2019年天津市河北区中考数学一模试卷(解析版)

合集下载

2019年天津市部分区中考数学一模试卷-解析版

2019年天津市部分区中考数学一模试卷-解析版

2019年天津市部分区中考数学一模试卷一、选择题(本大题共12小题,共36.0分) 1. 计算6×(−9)的结果等于( )A. −15B. 15C. 54D. −542. cos60°的值等于( )A. 12B. √22C. √32D. √333. 据《人民日报》报道,1月9日在京举行的2019年全国科技工作会议传来好消息,我国研发人员总量预计达到4 180 000人,居世界第一,将4 180 000用科学记数法( )A. 0.418×107B. 4.18×106C. 41.8×105D. 418×1044. 下列图形中,既可以看作是中心对称图形又可以看作是轴对称图形的是( )A. B. C. D.5. 如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A.B.C.D.6. 下列整数中,与√35最接近的是( )A. 4B. 5C. 6D. 77. 方程组{3x −2y =55x +4y =1的解是( )A. {x =1y =1B. {x =1y =−1C. {x =2y =12D. {x =13y =−28. 下列等式成立的是( )A. 1a +2b =3a+b B. 22a+b =1a+b C. a−a+b =−aa+bD. abab−b 2=aa−b9.如图,Rt△ABC中,∠B=90°,AB=6,BC=9,将△ABC折叠,使点C与AB的中点D重合,折痕交AC于点M,交BC于点N,则线段BN的长为()A. 3B. 4C. 5D. 610.已知反比例函数y=−8,下列结论错误的是()xA. y随x的增大而减小B. 图象位于二、四象限内C. 图象必过点(−2,4)D. 当−1<x<0时,y>811.如图,直线l表示一条河,点A,B表示两个村庄,想在直线l的某点P处修建一个向A,B供水的水站,现有如图所示的四种铺设管道的方案(图中实线表示铺设的管道),则铺设管道一定最短的是()A. B.C. D.12.已知抛物线y=ax2+bx+c(a,b,c为常数,a<0),其对称轴是x=1,与x轴的一个交点在(2,0),(3,0)之间,有下列结论:①abc<0;②a−b+c=0;③若此抛物线过(−2,y1)和(3,y2)两点,则y1<y2.其中,正确结论的个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共6小题,共18.0分)13.计算(x+2)(x−2)的结果等于______.14.计算(4√2−√6)÷√2的结果等于______.15.不透明袋子中装有17个球,其中有8个红球、6个黄球,3个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率______.16.若一次函数的图象与直线y=−3x平行,且经过点(1,2),则一次函数的表达式为______.17.如图,△ABC是边长为9的等边三角形,AD为BC边上的高,以AD为边作等边三角形ADE,F为AC中点,则线段EF的长为______.18.如图,在每个小正方形边长为1的网格中,△ABC的顶点A,B,C均在格点上,D为AC边上的一点.(1)线段AC的值为______;(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66.0分)19.解不等式组:{x−3≥−6 ①−(x−1)≥−1 ②请结合题意填空,完成本题的解答(1)解不等式①,得______;(2)解不等式②,得______;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为______.20.为了解某校八年级体育科目训练情况,从八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)图1中∠α的度数是______,并把图2条形统计图补充完整.(2)抽取的这部分的学生的体育科目测试结果的中位数是在______级;(3)依次将优秀、良好、及格、不及格记为90分、80分、70分、50分,请计算抽取的这部分学生体育的平均成绩.21.已知四边形ABCD内接于⊙O,AB为⊙O的直径,∠BCD=148°.(1)如图①,若E为AB上一点,延长DE交⊙O于点P,连接AP,求∠AFD的大小;(2)如图②,过点A作⊙O的切线,与DO的延长线交于点P,求∠APD的大小.22.某数学小组在郊外水平空地上对无人机进行测高实验,以便与遥控器显示的高度数据进行对比.如图,在E处测得无人机C的仰角∠CAB=45°,在D处测得无人机C的仰角∠CBA=30°,已知测角仪的高AE=BD=1m,E,D两处相距50m,请根据数据计算无人机C的高(结果精确到0.1m,参考数据:√2≈1.41,√3≈1.73).23.一辆汽车油箱中有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,已知该汽车平均耗油量为0.1L/km.(1)计算并填写表:x(单位:km)10100300…y(单位:L)______ ______ ______ …(2)写出表示y与x的函数关系式,并指出自变量x的取值范围;(3)若A,B两地的路程约有230km,当油箱中油量少于5L时,汽车会自动报警,则这辆汽车在由A地到B地,再由B地返回A地的往返途中,汽车是否会报警请说明理由.24.如图①,在平面直角坐标系中,四边形AOBC是正方形,点P为正方形AOBC对角线的交点,点O(0,0),点A(2,0)点B(0,2)分别延长PC到D,PA到F,使PD=2PC,PF=2PA,再以PD,PF为邻边作平行四边形PDEF.(1)求点D的坐标;(2)如图②,将四边形PDEF绕点P逆时针旋转得四边形PD′E′F′,点D,E,F旋转后的对应点分别为D′,E′,F′,旋转角为(0°<α<360°);①在旋转过程中,当∠PBD=90°时,求点D′的坐标;②在旋转过程中,求BE′的取值范围(直接写出结果即可).25.函数y=−12x2+mx+1(x≥0,m>0)的图象记为C1,函数y=−12x2−mx−1(x<0,m>0)的图象记为C2,其中m为常数,C1与C2合起来的图象记为C.(1)若C1过点(1,1)时,求m的值;(2)若C2的顶点在直线y=1,求m的值;(3)设C在−4≤x≤2上最高点的纵坐标y0,当32≤y0≤9时,求m的取值范围.答案和解析1.【答案】D【解析】【分析】原式利用乘法法则计算即可求出值.此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.【解答】解:原式=−6×9=−54,故选:D.2.【答案】A.【解析】解:cos60°=12故选:A.根据特殊角的三角函数值解题即可.本题考查特殊角的三角函数值,准确掌握特殊角的函数值是解题关键.3.【答案】B【解析】【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:4 180 000用科学记数法表示成:4.18×106,故选B.4.【答案】D【解析】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.根据轴对称图形与中心对称图形的概念求解.考查了中心对称图形及轴对称图形的知识,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.5.【答案】D【解析】解:这个几何体的主视图为:.故选:D .画出从正面看到的图形即可得到它的主视图.本题考查了简单组合体的三视图:画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.6.【答案】C【解析】解:∵52=25,62=36,∴5<√35<6,25与35的距离大于36与35的距离, ∴与√35最接近的是6. 故选:C .根据5<√35<6,25与35的距离小于36与35的距离,可得答案.本题考查了估算无理数的大小,两个被开方数的差小,算术平方根的差也小是解题关键.7.【答案】B【解析】解:{3x −2y =5①5x +4y =1②,①×2+②,得 11x =11解得,x =1,将x =1代入①,得 y =−1,故原方程组的解是{x =1y =−1,故选:B .根据解二元一次方程组的方法可以解答本题.本题考查解二元一次方程组,解答本题的关键是明确解二元一次方程组的方法.8.【答案】D【解析】接:A 、两边不相等,故本选项不符合题意; B 、22a+2b =1a+b ,两边不相等,故本选项不符合题意;C 、a−a+b =a−(a−b)=−aa−b ,两边不相等,故本选项不符合题意; D 、abab−b 2=abb(a−b)=aa−b ,故本选项符合题意;故选:D .根据分式的基本性质逐个判断即可.本题考查了分式的基本性质,能灵活运用分式的基本性质进行变形是解此题的关键.9.【答案】B【解析】解:∵D是AB中点,AB=6,∴AD=BD=3,∵折叠∴DN=CN,∴BN=BC−CN=9−DN,在Rt△DBN中,DN2=BN2+DB2,∴DN2=(9−DN)2+9,∴DN=5∴BN=4,故选:B.由折叠的性质可得DN=CN,根据勾股定理可求DN的长,即可求BN的长.本题考查了翻折变换,折叠的性质,勾股定理,熟练运用折叠的性质是本题的关键.10.【答案】A中k=−8<0,【解析】解:反比例函数y=−8x在每个象限内y随着x的增大而增大,故A错误,符合题意,故选:A.利用反比例函数的性质判断后即可确定错误的选项.本题考查了反比例函数的性质,解题的关键是根据比例系数的符号确定其性质,难度不大.11.【答案】A【解析】解:如图,作A关于直线l的对称点A′,连接A′B交直线l于P点,则此时为所求,故选:A.先作点A关于直线l的对称点A,再连接A′B,即可得出答案.本题天考查了轴对称−最短路线问题,能正确画出图形是解此题的关键.12.【答案】C【解析】解:①由a<0,对称轴是x=1,可知b>0,由抛物线与x轴的一个交点在(2,0),(3,0)之间,可知另一交点位于(0,0)与(−1,0)之间,抛物线与y轴交于正半轴,c>0,所以abc<0,故①正确;当x=−1时,a−b+c<0,故②错误;③抛物线上点(−2,y1)关于对称轴x=1的对称点为(4,y1 ),在对称轴的右侧y随x的增大而减小,4>3,所以y1<y2,故③正确;正确的是①③,共2个,故选:C.由抛物线的对称轴x=1和a<0可判断b>0,由抛物线与x轴的一个交点在(2,0),(3,0)之间,可知另一交点位于(0,0)与(−1,0)之间,抛物线与y轴交于正半轴,c>0,由此判断结论①,然后根据对称轴及抛物线与x轴交点情况进行推理,求出当x=−1时,a−b+c<0,判断结论②;利用对称性先找到(−2,y1)关于对称轴x=1的对称点为(4,y1 ),再利用增减性判断.本题考查了二次函数图象与系数的关系,正确掌握二次函数图象的性质是解题的关键.13.【答案】x2−4【解析】解:(x+2)(x−2)=x2−4.故答案为:x2−4.平方差公式特点是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数,计算结果是相同项的平方减去相反项的平方.本题考查了平方差公式,正确运用平方差公式是解题的关键.14.【答案】4−√3【解析】解:原式=4−√3.