高中数学三角函数公式大全全解

合集下载

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。

二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。

平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。

三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。

(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。

2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。

$b^2=a^2+c^2-2ac\cos B$。

$c^2=a^2+b^2-2ab\cos C$。

3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。

其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。

4.诱导公式:奇变偶不变,符号看象限。

sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。

5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。

6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。

高中数学三角函数公式大全全解

高中数学三角函数公式大全全解

三角函数公式1.正弦定理:A a sin =B b sin =Cc sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cosbca cb A 2cos 222-+=3.S ⊿=21a a h ⋅=21ab C sin =21bc A sin =21ac B sin =Rabc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=CB A c sin 2sin sin 2=pr=))()((c p b p a p p ---(其中)(21c b a p ++=, r 为三角形内切圆半径)4.诱导公试注:奇变偶不变,符号看象限。

注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限注:三角函数值等于α的异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名改变,符号看象限5.和差角公式①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③βαβαβαtg tg tg tg tg ⋅±=± 1)( ④)1)((βαβαβαtg tg tg tg tg ⋅±=±6.二倍角公式:(含万能公式)①θθθθθ212cos sin 22sin tg tg +== ②θθθθθθθ22222211sin 211cos 2sin cos 2cos tg tg +-=-=-=-=③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2θθ+=7.半角公式:(符号的选择由2θ所在的象限确定) ①2cos 12sinθθ-±= ②2cos 12sin 2θθ-= ③2cos 12cos θθ+±= ④2cos 12cos 2θθ+=⑤2sin 2cos 12θθ=- ⑥2cos 2cos 12θθ=+ ⑦2sin2cos )2sin 2(cos sin 12θθθθθ±=±=±⑧θθθθθθθsin cos 1cos 1sin cos 1cos 12-=+=+-±=tg8.积化和差公式:[])sin()sin(21cos sin βαβαβα-++=[])sin()sin(21sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++=()[]βαβαβα--+-=cos )cos(21sin sin9.和差化积公式:①2cos2sin2sin sin βαβαβα-+=+ ②2sin2cos2sin sin βαβαβα-+=-③2cos 2cos 2cos cos βαβαβα-+=+ ④2sin2sin 2cos cos βαβαβα-+-=- 锐角三角形函数公式总结大全1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。

高中数学三角函数万能公式

高中数学三角函数万能公式

高中数学三角函数万能公式
三角函数是高中数学学习的一个重点,那幺,数学三角函数有哪些万能公式呢?下面小编整理了一些相关信息,供大家参考!
1 三角函数有哪些万能公式一、(1)(sinα) +(cosα) =1
(2)1+(tanα) =(secα)
(3)1+(cotα) =(cscα)
证明下面两式,只需将一式,左右同除(sinα) ,第二个除(cosα) 即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
二、设tan(A/2)=t
sinA=2t/(1+t ) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t ) (A≠2kπ+π,k∈Z)
cosA=(1-t )/(1+t ) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA 都可以用tan(A/2)来表示,当要求一串函数式最值的
时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。

三、sinα=[2tan(α/2)]/{1+[tan(α/2)] }
cosα=[1-tan(α/2) ]/{1+[tan(α/2)] }
tanα=[2tan(α/2)]/{1-[tan(α/2)] }
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
1 三角函数相关公式有哪些1.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.。

