-
B.1(,)2-+∞
C.1(,0)(0,)2-⋃+∞
D.1
(,2)2-
解析
答案:C
5.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c
D .c >a >b
解析:a =log 23.6=log 43.62=log 412.96,y =log 4x (x >0)是单调增函数, 而3.2<3.6<12.96,∴a >c >b . 答案:B
6.函数y =log 0.5⎝ ⎛⎭⎪⎫
x +
1x -1+1(x >1)的值域是( ). A .(-∞,-2] B .[-2,+∞) C .(-∞,2] D .[2,+∞) 解析 ∵x +1x -1+1=x -1+1x -1
+2≥2(x -1)·
1
x -1
+2=4.∴y ≤-2. 答案 A
7.已知函数f (x )=|lg x |.若0<a <b ,且f (a )=f (b ),则a +2b 的取值范围是( ).
A .(22,+∞)
B .[22,+∞)
C .(3,+∞)
D .[3,+∞)
解析 由已知条件0<a <1<b 和f (a )=f (b )得,-lg a =lg b ,则lg a +lg b =0,
ab =1,因此a +2b =a +2a ,由对勾函数知y =x +2
x 在(0,1)单调递减,得a +2b >3,
即a +2b 的取值范围是(3,+∞). 答案 C 二、填空题
8.函数f (x )=ln ⎝ ⎛
⎭⎪⎫1+
1x -1的定义域是________. 解析 要使f (x )有意义,应有1+1
x -1
>0, ∴
x
x -1
>0,∴x <0或x >1.
答案 (-∞,0)∪(1,+∞)
9.已知函数x x f lg )(=,若1)(=ab f ,则=+)()(22b f a f ____________。
答案 2
10.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.
解析:如图所示为f (x )=|log 3x |的图象,当f (x )=0时,x =1,当
f (x )=1时,x =3或13,故要使值域为[0,1],则定义域为[13,3]或[13
,1]或[1,3],所以b -a 的最小值为2
3.
答案:23
11.已知函数f (x )=⎩⎨
⎧
2x
(x ≥2),
f (x +2) (x <2),
则f (log 23)=________.
解析 ∵1<log 23<2, ∴log 23+2>2
∴f (log 23)=f (log 23+2)=f (log 212) =2log 212=12. 答案 12
12.函数y =log 3(x 2-2x )的单调减区间是________. 解析 (等价转化法)令u =x 2-2x ,则y =log 3u .
∵y =log 3u 是增函数,u =x 2-2x >0的减区间是(-∞,0), ∴y =log 3(x 2-2x )的减区间是(-∞,0). 答案 (-∞,0)
【点评】 本题采用了等价转化法(换元法),把问题转化为关于x 的二次函数的单调区间问题,但应注意定义域的限制. 三、解答题
13.已知函数f (x )=log 4(ax 2+2x +3). (1)若f (1)=1,求f (x )的单调区间;
(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.
解:(1)∵f (1)=1,
∴log 4(a +5)=1,因此a +5=4,a =-1, 这时f (x )=log 4(-x 2+2x +3).
由-x 2+2x +3>0得-1<x <3,函数定义域为(-1,3). 令g (x )=-x 2+2x +3.
则g (x )在(-∞,1)上递增,在(1,+∞)上递减, 又y =log 4x 在(0,+∞)上递增,
所以f (x )的单调递增区间是(-1,1),递减区间是(1,3).
(2)假设存在实数a 使f (x )的最小值为0,则h (x )=ax 2+2x +3应有最小值1,
因此应有⎩⎨⎧
a >0,
12a -4
4a =1,
解得a =1
2
.
故存在实数a =1
2
使f (x )的最小值等于0
14.若函数y =lg(3-4x +x 2)的定义域为M .当x ∈M 时,求f (x )=2x +2-3×4x 的最值及相应的x 的值.
解 y =lg(3-4x +x 2),∴3-4x +x 2>0,
解得x <1或x >3,∴M ={x |x <1,或x >3},
f (x )=2x +2-3×4x =4×2x -3×(2x )2.
令2x =t ,∵x <1或x >3,∴t >8或0<t <2. ∴f (t )=4t -3t 2
=-3⎝
⎛
⎭⎪⎫t -232+43(t >8或0<t <2).
由二次函数性质可知: 当0<t <2时,f (t )∈⎝
⎛⎦⎥⎤0,43, 当t >8时,f (t )∈(-∞,-160), 当2x =t =23,即x =log 2 23时,f (x )max =4
3
.
综上可知:当x =log 2 23时,f (x )取到最大值为4
3,无最小值.
15.已知函数f (x )=log a x +b
x -b
(a >0,b >0,a ≠1). (1)求f (x )的定义域; (2)讨论f (x )的奇偶性; (3)讨论f (x )的单调性; 解 (1)令
x +b
x -b
>0, 解得f (x )的定义域为(-∞,-b )∪(b ,+∞). (2)因f (-x )=log a -x +b -x -b =log a ⎝
⎛⎭
⎪⎫x +b x -b -1
=-log a
x +b
x -b
=-f (x ), 故f (x )是奇函数. (3)令u (x )=
x +b x -b ,则函数u (x )=1+2b
x -b
在(-∞,-b )和(b ,+∞)上是减函数,所以当0<a <1时,f (x )在(-∞,-b )和(b ,+∞)上是增函数;当a >1时,f (x )在(-∞,-b )和(b ,+∞)上是减函数. 16.已知函数f (x )=log a (3-ax ).
(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围.
(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.
解析 (1)由题意,3-ax >0对一切x ∈[0,2]恒成立,∵a >0且a ≠1, ∴g (x )=3-ax 在[0,2]上是减函数,从而g (2)=3-2a >0得a <3
2.∴a 的取值范
围为(0,1)∪⎝
⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1.
由题设f (1)=1,即log a (3-a )=1,
∴a =32,此时f (x )=log 32 ⎝ ⎛
⎭⎪⎫3-32x ,当x =2时,函数f (x )没有意义,故这样的
实数a 不存在.。