故答案为4−√3.利用二次根式的除法法则进行计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.【答案】317【解析】解:∵袋子中共有17个小球,其中绿球有3个,∴摸出一个球是绿球的概率是3,17故答案为:3.17根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,.其中事件A出现m种结果,那么事件A的概率P(A)=mn16.【答案】y=−3x+5【解析】【分析】设一次函数的表达式为:y=kx+b,根据两直线平行求出k,利用待定系数法计算即可.本题考查的是两条直线的平行问题,若直线y1=k1x+b1与直线y2=k2x+b2平行,那么k1=k2.【解答】解:设一次函数的表达式为:y=kx+b,∵一次函数的图象与直线y=−3x平行,∴k=−3,∵一次函数经过点(1,2),∴−3+b=2,解得,b=5,则一次函数的表达式为y=−3x+5,故答案为y=−3x+5.17.【答案】92【解析】解:如图,连接CE,∵AD是等边△ABC的高∴∠BDA=90°∵△ABC,△ADE是等边三角形∴AB=AC,AD=AE,∠BAC=∠DAE=60°∴∠BAD=∠CAE,且AB=AC,AE=AD∴△ABD≌△ACE(SAS)∴∠ADB=∠AEC=90°,∵F为AC中点,∴EF=12AC=92故答案为:92由“SAS”可得△ABD≌△ACE,可得∠ADB=∠AEC=90°,由直角三角形的性质可求EF的长.本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形性质,证明∠AEC=90°是本题的关键.18.【答案】(1)5;(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.【解析】解:(1)AC=√32+42=5,故答案为5.(2)见答案.【分析】(1)利用勾股定理即可解决问题.(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.本题考查作图−复杂作图,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.【答案】(1)x≥−3(2)x≤2(3)见解析(4)−3≤x≤2【解析】解:(1)解不等式①,得x≥−3,(2)解不等式②,得:x≤2,(3)不等式①和②的解集在数轴上表示为:(4)原不等式组的解集为−3≤x≤2.故答案为:x≥−3;x≤2;−3≤x≤2.(1)根据不等式的性质求出即可;(2)根据不等式的性质求出即可;(3)把不等式的解集在数轴上表示出来即可;(4)根据数轴求出不等式组的解集即可.本题考查了解一元一次不等式组,在数轴上表示不等式组的解集,不等式组的整数解的应用,能根据找不等式组解集的规律找出不等式组的解集是解此题的关键.20.【答案】解:(1)54°;C级学生有:40−6−12−8=14(人),补全的条形统计图如图所示,(2)C;=72(分),(3)90×6+80×12+70×14+50×840答:抽取的这部分学生体育的平均成绩是72分.【解析】解:(1)本次抽查的学生有:12÷30%=40(人),=54°,∠α的度数是:360°×640C级学生有:40−6−12−8=14(人),补全的条形统计图如右图所示,故答案为:54°;(2)由统计图可得,抽取的这部分的学生的体育科目测试结果的中位数是在C级,故答案为:C;(3)见答案.【分析】(1)根据统计图中的数据可以计算出本次抽查的学生数,从而可以求得∠α的度数和C级的学生数,从而可以将条形统计图补充完整;(2)根据(1)中补充完整的条形统计图和中位数的定义可以解答本题;(3)根据题意和统计图中的数据可以计算出抽取的这部分学生体育的平均成绩.本题考查条形统计图、扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】解:(1)连接BD,∵四边形ABCD内接于⊙O,∴∠BCD+∠BAD=180°,∵∠BCD=148°,∴∠BAD=32°,∵AB为⊙O的直径,∴∠BDA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=58°,∴∠APD=∠ABD=58°;(2)连接AD,由(1)知∠BAD=32°,∵OA=OD,∴∠ADO=∠OAD=32°,∵DP切⊙O于A,∴OA⊥PA,∴∠PAO=90°,∴∠PAD=∠PAO+∠OAD=122°,∵∠PAD+∠ADO+∠APD=180°,∴∠APD=26°.【解析】(1)如图①,连接BD,根据圆内接四边形的性质得到∠BCD+∠BAD=180°,求得∠BAD=32°,根据圆周角定理得到∠BDA=90°,求得∠BAD+∠ABD=90°,于是得到结论;(2)由(1)知∠BAD=32°,根据等腰三角形的性质得到∠ADO=∠OAD=32°,根据切线的性质得到OA⊥PA,求得∠PAO=90°,根据三角形的内角和即可得到结论.本题考查了切线的性质,等腰三角形的性质,三角形的内角和,伊能静三角形的性质,正确的识别图形是解题的关键.22.【答案】解:如图,过点C作点CH⊥AB于H.∵∠CAB=45°,∴AH=CH,设CH=x,则AH=x,∵∠CBA=30°,∴BH=√3CH=√3x,由题意知:AB=ED=50,∴x+√3x=50,≈18.3.18.3+1=19.3,解得:x=502.73答:计算得到的无人机的高约为19.3m.【解析】如图,过点C作点CH⊥AB于H.设AH=CH=x,根据AB=50,构建方程即可解决问题.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.【答案】(1)49,40,20;(2)y与x的函数关系式:y=50−0.1x,根据题意,50−0.1x≥0,解得x≤500.故x的取值范围为:0≤x≤500,(3)当y=5时,50−0.1x=5,解得x=450.因此当汽车行驶450km就会报警,而往返路程为:230×2=460km.∵450<460,∴汽车会报警.【解析】解:(1)根据题意,当x=10时,y=50−0.1×10=49;当x=100时,y= 50−0.1×100=40;当x=300时,y=50−0.1×300=20;故答案为:49,40,20;(2)见答案;(3)见答案.【分析】本题主要考查了一次函数的实际应用,熟练一次函数的应用以及将一次函数与实际问题联系起来是解答此题的关键.(1)根据题意,分别把行驶10,100,300km的耗油量算出来,然后在用50减去耗油量,即可得到剩余油量;(2)剩余油量=50−耗油量;当x应当大于等于0,但行驶的路程小于50L所行驶的路程;(3)先算出45L所行驶的总路程,然后算出往反路程,进行比较.24.【答案】解:(1)过点D作DH⊥x轴于H,如图①所示:∵点O(0,0),点A(2,0),点B(0,2),∴OA=OB=2,∴正方形AOBC的边长为2,∴AC=2,AB⊥OC,PC=PA,∵PD=2PC,PF=2PA,∴PD=PF,∴平行四边形PDEF是正方形,∵四边形AOBC是正方形,点P为正方形AOBC对角线的交点,∴∠COA=45°,OP=PC=PB=PA,OC=√OA2+AC2=√22+22=2√2,∴OP=PC=PB=PA=√2,∵PD=2PC,∴OD=OP+PD=3PC=3√2,∵∠COA=45°,DH⊥x,∴△OHD是等腰直角三角形,∴OH=DH=√22OD=√22×3√2=3,∴点D的坐标为(3,3);(2)①过点B作PB⊥l,则点D落在直线l上,如图②所示:当α=30°时,在Rt△PBD′中,∵PD′=2PB,∴∠BD′P=30°,过D′作D′K⊥BC于K,∵∠PBD′=90°,∠PBC=45°,∴∠D′BK=45°,∴△BD′K是等腰直角三角形,∴BK=D′K=√22BD′,由勾股定理得:BD′=√PD′2−BP2=√(2√2)2−(√2)2=√6,∴BK=D′K=√22BD′=√3,∴点D′的坐标为(√3,2+√3);当α=150°时,在Rt△PBD′中,∵PD′=2PB,∴∠BD′P=30°,过D′作D′K⊥BC于K,∵∠PBD′=90°,∠PBC=45°,∴∠D′BK=45°,∴△BD′K是等腰直角三角形,∴BK=D′K=√22BD′,由勾股定理得:BD′=√PD′2−BP2=√(2√2)2−(√2)2=√6,∴BK=D′K=√22BD′=√3,∴点D′的坐标为(−√3,2−√3);综上所述,在旋转过程中,当∠PBD=90°时,点D′的坐标为(√3,2+√3)或(−√3,2−√3);②连接PE′,如图③所示:由勾股定理得:PE′=√2PD′=4,当PE′与PB重合时,BE′为最小值=PE′−PB=4−√2,当PE′与PA重合时,BE′为最大值=PE′+BPP=4+√2,∴BE′的取值范围是4−√2≤BE′≤4+√2.【解析】(1)过点D作DH⊥x轴于H,由题意得出OA=OB=2,AC=2,由正方形的性质得出∠COA=45°,OP=PC=PB=PA,由勾股定理得出OC=√OA2+AC2=2√2,得出OP=PC=PB=PA=√2,求出OD=OP+PD=3PC=3√2,证出△OHD是等腰直角三角形,得出OH=DH=3,即可得出答案;(2)①过点B作PB⊥l,则点D落在直线l上,当α=30°时,在Rt△PBD′中,证出∠BD′P=30°,过D′作D′K⊥BC于K,证出△BD′K是等腰直角三角形,得出BK=D′K=√22BD′,由勾股定理得:BD′=√6,得出BK=D′K=√22BD′=√3,即可得出答案;当α=150°时,在Rt△PBD′中,证出∠BD′P=30°,过D′作D′K⊥BC于K,证出△BD′K是等腰直角三角形,得出BK=D′K=√22BD′,由勾股定理得:BD′=√6,得出BK=D′K=√22BD′=√3,即可得出答案;②连接PE′,由勾股定理得:PE′=√2PD′=4,当PE′与PB重合时,BE′为最小值=PE′−PB=4−√2,当PE′与PA重合时,BE′为最大值=PE′+BPP=4+√2,即可得出答案.本题是四边形综合题目,考查了正方形的性质、等腰直角三角形的判定与性质、勾股定理、旋转变换的性质、直角三角形的性质、坐标与图形性质等知识;本题综合性强,通过作辅助线构造直角三角形是解题的关键.25.【答案】解:(1)将点(1,1)代入y=−12x2+mx+1,∴m=12;(2)C2的顶点为(−m,m22−1),∵顶点在直线y=1,∴m22−1=1,∴m=±2,∵m>0,∴m=2;(3)∵y=−12x2+mx+1的顶点为(m,m22+1),y=−12x2−mx−1的顶点为(−m,m22−1),当0<m≤2时,32≤y0=m22+1≤9,∴1≤m≤2;当2<m≤4时,当x=2时,y0=2m−1,∴32≤y0=2m−1≤9,∴2<m≤4;当m>4时,当x=−4时,y0=−9+4m,∴32≤y0=−9+4m≤9,∴4≤m≤92;综上所述:1≤m≤92;【解析】本题考查二次函数的图象及性质;掌握函数图象的特点,熟练在给定区间内求函数的最值,数形结合解题是关键.(1)将点(1,1)代入y=−12x2+mx+1,即可求解;(2)C2的顶点为(−m,m22−1),m22−1=1;(3)y=−12x2+mx+1的顶点为(m,m22+1),y=−12x2−mx−1的顶点为(−m,m22−1),分三种情况讨论:当0<m≤2时,32≤y0=m22+1≤9,当2<m≤4时,32≤y0=2m−1≤9,当m>4时,32≤y0=−9+4m≤9;。