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析

高中三角函数公式汇总与解析【引言】三角函数是高中数学中的一大重点内容,掌握三角函数的公式是学好数学的基础。

本文将对高中三角函数的公式进行汇总与解析,以帮助读者更好地理解和运用这些公式。

【正文】一、角度与弧度的转换在三角函数中,角可以用度数表示,也可以用弧度表示。

两者之间的转换关系如下:1度=π/180弧度1弧度=180/π度二、基本三角函数公式1. 正弦函数(sin)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. sin(-x) = -sin(x)b. sin(x+π) = -sin(x)2. 余弦函数(cos)①定义域:实数集R②值域:[-1,1]③周期性:T=2π④奇偶性:a. cos(-x) = cos(x)b. cos(x+π) = -cos(x)3. 正切函数(tan)①定义域:x≠(2k+1)π/2,其中k为整数②值域:实数集R③周期性:T=π④奇偶性:a. tan(-x) = -tan(x)b. tan(x+π) = tan(x)三、和差角公式1.正弦函数:sin(A±B) = sin(A)cos(B)±cos(A)sin(B) 2.余弦函数:cos(A±B) = cos(A)cos(B)∓sin(A)sin(B)tan(A±B) = (tan(A)±tan(B))/(1∓tan(A)tan(B))四、倍角公式1.正弦函数:sin(2A) = 2sin(A)cos(A)2.余弦函数:cos(2A) = cos²(A) - sin²(A) = 2cos²(A) - 1 = 1 - 2sin²(A) 3.正切函数:tan(2A) = (2tan(A))/(1 - tan²(A))五、半角公式1.正弦函数:sin(A/2) = ±√[(1-cos(A))/2]2.余弦函数:cos(A/2) = ±√[(1+cos(A))/2]3.正切函数:tan(A/2) = ±√[(1-cos(A))/(1+cos(A))]六、倒数公式1.正弦函数:csc(A) = 1/sin(A)sec(A) = 1/cos(A)3.正切函数:cot(A) = 1/tan(A)七、和角公式1.正弦函数:sin(A) + sin(B) = 2sin((A+B)/2)cos((A-B)/2)2.余弦函数:cos(A) + cos(B) = 2cos((A+B)/2)cos((A-B)/2)3.正切函数:tan(A) + tan(B) = (sin(A)+sin(B))/(cos(A)+cos(B))【结论】本文对高中三角函数的公式进行了汇总与解析,包括角度与弧度的转换、基本三角函数公式、和差角公式、倍角公式、半角公式、倒数公式和和角公式。

高中三角函数所有公式大全

高中三角函数所有公式大全

高中三角函数所有公式大全高中三角函数最全的公式如下:1+sin(a) = [sin(a/2)+cos(a/2)]^2; 1-sin(a) = [sin(a/2)-cos(a/2)]^2;三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。

也可以等价地用与单位圆有关的各种线段的长度来定义。

三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。

在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。

常见的三角函数包括正弦函数、余弦函数和正切函数。

在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。

不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。

三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。

另外,以三角函数为模版,可以定义一类相似的函数,叫做双曲函数。

常见的双曲函数也被称为双曲正弦函数、双曲余弦函数等等。

三角函数(也叫做圆函数)是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。

三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

更现代的定义把它们表达为无穷级数或特定微分方程的解,允许它们扩展到任意正数和负数值,甚至是复数值。

三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb) tan(a-b)=(tana-tanb)/(1+tanatanb)ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式sin(a/2)=√((1-cosa)/2)sin(a/2)=-√((1-cosa)/2)cos(a/2)=√((1+cosa)/2)cos(a/2)=-√((1+cosa)/2)tan(a/2)=√((1-cosa)/((1+cosa))tan(a/2)=-√((1-cosa)/((1+cosa))ctg(a/2)=√((1+cosa)/((1-cosa))ctg(a/2)=-√((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2 cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb正弦定理a/sina=b/sinb=c/sinc=2r注:其中r表示三角形的外接圆半径余弦定理b2=a2+c2-2accosb注:角b是边a和边c的夹角高中三角函数公式及诱导公式大全如下所示:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2k T +a )=sin ak∈z;cos(2k T + a )=cos ak∈z;tan(2k Tt +a )=tan ak∈z;cot(2k T + a )=cot akEz公式二:设α为任意角,T+a的三角函数值与α的三角函数值之间的关系:sin ( T + a )=-sin a;cos( T + a )=-cos a;tan( T + a )=tan a;cot ( T+a )=cot a公式三:任意角α与-a的三角函数值之间的关系:sin(- a )=-sin a;cos(- a )=cos a;tan(- a )=-tan a;cot(- a )=-cot a公式四:利用公式二和公式三可以得到T -a与a的三角函数值之间的关系:sin( T 一a )=sin a;cos ( T - a )=-cos a;tan ( T - a )=-tan a;cot ( T-a )=-cot a 1、公式一:设α为任意角,终边相同的角的同一三角函数的值相等sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)2、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαcot(π+α)=cotα3、公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα4、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系cos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα5、公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα6、公式六:π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαsin(π/2-α)=cosαcos(π/2+α)=-sinαcos(π/2-α)=sinαtan(π/2+α)=-cotαtan(π/2-α)=cotαcot(π/2+α)=-tanαcot(π/2-α)=tanα。