(晨鸟)2019年天津市河北区中考数学一模试卷

(晨鸟)2019年天津市河北区中考数学一模试卷

2019年天津市河北区中考数学一模试卷一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算(﹣5)﹣3的结果等于()A.﹣8B.﹣2C.2D.82.(3分)sin45°的值等于()A.B.C.D.13.(3分)下列表示天气的图形中,是中心对称图形的是()A.B.C.D.4.(3分)据国家统计局全国农村贫困监测调查,按现行国家农村贫困标准测算,2018年末,全国农村贫困人口1660万人,比上年末减少13860000人.将13860000用科学记数法表示为()A.0.1386×108B.1.386×107C.13.86×106D.1386×1045.(3分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.6.(3分)估计2的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.(3分)计算+1的结果为()A.B.C.D.8.(3分)若关于x,y的方程组的解是,则mn的值为()A.﹣2B.﹣1C.1D.29.(3分)已知在反比例函数y=上有两个点A(x A,y A),B(x B,y B),若x A<0<x B,则下列结论正确的是()A.y A+y B<0B.y A+y B>0C.y A<y B D.y A>y B10.(3分)某同学记录了一个秋千离地面的高度h(m)与摆动时间t(s)之间的关系,如图所示,则这个秋千摆动第一个来回所需的时间为()A.0.7s B.1.4s C.2.8s D.5.4s11.(3分)如图,已知点E是矩形ABCD的对角线AC上的一个动点,正方形EFGH的顶点G、H都在边AD上,若AB=2,BC=5,则tan∠AFE的值()A.等于B.等于C.等于D.不确定,随点E位置的变化而变化12.(3分)如图,一段抛物线y=﹣x 2+9(﹣3≤x≤3)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象.垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),且x1,x2,x3均为正数,设t=x1+x2+x3,则t的最大值是()A.15B.18C.21D.24二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)计算a 4(a3)2的结果等于.14.(3分)分解因式:ab﹣ac=.15.(3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率是.16.(3分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为.17.(3分)若m为任意实数,则关于x的一元二次方程(x﹣3)(x﹣2)m 2=m+1实数根的个数为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A、B、O、P均在格点上.(I)OB的长等于;(II)点M在射线OA上,点N在射线OB上,当△PMN的周长最小时,请在如图所示的网格中,用无刻度的直尺,画出△PMN,并简要说明点M,N的位置是如何找到的(不要求证明).三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程. 19.(8分)本小题8分解不等式组请结合题意填空,完成本题的解答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(8分)某学校组织全校1500名学生进行经典诗词诵背活动,为了解本次系列活动的效果,学校团委在活动开展一个月之后,随机抽取部分学生调查了“一周诗词诵背数量”,并根据调查结果绘制成如下的统计图1和图2.请根据相关信息,解答下列问题:(I)图2中的m值为;(II)求统计的这组数据的平均数、众数和中位数;(III)估计此时该校学生一周诗词诵背6首(含6首)以上的人数.21.(10分)已知△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H,连接AD、CD,AD与BC交于点P.(I)如图1,求证:∠ACD=∠APB;(II)如图2,若AB过圆心,∠ABC═30°,⊙O的半径长为3,求AP的长.22.(10分)如图,某同学要测量海河某处的宽度AB,该同学使用无人机在C处测得A,B 两点的俯角分别为45°和30°,若无人机此时离地面的高度CH为1000米,且点A,B,H在同一水平直线上,求这处海河的宽度AB(结果取整数).参考数据:≈1.414,≈1.732.23.(10分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.(I )请问1辆大货车和1辆小货车一次可以分别运货多少吨;(II )目前有46.4吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?24.(10分)如图,在平面直角坐标系xOy 第一象限中有正方形OABC ,A (4,0),点P (m ,0)是x 轴上一动点(0<m <4),将△ABP 沿直线BP 翻折后,点A 落在点E 处,在OC 上有一点M (0,t ),使得将△OMP 沿直线MP 翻折后,点O 落在直线PE 上的点F 处,直线PE 交OC 于点N ,连接BN .(I )求证:BP ⊥PM ;(II )求t 与m 的函数关系式,并求出t 的最大值;(III )当△ABP ≌△CBN 时,直接写出m 的值.25.(10分)如图,抛物线y =x 2+bx+c 与y 轴交于点A (0,2),对称轴为直线x =﹣2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6.(I )求此抛物线的解析式;(II )已知在x 轴上存在一点D ,使得△ABD 的周长最小,求点D 的坐标;(III )若过点C 的直线l 将△ABC 的面积分成2:3两部分,试求直线l 的解析式.2019年天津市河北区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)计算(﹣5)﹣3的结果等于()A.﹣8B.﹣2C.2D.8【分析】将减法转化为加法,再根据加法法则计算可得.【解答】解:(﹣5)﹣3=(﹣5)+(﹣3)=﹣8,故选:A.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.(3分)sin45°的值等于()A.B.C.D.1【分析】根据特殊角度的三角函数值解答即可.【解答】解:sin45°=.故选:B.【点评】此题比较简单,只要熟记特殊角度的三角函数值即可.3.(3分)下列表示天气的图形中,是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)据国家统计局全国农村贫困监测调查,按现行国家农村贫困标准测算,2018年末,全国农村贫困人口1660万人,比上年末减少13860000人.将13860000用科学记数法表示为()A.0.1386×108B.1.386×107C.13.86×106D.1386×104【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:将13 860 000用科学记数法表示为: 1.386×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图是由5个相同的小正方体组成的立体图形,它的俯视图是()A.B.C.D.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得:有3列小正方形第1列有2个正方形,第2列有1个正方形,第3列有1个正方形.故选:A.【点评】本题考查了简单组合体的三视图,解题时不但要具有丰富的数学知识,而且还应有一定的生活经验.6.(3分)估计2的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【分析】根据的取值范围进行估计解答.【解答】解:∵2.6<<2.7,∴5<<6,【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.7.(3分)计算+1的结果为()A.B.C.D.【分析】根据分式的运算法则即可求出答案【解答】解:原式==,故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.(3分)若关于x,y的方程组的解是,则mn的值为()A.﹣2B.﹣1C.1D.2【分析】根据二元一次方程组的解的定义,把未知数的值代入方程组求出m、n的值,根据有理数的乘法法则进行计算即可.【解答】解:把代入方程组中,可得:,解得:m=﹣1,n=2,所以mn=﹣2,故选:A.【点评】本题考查的是二元一次方程组的解的定义和有理数的乘方,掌握能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解是解题的关键,注意有理数的乘法法则的正确运用.9.(3分)已知在反比例函数y=上有两个点A(x A,y A),B(x B,y B),若x A<0<x B,则下列结论正确的是()A.y A+y B<0B.y A+y B>0C.y A<y B D.y A>y B【分析】根据反比例函数图象上点的坐标特征解答.【解答】解:∵反比例函数y=﹣中的k=﹣1<0,∴反比例函数y=﹣的图象经过第二、四象限.∵x A<0<x B,∴点A(x A,y A)在第二象限,则y A>0,点B(x B,y B)在第四象限,则y B<0,∴y A>y B,故选:D.【点评】考查了反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象与系数的关系.10.(3分)某同学记录了一个秋千离地面的高度h(m)与摆动时间t(s)之间的关系,如图所示,则这个秋千摆动第一个来回所需的时间为()A.0.7s B.1.4s C.2.8s D.5.4s【分析】结合荡秋千的经验,秋千先从一端的最高点下落到最低点,再荡到另一端的最高点,再返回到最低点,最后回到开始的一端,符合这一过程的即是0~2.8s,由此即可得出结论.【解答】解:观察函数图象,可知:秋千摆动第一个来回需 2.8s.故选:C.【点评】本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答.11.(3分)如图,已知点E是矩形ABCD的对角线AC上的一个动点,正方形EFGH的顶点G、H都在边AD上,若AB=2,BC=5,则tan∠AFE的值()A.等于B.等于C.等于D.不确定,随点E位置的变化而变化【分析】由△AEH∽△ACD,找到EH和AH关系,从而得到FG和AG关系,根据tan ∠AFE=tan∠FAG求解.【解答】解:∵EH∥CD,∴△AEH∽△ACD.∴.设EH=2x,则AH=5x,∴HG=GF=2x.∴tan∠AFE=tan∠FAG=.故选:B.【点评】本题主要考查了正方形、矩形的性质、解直角三角形,解题的关键是转化角进行求解.12.(3分)如图,一段抛物线y=﹣x 2+9(﹣3≤x≤3)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180°得到C2,顶点为D2;C1与C2组成一个新的图象.垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),且x1,x2,x3均为正数,设t=x1+x2+x3,则t的最大值是()A.15B.18C.21D.24【分析】先求出旋转后函数的顶点和对称轴,再由垂直于y轴的直线l与新图象相交,所以交点的横坐标关于对称抽对称,得到x1+x2=12,再结合0≤x3≤6即可求t的最大值.【解答】解:由已知可得:A1(3,0),D1(0,9),将C1绕点A1旋转180°后,得到:D2(6,﹣9),新函数的对称轴为x=6,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),∴P1(x1,y1),P2(x2,y2)两点关于对称轴x=6对称,∴x1+x2=12,∵垂直于y轴的直线l与线段D1D2交于点P3(x3,y3),∴0≤x3≤6,∴t=x1+x2+x3=12+x3,当x3=6时,t有最大值18.故选:B.【点评】本题考查二次函数图象的旋转.解题中找到旋转后的对称轴和顶点坐标是解题的关键,能够根据点的对称性将三个变量的关系转化为一个变量是解题的突破点.二、填空题:本大题共6小题,每小题3分,共18分.13.(3分)计算a 4(a3)2的结果等于a10.【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:原式=a4?a6=a10.故答案为:a10.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.14.(3分)分解因式:ab﹣ac=a(b﹣c).【分析】直接提取公因式a,进而分解因式即可.【解答】解:ab﹣ac=a(b﹣c).故答案为:a(b﹣c).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.(3分)在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“山”的概率是.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵在“绿水青山就是金山银山”这10个字中,“山”字有3个,∴这句话中任选一个汉字,这个字是“山”的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.16.(3分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为9.【分析】由正多边形的每一个外角是,代入即可.【解答】解:∵正多边形外角和是360°,每一个外角是,又因为每个外角等于40°,∴n=9,故答案为9.【点评】本题考查正多边形的外角都相等,外角和360°.牢记性质和公式是解题的关键.17.(3分)若m为任意实数,则关于x的一元二次方程(x﹣3)(x﹣2)m 2=m+1实数根的个数为两个不相等的实数根.【分析】将方程整理成一般式,再得出判别式△=(﹣5)2﹣4×1×(﹣m2﹣m+5)=(m+1)2+4>0,据此可得答案.【解答】解:方程整理为一般式为x2﹣5x﹣m2﹣m+5=0,∵△=(﹣5)2﹣4×1×(﹣m2﹣m+5)=m2+2m+5=(m+1)2+4>0,∴这个方程有两个不相等的实数根,故答案为:两个不相等的实数根.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.18.(3分)如图,在每个小正方形的边长为1的网格中,点A、B、O、P均在格点上.(I)OB的长等于;(II)点M在射线OA上,点N在射线OB上,当△PMN的周长最小时,请在如图所示的网格中,用无刻度的直尺,画出△PMN,并简要说明点M,N的位置是如何找到的(不要求证明)作点P关于OA,OB的对称点,连接两个对称点交OB于N即可.【分析】(1)利用勾股定理即可解决问题;(2)作点P关于OA,OB的对称点,进而解答即可.【解答】解:(1)OB=,(2)如图所示:作点P关于OA,OB的对称点,连接两个对称点交OB于N,交OA于M即可;故答案为:;作点P关于OA,OB的对称点,连接两个对称点交OB于N即可.【点评】本题考查作图﹣应用与设计、勾股定理等知识,解题的关键是利用勾股定理和对称解答.三、解答题:本大题共7小题,共66分,解答应写出文字说明,演算步骤或证明过程. 19.(8分)本小题8分解不等式组请结合题意填空,完成本题的解答.(I)解不等式①,得x≤3;(II)解不等式②,得x>﹣1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为﹣1<x≤3.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式组的解集表示在数轴上即可.【解答】解:(I)解不等式①,得x≤3;(II)解不等式②,得x>﹣1;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为:﹣1<x≤3.故答案为:(I)x≤3;(Ⅱ)x>﹣1;(Ⅳ)﹣1<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了在数轴上表示不等式组的解集.20.(8分)某学校组织全校1500名学生进行经典诗词诵背活动,为了解本次系列活动的效果,学校团委在活动开展一个月之后,随机抽取部分学生调查了“一周诗词诵背数量”,并根据调查结果绘制成如下的统计图1和图2.请根据相关信息,解答下列问题:(I)图2中的m值为25;(II)求统计的这组数据的平均数、众数和中位数;(III)估计此时该校学生一周诗词诵背6首(含6首)以上的人数.【分析】(Ⅰ)根据统计图中的数据可以求得m的值;(Ⅱ)根据条形统计图中的数据可以求得平均数、众数和中位数;(Ⅲ)根据统计图中的时,可以计算出该校学生一周诗词诵背6首(含6首)以上的人数.【解答】解:(Ⅰ)m%==25%,则m=25,故答案为:25;(Ⅱ)平均数是:=5.2,众数是4,中位数是5;(Ⅲ)1500×=600(人),答:该校学生一周诗词诵背6首(含6首)以上的有600人.【点评】本题考查条形统计图、扇形统计图、平均数、众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.(10分)已知△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H,连接AD、CD,AD与BC交于点P.(I)如图1,求证:∠ACD=∠APB;(II)如图2,若AB过圆心,∠ABC═30°,⊙O的半径长为3,求AP的长.【分析】(I)由垂径定理得出,由圆周角定理得出∠DAC=∠BCD,再由三角形的外角性质,即可得出结论;(II)由圆周角定理得出∠ACB=90°,求出∠BAC=60°,AC=AB=3,由圆周角定理得出∠BAD=∠CAD=30°,在Rt△ACP中,∠CAP=30°,得出AP=2CP,AC=CP=3,求出CP=,即可得出AP的长.【解答】(I)证明:∵OD⊥BC,∴,∴∠DAC=∠BCD,∵∠ACD=∠ACB+∠BCD,∠APB=∠ACB+∠DAC,∴∠ACD=∠APB;(II)解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠ABC=30°,AB=2OB=6,∴∠BAC=60°,AC=AB=3,∵OD⊥BC,∴,∴∠BAD=∠CAD=30°,在Rt△ACP中,∠CAP=30°,∴AP=2CP,AC=CP=3,∴CP=,∴AP=2.【点评】本题考查了圆周角定理、垂径定理、直角三角形的性质、勾股定理等知识;熟练掌握垂径定理和圆周角定理是解决问题的关键.22.(10分)如图,某同学要测量海河某处的宽度AB,该同学使用无人机在C处测得A,B 两点的俯角分别为45°和30°,若无人机此时离地面的高度CH为1000米,且点A,B,H在同一水平直线上,求这处海河的宽度AB(结果取整数).参考数据:≈1.414,≈1.732.【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=,∴HB=(米).∴AB=HB﹣HA=1000﹣1000=1000(﹣1)米.【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含CH的式子表示出AH和BH.23.(10分)某货运公司有大小两种货车,3辆大货车与4辆小货车一次可以运货29吨,2辆大货车与6辆小货车一次可以运货31吨.(I)请问1辆大货车和1辆小货车一次可以分别运货多少吨;(II)目前有46.4吨货物需要运输,货运公司拟安排大小货车共10辆,全部货物一次运完,其中每辆大货车一次运货花费500元,每辆小货车一次运货花费300元,请问货运公司应如何安排车辆最节省费用?【分析】(I)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;(II)设货运公司安排大货车m辆,则安排小货车(10﹣m)辆.根据10辆货车需要运输46.4吨货物列出不等式.【解答】解:(I)设1辆大货车和1辆小货车一次可以分别运货x吨和y吨,根据题意可得:,解得:,答:1辆大货车和1辆小货车一次可以分别运货5吨和3.5吨;(II)设货运公司安排大货车m辆,则安排小货车(10﹣m)辆,根据题意可得:5m+3.5(10﹣m)≥46.4,解得:m≥7.6,因为m是正整数,且m≤10,所以m=8或9或10.所以10﹣m=2或1或0.方案一:所需费用=500×8+300×2=4600(元)方案二:所需费用=500×9+300×1=4800(元)方案三:所需费用=500×10+300×0=5000(元)因为4600<4800<5000.所以货运公司安排大货车8辆,则安排小货车2辆,最节省费用.【点评】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.24.(10分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC 上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【分析】(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,再由平角即可得出结论;(Ⅱ)先表示出AP=OA﹣OP=4﹣m,进而得出OM=t,再判断出△MOP∽△PAB,进而得出t=﹣(m﹣2)2+1即可得出结论;(Ⅲ)先判断出∠CBN=∠ABP,BP=BN,再判断出NE=PE,∠NBE=∠PBE,进而得出∠CBE=∠ABE=45°,再求出PN=m,进而得出MN=ON=OM=m﹣t,再判断出△OMP∽△NMG,得出=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,即可得出结论.【解答】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠P AB=90°,∴△MOP∽△P AB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∵∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.【点评】此题是四边形综合题,主要考查了正方形的性质,折叠的性质,全等三角形的判定和性质,相似三角形的判定和性质,周长辅助线构造出相似三角形是解本题的关键.25.(10分)如图,抛物线y =x 2+bx+c 与y 轴交于点A (0,2),对称轴为直线x =﹣2,平行于x 轴的直线与抛物线交于B 、C 两点,点B 在对称轴左侧,BC =6.(I )求此抛物线的解析式;(II )已知在x 轴上存在一点D ,使得△ABD 的周长最小,求点D 的坐标;(III )若过点C 的直线l 将△ABC 的面积分成2:3两部分,试求直线l 的解析式.【分析】(I )由抛物线过点A (0,2)及对称轴为直线x =﹣2,可得出关于b ,c 的方程,解之即可得出b ,c 的值,进而可得出抛物线的解析式;(II )由抛物线的对称轴及线段BC 的长度可得出点B ,C 的坐标,作点A 关于x 轴的对称点A ′,连接A ′B 交x 轴于点D ,此时△ABD 的周长最小,由点A 的坐标可得出点A ′的坐标,由点A ′,B 的坐标利用待定系数法可求出直线A ′B 的解析式,再利用一次函数图象上点的坐标特征可得出点D 的坐标;(III )由点A ,B 的坐标可得出AB 的长度,设直线l 与线段AB 交于点P ,由过点C 的直线l 将△ABC 的面积分成2:3两部分可得出AP 的长度,过点P 作PE ∥y 轴,过点A 作AE ∥x 轴,交直线PE 于点E ,则△APE 为等腰直角三角形,由AP 的长度结合等腰直角三角形的性质可得出AE ,PE 的长度,进而可得出点P 的坐标,再由点C ,P 的坐标利用待定系数法可求出直线l 的解析式.【解答】解:(I )依题意,得:,解得:,∴此抛物线的解析式为y =x 2+4x+2.(II )∵抛物线的对称轴为直线x =﹣1,BC =6,且点B ,C 关于直线x =﹣2对称,∴点B的横坐标为﹣5,点C的横坐标为1,∴点B的坐标(﹣5,7),点C的坐标为(1,7).作点A关于x轴的对称点A′,连接A′B交x轴于点D,此时△ABD的周长最小,如图1所示.∵点A的坐标为(0,2),∴点A′的坐标为(0,﹣2).设直线A′B的解析式为y=kx+a(k≠0),将点A′(0,﹣2),B(﹣5,7)代入y=kx+a,得:,解得:,∴直线A′B的解析式为y=﹣x﹣2.当y=0时,﹣x﹣2=0,解得:x=﹣,∴点D的坐标为(﹣,0).(III)∵点A的坐标为(0,2),点B的坐标为(﹣5,7),∴AB=5.设直线l与线段AB交于点P,则AP=3或2.过点P作PE∥y轴,过点A作AE∥x轴,交直线PE于点E,如图2所示.∵点A的坐标为(0,2),点B的坐标为(﹣5,7),∴直线AB的解析式为y=﹣x+2,∴∠P AE=45°,∴△APE为等腰直角三角形,∴AE=PE=2或3,∴点P的坐标为(﹣2,4)或(﹣3,5).当点P的坐标为(﹣2,4)时,直线l的解析式为y=x+6;当点P的坐标为(﹣3,5)时,直线l的解析式为y=x+.综上所述:直线l的解析式为y=x+6或y=x+.【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及等腰直角三角形,解题的关键是:(I)利用二次函数图象上点的坐标特征及二次函数的性质,求出b,c的值;(II)利用两点之间线段最短,找出点D的位置;(III)利用等腰直角三角形的性质,求出点P的坐标.。