高中三角函数公式大全

高中三角函数公式大全以下为改写后的文章:高中三角函数公式大全三角函数公式:1.两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-XXX)tan(A-B) = (tanA-tanB)/(1+XXX)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2.倍角公式tan2A = (2tanA)/(1-tanA)sin2A = 2sinAcosAcos2A = cos²A-sin²A = 2cos²A-1 = 1-2sin²A 3.三倍角公式sin3A = 3sinA-4sin³Acos3A = 4cos³A-3cosAtan3A = tana·tan(A+π)·XXX(A-π) 4.半角公式sin(A/2) = ±√((1-cosA)/2)cos(A/2) = ±√((1+cosA)/2)tan(A/2) = ±√((1-cosA)/(1+cosA)) cot(A/2) = ±√((1+cosA)/(1-cosA)) 5.和差化积sin(a+b) = 2sin((a+b)/2)cos((a-b)/2) cos(a+b) = 2cos((a+b)/2)cos((a-b)/2) sin(a-b) = 2sin((a-b)/2)cos((a+b)/2)tan(a+b) = (tanA+tanB)/(1-XXX)6.积化和差sinA·sinB = (1/2)(cos(A-B)-cos(A+B)) cosA·cosB = (1/2)(cos(A-B)+cos(A+B)) sinA·cosB = (1/2)(sin(A+B)+sin(A-B)) cosA·sinB = (1/2)(sin(A+B)-sin(A-B)) 7.诱导公式sin(-A) = -sinAcos(-A) = cosAsin(π-A) = sinAcos(π-A) = -cosAsin(π+A) = -sinAcos(π+A) = -cosACos(π-a)=-cos aSin(π+a)=-sin aCos(π+a)=-cos aSin a万能公式:a^2 tan^2 a=a^2/(1+tan^2 a)a^2/(1-tan^2 a)=cos^2 a其他公式:2a sina+b cosa=(a^2+b^2)sin(a+c),其中tanc=a sin(a)-b cos(a)=b/(a+cos a)1+sin a=(sin a+cos a)^2/2其他非重点三角函数:csc a=1/sin asec a=1/cos a双曲函数:sinh a=(e^a-e^-a)/2cosh a=(e^a+e^-a)/2XXX a公式一:对于任意角α,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα,cos(2kπ+α)=cosα,tan(2kπ+α)=tanα,cot(2kπ+α)=cotα公式二:对于任意角α,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinα,cos(π-α)=-cosα,tan(π-α)=-tanα,cot(π-α)=-cotα公式五:利用公式二和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinα,cos(2π-α)=cosα,tan(2π-α)=-tanα,cot(2π-α)=-cotα公式六:对于±α及±α,与α的三角函数值之间的关系为:sin(+α)=cosα,cos(+α)=-sinα以下是一些常用的三角函数公式:tan(+α)= -cotα,cot(+α)= -tanα这两个公式表示正弦和余弦的相反数的比值等于余切和正切的相反数。

高中数学三角函数万能公式

高中数学三角函数万能公式一、1sinα^2+cosα^2=121+tanα^2=secα^231+cotα^2=cscα^2证明下面两式,只需将一式,左右同除sinα^2,第二个除cosα^2即可4对于任意非直角三角形,总有tanA+tanB+tanC=tanAtanBtanC二、设tanA/2=tsinA=2t/1+t^2 A≠2kπ+π,k∈ZtanA=2t/1-t^2 A≠2kπ+π,k∈ZcosA=1-t^2/1+t^2 A≠2kπ+π k∈Z就是说sinA.tanA.cosA都可以用tanA/2来表示,当要求一串函数式最值的时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。