天津市河北区2019年中考数学模拟试卷(含解析)

天津市河北区2019年中考数学模拟试卷(含解析)

2019年天津市河北区中考数学模拟试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.4.(3分)二次函数y=x2+4x﹣3的对称轴为()A.x=3 B.x=﹣3 C.x=﹣2 D.x=75.(3分)如图,点A、B、C都在⊙O上,若∠AOB=72°,则∠ACB的度数为()A.18°B.30°C.36°D.72°6.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为7D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定7.(3分)已知x=2是一元二次方程x2+x+m=0的一个根,则方程的另一个根是()A.﹣3 B.﹣6 C.0 D.﹣18.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE 交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:19.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.410.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.511.(3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C (4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(本大题共6小断,每小题3分,共18分)13.(3分)tan30°=.14.(3分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.15.(3分)已知扇形的弧长为2π,圆心角为60°,则它的半径为.16.(3分)二次函数y=x2﹣2x﹣1的图象的顶点坐标是.17.(3分)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为.18.(3分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上,BC与网格交于点P.(Ⅰ)△ABC的面积等于;(Ⅱ)在AC边上有一点Q,当PQ平分△ABC的面积时,请在如图所示的网格中,用无刻度的直尺,画出PQ,并简要说明点Q的位置是如何找到的(不要求证明).三、解答题(本大题共6小愿,共6分,解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一座大桥的两端位于河的A、B两点,某同学为了测量A、B两点之间的河宽,在垂直于大桥AB的直线型道路l上测得了如下的数据:∠BDA=76.1°,∠BCA =68.2°,CD=42.8米.求大桥AB的长(精确到1米)参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.520.(10分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.21.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a=,b=,c=;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.22.(12分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠A.(Ⅰ)求∠D的度数;(Ⅱ)若⊙O的半径为m,求BD的长.23.(12分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合)(Ⅰ)如图1,若EF∥BC,求证:;(Ⅱ)如图2,若EF不与BC平行,(I)中的结论是否仍然成立?请说明理由.24.(12分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,点A在y轴上,抛物线交x轴于C、D两点,已知C(﹣3,0)(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,请求出点M的坐标及这个最大值.2019年天津市河北区中考数学模拟试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有一项是符合题目要求的)1.(3分)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.(3分)由五个相同的立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看第一层是三个小正方形,第二层左边一个小正方形,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.3.(3分)下列几何体中,主视图与俯视图不相同的是()A.B.C.D.【分析】根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形进行分析.【解答】解:四棱锥的主视图与俯视图不相同.故选:C.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.4.(3分)二次函数y=x2+4x﹣3的对称轴为()A.x=3 B.x=﹣3 C.x=﹣2 D.x=7【分析】把二次函数化成顶点式即可求得答案.【解答】解:∵二次函数y=x2+4x﹣3,∴y=(x+2)2﹣7,∴二次函数y=x2+4x﹣3的图象的对称轴为:x=﹣2,故选:C.【点评】本题考查了二次函数的性质.抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k),对称轴为直线x=h.5.(3分)如图,点A、B、C都在⊙O上,若∠AOB=72°,则∠ACB的度数为()A.18°B.30°C.36°D.72°【分析】根据圆周角定理,由∠AOB=72°,即可推出结果.【解答】解:∵∠AOB=72°,∴∠ACB=36°.故选:C.【点评】本题主要考查圆周角定理,关键在于运用数形结合的思想进行认真分析.6.(3分)下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是必然事件B.天气预报“明天降水概率50%”,是指明天有一半的时间会下雨C.数据6,6,7,7,8的中位数与众数均为7D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,则甲的成绩更稳定【分析】根据必然事件的概念、可能性的意义、众数和中位数及方差的定义逐一判断即可得.【解答】解:A.“打开电视机,正在播放《新闻联播》”是随机事件,此选项错误;B.天气预报“明天降水概率50%”,是指明天有一半的可能性会下雨,此选项错误;C.数据6,6,7,7,8的中位数是7,众数是6和7,此选项错误;D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.3,S乙2=0.4,由甲的方差小值甲的成绩更稳定,此选项正确;故选:D.【点评】本题主要考查概率的意义,解题的关键是掌握必然事件的概念、可能性的意义、众数和中位数及方差的定义与意义.7.(3分)已知x=2是一元二次方程x2+x+m=0的一个根,则方程的另一个根是()A.﹣3 B.﹣6 C.0 D.﹣1【分析】设方程的另一根为a,由根与系数的关系可得到a的方程,可求得m的值,即可求得方程的另一根.【解答】解:设方程的另一根为a,∵x=2是一元二次方程x2+x+m=0的一个根,∴6+m=0,解得m=﹣6,则2a=﹣6,解得a=﹣3.故选:A.【点评】本题主要考查一元二次方程根与系数的关系,一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系为:x1+x2=﹣,x1•x2=.8.(3分)如图,四边形ABCD为平行四边形,E、F为CD边的两个三等分点,连接AF、BE 交于点G,则S△EFG:S△ABG=()A.1:3 B.3:1 C.1:9 D.9:1【分析】利用相似三角形的性质面积比等于相似比的平方即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∵DE=EF=FC,∴EF:AB=1:3,∴△EFG∽△BAG,∴=()2=,故选:C.【点评】本题考查平行四边形的性质、相似三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.(3分)如图,点C在反比例函数y=(x>0)的图象上,过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,则k的值为()A.1 B.2 C.3 D.4【分析】根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据△AOB的面积为1,即可求得k的值.【解答】解:设点A的坐标为(a,0),∵过点C的直线与x轴,y轴分别交于点A,B,且AB=BC,△AOB的面积为1,∴点C(﹣a,),∴点B的坐标为(0,),∴=1,解得,k=4,故选:D.【点评】本题考查反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.10.(3分)关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,则m的最大整数解是()A.2 B.3 C.4 D.5【分析】根据方程有实数根得出△≥0且m﹣5≠0,求出不等式的解集即可.【解答】解:∵关于x的一元二次方程(m﹣5)x2+2x+2=0有实根,∴△=22﹣4(m﹣5)×2≥0且m﹣5≠0,解得:m≤5.5且m≠5,m的最大整数解为4,故选:C.【点评】本题考查了根的判别式和解一元一次不等式,能得出关于m的不等式是解此题的关键.11.(3分)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.2【分析】图中三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【解答】解:过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,AD=BD=,∴△ABC的面积为=,S扇形BAC==π,∴莱洛三角形的面积S=3×π﹣2×=2π﹣2,故选:D.【点评】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.12.(3分)如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C (4,y1),若点D(x2,y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A.1 B.2 C.3 D.4【分析】利用交点式写出抛物线解析式为y=ax2﹣2ax﹣3a,配成顶点式得y=a(x﹣1)2﹣4a,则可对①进行判断;计算x=4时,y=a•5•1=5a,则根据二次函数的性质可对②进行判断;利用对称性和二次函数的性质可对③进行判断;由于b=﹣2a,c=﹣3a,则方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,然后解方程可对④进行判断.【解答】解:抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∵y=a(x﹣1)2﹣4a,∴当x=1时,二次函数有最小值﹣4a,所以①正确;当x=4时,y=a•5•1=5a,∴当﹣1≤x2≤4,则﹣4a≤y2≤5a,所以②错误;∵点C(4,5a)关于直线x=1的对称点为(﹣2,5a),∴当y2>y1,则x2>4或x<﹣2,所以③错误;∵b=﹣2a,c=﹣3a,∴方程cx2+bx+a=0化为﹣3ax2﹣2ax+a=0,整理得3x2+2x﹣1=0,解得x1=﹣1,x2=,所以④正确.故选:B.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.二、填空题(本大题共6小断,每小题3分,共18分)13.(3分)tan30°=.【分析】根据特殊角的三角函数值即可求解.【解答】解:tan30°=.故答案是:.【点评】本题主要考查了特殊角的三角函数值,正确对特殊值的记忆是解题的关键.14.(3分)已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是k<3 .【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.【点评】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(3分)已知扇形的弧长为2π,圆心角为60°,则它的半径为 6 .【分析】根据弧长公式直接解答即可.【解答】解:设半径为r,2,解得:r=6,故答案为:6【点评】此题考查弧长公式,关键是根据弧长公式解答.16.(3分)二次函数y=x2﹣2x﹣1的图象的顶点坐标是(1,﹣2).【分析】利用配方法将一般式转化为顶点式,可求顶点坐标.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2).故答案为:(1,﹣2).【点评】本题考查了抛物线的顶点式性质.抛物线的顶点式y=a(x﹣h)2+k,顶点坐标为(h,k).17.(3分)如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为15°.【分析】先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.【解答】解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°﹣∠BAD)=15°,故答案为:15°.【点评】此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.18.(3分)如图,在每个小正方形的边长为1的网格中,点A、B、C均在格点上,BC与网格交于点P.(Ⅰ)△ABC的面积等于9 ;(Ⅱ)在AC边上有一点Q,当PQ平分△ABC的面积时,请在如图所示的网格中,用无刻度的直尺,画出PQ,并简要说明点Q的位置是如何找到的(不要求证明)选取BC中点D,选取点E使AE∥BC,连接AE,再取AE中点F,连接DF,交AC于点Q,连接PQ即为所求.【分析】(Ⅰ)利用割补法求解可得;(Ⅱ)选取BC中点D,选取点E使AE∥BC,连接AE,再取AE中点F,连接DF,交AC 于点Q,连接PQ,即可得.【解答】解:(Ⅰ)△ABC的面积等于5×4﹣×1×4﹣×2×4﹣×2×5=9,故答案为:9;(Ⅱ)如图,选取BC中点D,选取点E使AE∥BC,连接AE,再取AE中点F,连接DF,交AC于点Q,连接PQ即为所求.理由:连接AD交PQ于O.∵BD=CD,∴S△ABD=S△ADC,∵PA∥DF,∴S△APQ=S△APD,∴S△AOQ=S△POD,∴S四边形ABPQ=S△PCQ,∴PQ即为所求.故答案为:选取BC中点D,选取点E使AE∥BC,连接AE,再取AE中点F,连接DF,交AC于点Q,连接PQ即为所求.【点评】本题主要考查作图﹣复杂作图,解题的关键是学会利用平行线的性质,利用等高模型解决面积问题,属于中考常考题型.三、解答题(本大题共6小愿,共6分,解答应写出文字说明、演算步骤或推理过程)19.(10分)如图,一座大桥的两端位于河的A、B两点,某同学为了测量A、B两点之间的河宽,在垂直于大桥AB的直线型道路l上测得了如下的数据:∠BDA=76.1°,∠BCA =68.2°,CD=42.8米.求大桥AB的长(精确到1米)参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0,sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5【分析】设AD=x米,则AC=(x+42.8)米.在Rt△ABC中,根据三角函数得到AB=2.5(x+42.8),在Rt△ABD中,根据三角函数得到AB=4x,依此得到关于x的方程,进一步即可求解.【解答】解:设AD=x米,则AC=(x+42.8)米.在Rt△ABC中,tan∠BCA=,∴AB=AC•tan∠BCA=2.5(x+42.8).在Rt△ABD中,tan∠BDA=,∴AB=AD•tan∠BDA=4x.∴2.5(x+42.8)=4x,解得x≈71.33,∴AB=4x=4×71.33≈285,答:AB的长约为285米.【点评】此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键是用数学知识解决实际问题.20.(10分)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边AD 在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.【分析】(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.【解答】解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.21.(10分)为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= 2 ,b=45 ,c=20 ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为72 度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.【分析】(1)根据A等次人数及其百分比求得总人数,总人数乘以D等次百分比可得a 的值,再用B、C等次人数除以总人数可得b、c的值;(2)用360°乘以C等次百分比可得;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)本次调查的总人数为12÷30%=40人,∴a=40×5%=2,b=×100=45,c=×100=20,故答案为:2、45、20;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为360°×20%=72°,故答案为:72;(3)画树状图,如图所示:共有12个可能的结果,选中的两名同学恰好是甲、乙的结果有2个,故P(选中的两名同学恰好是甲、乙)==.【点评】此题主要考查了列表法与树状图法,以及扇形统计图、条形统计图的应用,要熟练掌握.22.(12分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠A.(Ⅰ)求∠D的度数;(Ⅱ)若⊙O的半径为m,求BD的长.【分析】(Ⅰ)由OA=OC,得∠A=∠ACO,所以∠COD=2∠A=∠D,因为PD切⊙O于点C,所以∠OCD=90°,可得∠D=∠COD=45°;(Ⅱ)在等腰直角三角形OCD中,OC=OB=m,可求得OD=m,根据BD=OD﹣OB可得出BD的长.【解答】解:(Ⅰ)∵OA=OC,∴∠A=∠ACO,∴∠COD=∠A+∠ACO=2∠A,∵∠D=2∠A,∴∠D=∠COD,∵PD切⊙O于点C,∴∠OCD=90°,∴∠D=∠COD=45°.(Ⅱ)∵∠D=∠COD,OC=OB=m,∴CD=OC=m,∴OD=m,∴BD=OD﹣OB=(﹣1)m.【点评】本题考查圆的切线的性质,勾股定理等知识.掌握切线的性质是解题的关键.23.(12分)在△ABC中,E、F分别为线段AB、AC上的点(不与A、B、C重合)(Ⅰ)如图1,若EF∥BC,求证:;(Ⅱ)如图2,若EF不与BC平行,(I)中的结论是否仍然成立?请说明理由.【分析】(Ⅰ)证明△AEF∽△ABC,根据相似三角形的性质得到比例式,根据相似三角形的面积比等于相似比的平方证明结论;(Ⅱ)作CM⊥AB于M,FN⊥AB于N,证明△ANF∽△AEC,得到=,根据三角形的面积公式计算,证明结论.【解答】(Ⅰ)证明:∵EF∥BC,∴△AEF∽△ABC,∴=,∴=()2=•;(Ⅱ)EF不与BC平行时,(I)中的结论仍然成立,理由如下:作CM⊥AB于M,FN⊥AB于N,则CM∥FN,∴△ANF∽△AMC,∴=,∴==•.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.24.(12分)如图,抛物线y=x2+bx+c与直线y=x+3交于A,B两点,点A在y轴上,抛物线交x轴于C、D两点,已知C(﹣3,0)(Ⅰ)求抛物线的解析式;(Ⅱ)在抛物线对称轴l上找一点M,使|MB﹣MD|的值最大,请求出点M的坐标及这个最大值.【分析】(Ⅰ)先利用一次函数解析式确定A(0,3),然后利用待定系数法求抛物线解析式;(Ⅱ)先确定抛物线的对称轴为直线x=﹣,再利用抛物线对称性得到MC=MD,接着利用|MB﹣MC|≤BC(当B、C、M共线时,取等号),|MB﹣MC|的最大值为BC的长,通过解方程组得B(﹣4,1),利用两点间的距离公式计算出BC=,利用待定系数法求出直线BC的解析式为y=﹣x﹣3,从而可确定此时M点的坐标.【解答】解:(Ⅰ)当x=0时,y=x+3=3,则A(0,3),把A(0,3),C(﹣3,0)代入y=x2+bx+c得,解得,∴抛物线解析式为y=x2+x+3;(Ⅱ)抛物线的对称轴为直线x=﹣=﹣,∵C点和D点关于直线x=﹣对称,∴MC=MD,∵|MB﹣MC|≤BC(当B、C、M共线时,取等号),∴|MB﹣MC|的最大值为BC的长,解方程组得或,则B(﹣4,1),∴BC==,设直线BC的解析式为y=kx+t,把B(﹣4,1),C(﹣3,0)代入得,解得,∴直线BC的解析式为y=﹣x﹣3,当x=﹣时,y=﹣x﹣3=﹣,则此时M点的坐标为(﹣,﹣),∴点M的坐标为(﹣,﹣)时,|MB﹣MD|的值最大,最大值为.【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了一次函数和二次函数的性质.。