三、sinα=[2tanα/2]/{1+[tanα/2]^2}cosα=[1-tanα/2^2]/{1+[tanα/2]^2}tanα=[2tanα/2]/{1-[tanα/2]^2}将sinα、cosα、tanα代换成tanα/2的式子,这种代换称为万能置换.1.半角公式tanA/2=1-cosA/sinA=sinA/1+cosA;cotA/2=sinA/1-cosA=1+cosA/sinA.sin^2a/2=1-cosa/2cos^2a/2=1+cosa/2tana/2=1-cosa/sina=sina/1+cosa2.和差化积sinθ+sinφ=2sin[θ+φ/2]cos[θ-φ/2]sinθ-sinφ=2cos[θ+φ/2]sin[θ-φ/2]cosθ+cosφ=2cos[θ+φ/2]cos[θ-φ/2]cosθ-cosφ=-2sin[θ+φ/2]sin[θ-φ/2]tanA+tanB=sinA+B/cosAcosB=tanA+B1-tanAtanB tanA-tanB=sinA-B/cosAcosB=tanA-B1+tanAtanB 3.两角和公式tanα+β=tanα+tanβ/1-tanαtanβtanα-β=tanα-tanβ/1+tanαtanβcosα+β=cosαcosβ-sinαsinβcosα-β=cosαcosβ+sinαsinβsinα+β=sinαcosβ+cosαsinβsinα-β=sinαcosβ-cosαsinβ4.积化和差sinαsinβ=-[cosα+β-cosα-β]/2cosαcosβ=[cosα+β+cosα-β]/2sinαcosβ=[sinα+β+sinα-β]/2cosαsinβ=[sinα+β-sinα-β]/2感谢您的阅读,祝您生活愉快。

三角函数的全部公式整理高中

三角函数的全部公式整理高中一、正弦函数(Sine Function)正弦函数是最基本的三角函数之一,在数学中起着非常重要的作用。

它的定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y为角θ的正弦,记作sinθ。

1. 正弦函数的基本关系•sin(π/2 - θ) = cosθ•sin(π + θ) = -sinθ•sin(2π - θ) = -sinθ2. 正弦函数的等于关系•sin(0°) = 0•sin(30°) = 1/2•sin(45°) = √2/2•sin(60°) = √3/2•sin(90°) = 1二、余弦函数(Cosine Function)余弦函数也是常见的三角函数之一,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称x为角θ的余弦,记作cosθ。

1. 余弦函数的基本关系•cos(π/2 - θ) = sinθ•cos(π + θ) = -cosθ•cos(2π - θ) = cosθ2. 余弦函数的等于关系•cos(0°) = 1•cos(30°) = √3/2•cos(45°) = √2/2•cos(60°) = 1/2•cos(90°) = 0三、正切函数(Tangent Function)正切函数是正弦函数和余弦函数的比值,定义如下:定义:设角θ的终边在单位圆上,点P(x,y)是单位圆上的点,则称y/x为角θ的正切,记作tanθ。

1. 正切函数的基本关系•tanθ = sinθ / cosθ•tan(π/2 - θ) = 1 / tanθ2. 正切函数的等于关系•tan(0°) = 0•tan(30°) = √3/3•tan(45°) = 1•tan(60°) = √3•tan(90°) = 不存在四、三角函数间的基本关系1. 三角函数的互余关系•sinθ = cos(π/2 - θ)•cosθ = sin(π/2 - θ)•tanθ = 1 / cotθ•cotθ = 1 / tanθ2. 三角函数的倒数关系•sinθ = 1 / cscθ•cosθ = 1 / secθ•tanθ = 1 / cotθ五、和差化积公式1. 正弦和差化积公式sin(A ± B) = sinAcosB ± cosAsinB2. 余弦和差化积公式cos(A ± B) = cosAcosB ∓ sinAsinB六、倍角公式1. 正弦倍角公式sin2θ = 2sinθcosθ2. 余弦倍角公式cos2θ = cos²θ - sin²θ结语以上就是高中阶段关于三角函数的全部公式整理,这些公式在解决三角形问题、波动问题等数学中起着至关重要的作用。