天津市河北区2019-2020学年中考一诊数学试题含解析

天津市河北区2019-2020学年中考一诊数学试题含解析

天津市河北区2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为( )A.30°B.45°C.50°D.75°2.2017年牡丹区政府工作报告指出:2012年以来牡丹区经济社会发展取得显著成就,综合实力明显提升,地区生产总值由156.3亿元增加到338亿元,年均可比增长11.4%,338亿用科学记数法表示为()A.3.38×107B.33.8×109C.0.338×109D.3.38×10103.在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书.下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是()A.3 B.3.2 C.4 D.4.54.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是()A.B.C.D.5.如图,在△ABC中,∠B=90°,AB=3cm,BC=6cm,动点P从点A开始沿AB向点B以1cm/s的速度移动,动点Q从点B开始沿BC向点C以2cm/s的速度移动,若P,Q两点分别从A,B两点同时出发,P点到达B点运动停止,则△PBQ的面积S随出发时间t的函数关系图象大致是()A.B.C.D.6.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有()A.180人B.117人C.215人D.257人7.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是()A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是38.半径为3的圆中,一条弦长为4,则圆心到这条弦的距离是()A.3 B.4 C.5D.79.下列运算正确的是()A.x2•x3=x6B.x2+x2=2x4C.(﹣2x)2=4x2D.(a+b)2=a2+b210.定义:若点P(a,b)在函数y=的图象上,将以a为二次项系数,b为一次项系数构造的二次函数y=ax2+bx称为函数y=的一个“派生函数”.例如:点(2,)在函数y=的图象上,则函数y=2x2+称为函数y=的一个“派生函数”.现给出以下两个命题:(1)存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧(2)函数y=的所有“派生函数”的图象都经过同一点,下列判断正确的是()A.命题(1)与命题(2)都是真命题B.命题(1)与命题(2)都是假命题C.命题(1)是假命题,命题(2)是真命题D.命题(1)是真命题,命题(2)是假命题11.已知e →为单位向量,a r =-3e →,那么下列结论中错误..的是( ) A .a r ∥e →B .3a =rC .a r与e →方向相同 D .a r与e →方向相反12.如图,已知AB 和CD 是⊙O 的两条等弦.OM ⊥AB ,ON ⊥CD ,垂足分别为点M 、N ,BA 、DC 的延长线交于点P ,联结OP .下列四个说法中:①AB CD =nn;②OM=ON ;③PA=PC ;④∠BPO=∠DPO ,正确的个数是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果将抛物线22y x =平移,使平移后的抛物线顶点坐标为(1,2),那么所得新抛物线的表达式是__________.14.已知二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,且128x x -=,则k =________. 15.如果两个相似三角形的面积的比是4:9,那么它们对应的角平分线的比是_____.16.矩形ABCD 中,AB=6,BC=8.点P 在矩形ABCD 的内部,点E 在边BC 上,满足△PBE ∽△DBC ,若△APD 是等腰三角形,则PE 的长为数___________.17.如图,将△AOB 以O 为位似中心,扩大得到△COD ,其中B (3,0),D (4,0),则△AOB 与△COD 的相似比为_____.18.大自然是美的设计师,即使是一片小小的树叶,也蕴含着“黄金分割”,如图,P 为AB 的黄金分割点(AP>PB ),如果AB 的长度为10cm ,那么PB 的长度为__________cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某校要求八年级同学在课外活动中,必须在五项球类(篮球、足球、排球、羽毛球、乒乓球)活动中任选一项(只能选一项)参加训练,为了了解八年级学生参加球类活动的整体情况,现以八年级(2)班作为样本,对该班学生参加球类活动的情况进行统计,并绘制了如图所示的不完整统计表和扇形统计图: 八年级(2)班参加球类活动人数情况统计表 项目 篮球 足球 乒乓球 排球 羽毛球 人数a6576八年级(2)班学生参加球类活动人数情况扇形统计图根据图中提供的信息,解答下列问题:a = ,b = .该校八年级学生共有600人,则该年级参加足球活动的人数约 人;该班参加乒乓球活动的5位同学中,有3位男同学(A ,B ,C)和2位女同学(D ,E),现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.20.(6分)如图,矩形ABCD 中,点P 是线段AD 上一动点, O 为BD 的中点, PO 的延长线交BC 于Q .(1)求证: OP OQ =;(2)若=8AD cm ,6AB cm =,P 从点A 出发,以l /cm s 的速度向D 运动(不与D 重合).设点P 运动时间为()t s ,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.21.(6分)如图,已知抛物线的顶点为A (1,4),抛物线与y 轴交于点B (0,3),与x 轴交于C 、D 两点.点P 是x 轴上的一个动点.求此抛物线的解析式;求C 、D 两点坐标及△BCD 的面积;若点P 在x 轴上方的抛物线上,满足S△PCD=12S△BCD,求点P的坐标.22.(8分)如图,抛物线与x轴相交于A、B两点,与y轴的交于点C,其中A点的坐标为(﹣3,0),点C的坐标为(0,﹣3),对称轴为直线x=﹣1.(1)求抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.23.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为63米,斜坡BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.(10分)如图,已知AB是⊙O的弦,C是»AB的中点,AB=8,AC= 25,求⊙O半径的长.25.(10分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.26.(12分)如图1,□OABC的边OC在y轴的正半轴上,OC=3,A(2,1),反比例函数y=kx(x>0)的图象经过点B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,①求直线BD的解析式;②求线段ED的长度.27.(12分)某工厂准备用图甲所示的A型正方形板材和B型长方形板材,制作成图乙所示的竖式和横式两种无盖箱子.()1若该工厂准备用不超过10000元的资金去购买A,B两种型号板材,并全部制作竖式箱子,已知A型板材每张30元,B型板材每张90元,求最多可以制作竖式箱子多少只?()2若该工厂仓库里现有A型板材65张、B型板材110张,用这批板材制作两种类型的箱子,问制作竖式和横式两种箱子各多少只,恰好将库存的板材用完?()3若该工厂新购得65张规格为33m⨯的C型正方形板材,将其全部切割成A型或B型板材(不计损耗),用切割成的板材制作两种类型的箱子,要求竖式箱子不少于20只,且材料恰好用完,则能制作两种箱子共______只.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】试题解析:∵AB=AC,∠A=30°,∴∠ABC=∠ACB=75°,∵AB的垂直平分线交AC于D,∴AD=BD,∴∠A=∠ABD=30°,∴∠BDC=60°,∴∠CBD=180°﹣75°﹣60°=45°.故选B.2.D【解析】【分析】根据科学记数法的定义可得到答案.【详解】338亿=33800000000=10⨯,3.3810故选D.【点睛】a⨯的形式,其中1≤|a|<10,这种记数法叫做科学记数法.把一个大于10或者小于1的数表示为10n3.B【解析】七年级(1)班捐献图书的同学人数为9÷18%=50人,捐献4册的人数为50×30%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9×2+12×3+15×4+8×5)÷50=3.2册,故选B.4.D【解析】试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得.故选D.考点:由实际问题抽象出二元一次方程组5.C【解析】【分析】根据题意表示出△PBQ的面积S与t的关系式,进而得出答案.【详解】由题意可得:PB=3﹣t,BQ=2t,则△PBQ的面积S=12PB•BQ=12(3﹣t)×2t=﹣t2+3t,故△PBQ的面积S随出发时间t的函数关系图象大致是二次函数图象,开口向下.故选C.【点睛】此题主要考查了动点问题的函数图象,正确得出函数关系式是解题关键.6.B【解析】【分析】设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键. 7.C【解析】【分析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为5﹣1.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为12×(2.5+3)=2.75,此选项错误;D.平均数为:18×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.8.C【解析】如图所示:过点O作OD⊥AB于点D,∵OB=3,AB=4,OD⊥AB,∴BD=12AB=12×4=2,在Rt△BOD中,OD=2222325OB BD-=-=.故选C.9.C【解析】【分析】根据同底数幂的法则、合并同类项的法则、积的乘方法则、完全平方公式逐一进行计算即可.【详解】A、x2•x3=x5,故A选项错误;B、x2+x2=2x2,故B选项错误;C、(﹣2x)2=4x2,故C选项正确;D、( a+b)2=a2+2ab+b2,故D选项错误,故选C.