高中三角函数公式(共10篇)

高中三角函数公式(共10篇)高中三角函数公式(一): 高中数学必修4三角函数公式大全诱导公式sin (α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z) tan (α+k·360°)=tanα(k∈Z) cot(α+k·360°)=cotα (k∈Z) sec(α+k·360°)=secα (k∈Z) csc(α+k·360°)=cscα (k∈Z)课改后COT SEC CSC不做要求的sin(180°+α)=-sinα cos(180°+α)=-cosα tan(180°+α)=tanαsin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanαsin(180°-α)=sinα cos(180°-α)=-cosα tan(180°-α)=-tanαsin(90°+α)=cosα cos(90°+α)=-sinα tan(90°+α)=-cotα sin (90°-α)=cosα cos (90°-α)=sinα tan (90°-α)=cotα两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α+β)=sinα·cosβ+cosα·sinβ sin(α-β)=sinα·cosβ-cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan(α)/[1+tan^2(α)] cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]半角公式:sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)] 积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]高中三角函数公式(二): 数学三角函数的公式把高中数学所有数学三角函数公式列出来高中数学必修1和必修4的公式总结最佳答案乘法与因式分解a^2-b^2=(a+b)(a-b)a^3+b^3=(a+b)(a^2-ab+b^2) •a^3-b^3=(a-b(a^2+ab+b^2)三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|一元二次方程的解 -b+√(b^2-4ac)/2a -b-√(b^2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b^2-4ac=0 注:方程有两个相等的实根b^2-4ac>0 注:方程有两个不等的实根b^2-4ac0抛物线标准方程 y^2=2px y^2=-2px x^2=2py x^2=-2py直棱柱侧面积 S=c*h 斜棱柱侧面积 S=c"*h正棱锥侧面积 S=1/2c*h" 正棱台侧面积 S=1/2(c+c")h"圆台侧面积 S=1/2(c+c")l=pi(R+r)l 球的表面积 S=4pi*r2圆柱侧面积 S=c*h=2pi*h 圆锥侧面积 S=1/2*c*l=pi*r*l弧长公式 l=a*r a是圆心角的弧度数r >0 扇形面积公式 s=1/2*l*r锥体体积公式 V=1/3*S*H 圆锥体体积公式 V=1/3*pi*r2h斜棱柱体积 V=S"L 注:其中,S"是直截面面积, L是侧棱长柱体体积公式 V=s*h 圆柱体 V=pi*r2h高中三角函数公式(三): 高中阶段比较重要的三角函数公式有哪些最好能一一列举下来【高中三角函数公式】倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα sin2α+cos2α=1 1+tan2α=sec2α 1+cot2α=csc2α 诱...高中三角函数公式(四): 求高中数学三角函数公式推导所有的三角函数公式的推导全部过程诱导公式:sin(2kπ+α)=sinα .cos(2kπ+α)=cosα.tan(2kπ+α)=tanα .sin(π+α)=-sinα .cos(π+α)=-cosα .tan(π+α)=tanα.sin(-α)=-sinα .cos(-α)=cosα .tan(-α)=-tanα.sin(π-α)=sinα .cos(π-α)=-cosα.tan(π-α)=-tanα.sin(2π-α)=-sinα .cos(2π-α)=cosα .tan(2π-α)=-tanα .sin(π/2+α)=cosα .cos(π/2+α)=-sinα.sin(π/2-α)=cosα .cos(π/2-α)=sinα .sin(3π/2+α)=-cosα.cos(3π/2+α)=sinα .sin(3π/2-α)=-cosα.cos(3π/2-α)=-sinα 基本关系:sin^2(A)+cos^2(A)=1.tanA=sinA/cosA三角恒等变换公式:sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-cosAsinB cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) sin2A=2sinAcosA cos2A=cos^2(A)-sin^2(A)tan2A=(2tanA)/(1-tan^2(A))弦定理:若a、b、c为任意三角形ABC三边,A、B、C为三个角,则:a/sinA=b/sinB=c/sinC余弦定理:如上所设,则a^2=b^2+c^2-2bccosA b^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosC【高中三角函数公式】高中三角函数公式(五): 高中常用的三角函数公式有哪些在什么地方应用如题1.诱导公式 sin(-a) = - sin(a) cos(-a) = cos(a) sin(π/2 - a) =cos(a) cos(π/2 - a) = sin(a) sin(π/2 + a) = cos(a) cos(π/2 + a) = - sin(a) sin(π - a) = sin(a) cos(π - a) = - cos(a) sin(π + a) = -...高中三角函数公式(六): 高中三角函数公式表已知直角三角形三边长度求另外两角角度高中的数学公式定理大集中三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1 sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα sin2α+cos2α=11+tan2α=sec2α1+cot2α=csc2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.”)诱导公式(口诀:奇变偶不变,符号看象限.)sin(-α)=-sinαcos(-α)=cosα tan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=ta nαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ tanα+tanβtan(α+β)=——————1-tanα ·tanβtanα-tanβtan(α-β)=——————1+tanα ·tanβ2tan(α/2)sinα=——————1+tan2(α/2)1-tan2(α/2)cosα=——————1+tan2(α/2)2tan(α/2)tanα=——————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=—————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式α+β α-βsinα+sinβ=2高中三角函数公式(七): 2023年江苏省高中数学公式特别是三角函数公式三角函数内容规律三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系.而掌握三角函数的内部规律及本质也是学好三角函数的关键所在.1、三角函数本质:三角函数的本质来源于定义,如右图:根据右图,有sinθ=y/ R; cosθ=x/R; tanθ=y/x; cotθ=x/y.深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导sin(A+B) = sinAcosB+cosAsinB 为例:推导:首先画单位圆交X轴于C,D,在单位圆上有任意A,B点.角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A"OD.A(cosα,sinα),B(cosβ,sinβ),A"(cos(α-β),sin(α-β))OA"=OA=OB=OD=1,D(1,0)∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) [1]两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)Sin2A=2SinA CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=2tanA/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A))tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.sinαsinβ = -1/2*[cos(α+β)-cos(α-β)] cosαcosβ = 1/2*[cos(α+β)+cos(α-β)] sinαcosβ = 1/2*[sin(α+β)+sin(α-β)] cosαsinβ = 1/2*[sin(α+β)-sin(α-β)] sin(-α) = -sinαcos(-α) = cosαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαcos(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα高中三角函数公式(八): 高中三角函数的公式在非直角三角形ABC中设∠A邻边a,对边b,斜边c,那么sin∠A=cos∠A=tan∠A=(用含a、b、c的代数式表示)由于csc、sec、cot在直角三角形中分别为以上三种三角函数的倒数,在非直角三角形中是否仍然适用老师跟我讲过三角函数不在直角三角形中也是有的.如果答案是网上大段大段的Ctrl+C和Ctrl+V搞来的何必回答我的问题很清楚.前后答案最多100字.当然适用,三角函数抽象出来它就是一种不依赖于几何图形的函数.当然在高中会以圆为依托来深入研究它.事实上,如果你感兴趣,可以自己查询‘正弦定理‘、’余弦定理‘以及’正切定理‘.相信这个会给你提供你想要的,它就是在任意三角形中的.高中三角函数公式(九): 高中三角函数公式记忆RT老师说有N个公式一百多个呢咋记呢最好有口诀啥的追分ing...其实不用记忆那么多的啊!我就是有多年高三经验的老师。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