【点睛】本题考查了同底数幂的乘法、合并同类项、积的乘方以及完全平方公式,熟练掌握各运算的运算法则是解题的关键10.C【解析】试题分析:(1)根据二次函数y=ax2+bx的性质a、b同号对称轴在y轴左侧,a、b异号对称轴在y轴右侧即可判断.(2)根据“派生函数”y=ax2+bx,x=0时,y=0,经过原点,不能得出结论.(1)∵P(a,b)在y=上,∴a和b同号,所以对称轴在y轴左侧,∴存在函数y=的一个“派生函数”,其图象的对称轴在y轴的右侧是假命题.(2)∵函数y=的所有“派生函数”为y=ax2+bx,∴x=0时,y=0,∴所有“派生函数”为y=ax 2+bx 经过原点,∴函数y=的所有“派生函数”,的图象都进过同一点,是真命题. 考点:(1)命题与定理;(2)新定义型 11.C 【解析】 【分析】由向量的方向直接判断即可. 【详解】解:e r 为单位向量,a v =3e r ,所以a v 与e r方向相反,所以C 错误, 故选C. 【点睛】本题考查了向量的方向,是基础题,较简单. 12.D 【解析】如图连接OB 、OD ;∵AB=CD ,∴»AB =»CD,故①正确 ∵OM ⊥AB ,ON ⊥CD , ∴AM=MB ,CN=ND , ∴BM=DN , ∵OB=OD ,∴Rt △OMB ≌Rt △OND , ∴OM=ON ,故②正确, ∵OP=OP ,∴Rt △OPM ≌Rt △OPN ,∴PM=PN ,∠OPB=∠OPD ,故④正确, ∵AM=CN ,∴PA=PC ,故③正确,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.22(1)2y x =-+.【解析】【分析】平移不改变抛物线的开口方向与开口大小,即解析式的二次项系数不变,根据抛物线的顶点式可求抛物线解析式.【详解】∵原抛物线解析式为y=1x 1,顶点坐标是(0,0),平移后抛物线顶点坐标为(1,1),∴平移后的抛物线的表达式为:y=1(x ﹣1)1+1.故答案为:y=1(x ﹣1)1+1.【点睛】本题考查了抛物线的平移与解析式变化的关系.关键是明确抛物线的平移实质上是顶点的平移,能用顶点式表示平移后的抛物线解析式.14.-12【解析】【分析】令y=0,得方程24=0-+x x k ,1x 和2x 即为方程的两根,利用根与系数的关系求得12x x +和12x x ⋅,利用完全平方式并结合128x x -=即可求得k 的值.【详解】解:∵二次函数24y x x k =-+的图像与x 轴交点的横坐标是1x 和2x ,令y=0,得方程24=0-+x x k ,则1x 和2x 即为方程的两根,∴124x x +=,12x x k ⋅=, ∵128x x -=,两边平方得:212()64-=x x ,∴21212()464+-⋅=x x x x ,即16464-=k ,解得:12k =-,故答案为:12-.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.15.2:1【解析】先根据相似三角形面积的比是4:9,求出其相似比是2:1,再根据其对应的角平分线的比等于相似比,可知它们对应的角平分线比是2:1.故答案为2:1.点睛:本题考查的是相似三角形的性质,即相似三角形对应边的比、对应高线的比、对应角平分线的比、周长的比都等于相似比;面积的比等于相似比的平方.16.3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE 的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P 在线段BD 上是解题的关键.17.3:1.【解析】∵△AOB 与△COD 关于点O 成位似图形,∴△AOB ∽△COD ,则△AOB 与△COD 的相似比为OB :OD=3:1,故答案为3:1 (或34).18.(15﹣)【解析】【分析】先利用黄金分割的定义计算出AP ,然后计算AB-AP 即得到PB 的长.【详解】∵P 为AB 的黄金分割点(AP >PB ),∴AP=12AB=12×5,∴PB=AB ﹣PA=10﹣(5)=(15﹣cm .故答案为(15﹣.【点睛】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC=AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC=12AB . 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)a =16,b =17.5(2)90(3)35【解析】试题分析:(1)首先求得总人数,然后根据百分比的定义求解;(2)利用总数乘以对应的百分比即可求解;(3)利用列举法,根据概率公式即可求解.试题解析:(1)a=5÷12.5%×40%=16,5÷12.5%=7÷b%,∴b=17.5,故答案为16,17.5; (2)600×[6÷(5÷12.5%)]=90(人),故答案为90;(3)如图,∵共有20种等可能的结果,两名主持人恰为一男一女的有12种情况,∴则P (恰好选到一男一女)=1220=35. 考点:列表法与树状图法;用样本估计总体;扇形统计图.20. (1)证明见解析;(2) PD=8-t ,运动时间为74秒时,四边形PBQD 是菱形. 【解析】【分析】(1)先根据四边形ABCD 是矩形,得出AD ∥BC ,∠PDO=∠QBO ,再根据O 为BD 的中点得出△POD ≌△QOB ,即可证得OP=OQ ;(2)根据已知条件得出∠A 的度数,再根据AD=8cm ,AB=6cm ,得出BD 和OD 的长,再根据四边形PBQD 是菱形时,利用勾股定理即可求出t 的值,判断出四边形PBQD 是菱形.【详解】(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠PDO=∠QBO ,又∵O 为BD 的中点,∴OB=OD ,在△POD 与△QOB 中, PDO QBO OD OBPOD QOB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△POD ≌△QOB ,∴OP=OQ ;(2)PD=8-t ,∵四边形PBQD 是菱形,∴BP=PD= 8-t ,∵四边形ABCD 是矩形,∴∠A=90°,在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2,即62+t 2=(8-t)2,解得:t=74, 即运动时间为74秒时,四边形PBQD 是菱形. 【点睛】本题考查了矩形的性质,菱形的性质,全等三角形的判定与性质,勾股定理等,熟练掌握相关知识是解题关键.注意数形结合思想的运用.21. (1)y=﹣(x ﹣1)2+4;(2)C (﹣1,0),D (3,0);6;(3)P (1+2,32),或P (1﹣2,32) 【解析】【分析】(1)设抛物线顶点式解析式y=a (x-1)2+4,然后把点B 的坐标代入求出a 的值,即可得解; (2)令y=0,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论;(3)先根据面积关系求出点P 的坐标,求出点P 的纵坐标,代入抛物线解析式即可求出点P 的坐标.【详解】解:(1)、∵抛物线的顶点为A (1,4),∴设抛物线的解析式y=a (x ﹣1)2+4,把点B (0,3)代入得,a+4=3,解得a=﹣1,∴抛物线的解析式为y=﹣(x ﹣1)2+4;(2)由(1)知,抛物线的解析式为y=﹣(x ﹣1)2+4;令y=0,则0=﹣(x ﹣1)2+4,∴x=﹣1或x=3, ∴C (﹣1,0),D (3,0);∴CD=4, ∴S △BCD =12CD×|y B |=12×4×3=6; (3)由(2)知,S △BCD =12CD×|y B |=12×4×3=6;CD=4, ∵S △PCD =12S △BCD , ∴S △PCD =12CD×|y P |=12×4×|y P |=3, ∴|y P |= 32, ∵点P 在x 轴上方的抛物线上,∴y P >0,∴y P = 32, ∵抛物线的解析式为y=﹣(x ﹣1)2+4;∴32=﹣(x ﹣1)2+4,∴x=1±2,∴P (1+2, 32),或P (1﹣2,32). 【点睛】 本题考查的是二次函数的综合应用,熟练掌握二次函数的性质是解题的关键.22.(1)y =x 2+2x ﹣3;(2)点P 的坐标为(2,21)或(﹣2,5);(3)94. 【解析】【分析】(1)先根据点A 坐标及对称轴得出点B 坐标,再利用待定系数法求解可得;(2)利用(1)得到的解析式,可设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a|.然后依据S △POC =2S △BOC 列出关于a 的方程,从而可求得a 的值,于是可求得点P 的坐标;(3)先求得直线AC 的解析式,设点D 的坐标为(x ,x 2+2x ﹣3),则点Q 的坐标为(x ,﹣x ﹣3),然后可得到QD 与x 的函数的关系,最后利用配方法求得QD 的最大值即可.【详解】解:(1)∵抛物线与x 轴的交点A (﹣3,0),对称轴为直线x =﹣1,∴抛物线与x 轴的交点B 的坐标为(1,0),设抛物线解析式为y =a (x+3)(x ﹣1),将点C (0,﹣3)代入,得:﹣3a =﹣3,解得a =1,则抛物线解析式为y =(x+3)(x ﹣1)=x 2+2x ﹣3;(2)设点P 的坐标为(a ,a 2+2a ﹣3),则点P 到OC 的距离为|a|.∵S △POC =2S △BOC , ∴12•OC•|a|=2×12OC•OB ,即12×3×|a|=2×12×3×1,解得a =±2. 当a =2时,点P 的坐标为(2,21);当a =﹣2时,点P 的坐标为(﹣2,5).∴点P 的坐标为(2,21)或(﹣2,5).(3)如图所示:设AC的解析式为y=kx﹣3,将点A的坐标代入得:﹣3k﹣3=0,解得k=﹣1,∴直线AC的解析式为y=﹣x﹣3.设点D的坐标为(x,x2+2x﹣3),则点Q的坐标为(x,﹣x﹣3).∴QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x﹣3﹣x2﹣2x+3=﹣x2﹣3x=﹣(x2+3x+94﹣94)=﹣(x+32)2+94,∴当x=﹣32时,QD有最大值,QD的最大值为94.【点睛】本题主要考查了二次函数综合题,解题的关键是熟练掌握二次函数的性质和应用.23.旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC的坡度3tan∠BCD=3 BDDC∴∠BCD=30°;(2)在Rt△BCD中,CD=BC×cos∠3×3,则DF=DC+CF=10(米),∵四边形GDFE为矩形,∴GE=DF=10(米),∵∠AEG=45°,∴AG=DE=10(米),在Rt△BEG中,BG=GE×tan∠BEG=10×0.36=3.6(米),则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB的高度为6.4米。