sin A cosB 由A B 90 cos A sin B 得B 90 A
sin A cos(90 A) cos A sin(90 A)
斜边 c
b
A
邻边
B 对
a边
C
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
tan A cotB cot A tanB
2
cos cos 1 cos( ) cos( ) sin sin 1 cos( ) cos
2
2
9.和差化积公式:
.
.
① sin sin 2 sin cos
2
2
③ cos cos 2 cos cos 2 Nhomakorabea2
② sin sin 2 cos sin
+ cos + cos
- tg + tg
cot - ctg - ctg + ctg - ctg + ctg
注:三角函数值等于 的同
名三角函数值,前面加上一
个把 看作锐角时,原三角
函数值的符号;即:函数名 不变,符号看象限
2 2 3 2 3 2
.
sin
cos
tan
cot
+ cos + sin + ctg + tg
3.S⊿=
1 2
a ha
=
1 2
ab sinC
=
1 2
bc sin A =
1 2
ac sin B
=
abc 4R
=2R 2
sin A
sin B
sin C
= a2 sin B sin C = b2 sin AsinC = c2 sin Asin B =pr= p( p a)( p b)(p c)
正 弦
sin
A
A的对边 斜边
余 弦
cos
A
A的邻边 斜边
正 切
tan
A
A的对边 A的邻边
sin A a c
cos A b c
tan A a b
0 sin A 1
(∠A 为锐角)
0 cosA 1
(∠A 为锐角)
tan A 0
(∠A 为锐角)
余 切
cot
A
A的邻边 A的对边
cot A b a
cot A 0
(∠A 为锐角)
sin A cosB cos A sin B sin 2 A cos2 A 1
tan A cotB cot A tanB tan A 1 (倒数)
cot A
tan A cot A 1
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
④ sin2
1
tg 2 tg 2
1 cos 2 2
⑤ cos2 1 cos2
2
7.半角公式:(符号的选择由 所在的象限确定) 2
① sin 1 cos
2
2
② sin2 1 cos
2
2
③ cos 1 cos
2
2
④ cos2 1 cos
2
2
⑤1 cos 2 sin2
.
. 6、正弦、余弦的增减性:
当 0°≤ ≤90°时,sin 随 的增大而增大,cos 随 的增大而减小。 7、正切、余切的增减性:
当 0°< <90°时,tan 随 的增大而增大,cot 随 的增大而减小。
.
2
⑥1 cos 2 cos2
2
⑦ 1 sin (cos sin )2 cos sin
22
22
⑧ tg 1 cos sin 1 cos
2 1 cos 1 cos sin
8.积化和差公式:
sin cos 1 sin( ) sin( )
2
cos sin 1 sin( ) sin( )
+ cos - sin - ctg - tg
- cos - sin + ctg + tg
- cos + sin - ctg - tg
注:三角函数值等于 的
异名三角函数值,前面加
上一个把 看作锐角时,
原三角函数值的符号;即:
. 函数名改变,符号看象限
5.和差角公式
① sin( ) sin cos cos sin ② cos( ) cos cos sin sin
2
2
④ cos cos 2 sin sin
2
2
锐角三角形函数公式总结大全
1、勾股定理:直角三角形两直角边 a 、 b 的平方和等于斜边 c 的平方。 a2 b2 c2
2、如下图,在 Rt△ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):
定义
表达式
取值范围
关系

tg(
)
tg 1 tg
tg tg
④ tg tg tg( )(1 tg tg )
6.二倍角公式:(含万能公式)
① sin 2
2 sin
cos
2tg 1 tg2
② cos 2
cos2
sin2
2 cos2
1 1 2 sin2
1 tg 2 1 tg 2
③ tg2
2tg 1 tg2
.
三角函数公式
1.正弦定理: a = b = c = 2R (R 为三角形外接圆半径) sin A sin B sin C
2.余弦定理:a 2 =b 2 +c 2 -2bc cos A b 2 =a 2 +c 2 -2ac cosB c 2 =a 2 +b 2 -2ab cosC
cos A b2 c2 a2 2bc
由A B 90 得B 90 A
tan A cot(90 A)
cot A tan(90 A) XXX
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
三角函数
sin cos tan cot

30°
45°
60°
0
1
2
3
2
2
2
1
3
2
1
2
2
2
0
3
1
3
3
-
3
1
3
3
90° 1 0 0
2sin A
2sin B
2 s in C
(其中 p 1 (a b c) , r 为三角形内切圆半径) 2
4.诱导公试
注:奇变偶不变,符号看象限。
sin cos tan
- -
+
- sin + sin - sin
+ cos - cos - cos
- tg - tg + tg
2 - 2k +
- sin + sin
相关文档
最新文档