2019年天津市河北区中考一模数学试题及答案(word解析版)

2019年天津市河北区中考一模数学试题及答案(word解析版)

2019年天津市河北区中考数学一模试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2019•大庆)tan60°等于()A.B.C.D.考点:特殊角的三角函数值.分析:根据tan60°=即可得出答案.解答:解:tan60°=.故选D.点评:此题考查了特殊角的三角函数值,比较简单,注意熟练记忆一些特殊角的三角函数值.2.(3分)(2019•襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:依据轴对称图形与中心对称的概念即可解答.解答:解:B选项是轴对称也是中心对称图形,C、D选项是轴对称但不是中心对称图形,A选项只是中心对称图形但不是轴对称图形.故选A.点评:对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.3.(3分)(2019•钦州)估算+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间考点:估算无理数的大小.专题:计算题.分析:利用夹逼法可得,3<<4,从而可判断出答案.解答:解:∵3<<4,∴4<+1<5,即在4和5之间.故选C.点评:此题考查了估算无理数的大小的知识,属于基础题,解答本题的关键是掌握“夹逼法”的运用.4.(3分)(2019•河北区一模)中国森林面积约128 630 000公顷,将128 630 000用科学记数法表示为()A.0.12863×109B.1.2863×109C.1.2863×108D.1.2863×107考点:科学记数法—表示较大的数.专题:应用题.分析:确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于128 630 000有9位,所以可以确定n=9﹣1=8.解答:解:128 630 000=1.2863×108.故选C.点评:把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.规律:(1)当|a|≥1时,n的值为a的整数位数减1;(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.5.(3分)(2019•烟台)如图是几个小正方体组成的一个几何体,这个几何体的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:俯视图是从上面看到的图形,共分三列,从左到右小正方形的个数是:1,1,1.解答:解:这个几何体的俯视图从左到右小正方形的个数是:1,1,1,故选:C.点评:此题主要考查了简单几何体的三视图,关键是掌握俯视图所看的方向:从上面看所得到的图形.6.(3分)(2019•泰安)一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和大于5的情况,然后利用概率公式求解即可求得答案.解答:解:列表得:1 2 3 41 ﹣2+1=3 3+1=4 4+1=52 1+2=3 ﹣3+2=5 4+2=63 1+3=4 2+3=5 ﹣4+3=74 1+4=5 2+4=6 3+4=7 ﹣∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况,∴这两个乒乓球上的数字之和大于5的概率为:=.故选B.点评:此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.7.(3分)(2019•潍坊)已知两圆半径r1、r2分别是方程x2﹣7x+10=0的两根,两圆的圆心距为7,则两圆的位置关系是()A.相交B.内切C.外切D.外离考点:圆与圆的位置关系;解一元二次方程-因式分解法.分析:首先解方程x2﹣7x+10=0,求得两圆半径r1、r2的值,又由两圆的圆心距为7,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵x2﹣7x+10=0,∴(x﹣2)(x﹣5)=0,∴x1=2,x2=5,即两圆半径r1、r2分别是2,5,∵2+5=7,两圆的圆心距为7,∴两圆的位置关系是外切.故选C.点评:此题考查了圆与圆的位置关系与一元二次方程的解法.此题比较简单,注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.8.(3分)(2005•中原区)已知:如图,⊙O是△ABC的外接圆,D为CB延长线上一点,∠AOC=130°,则∠ABD的度数为()A.40°B.50°C.65°D.100°考点:三角形的外接圆与外心;圆周角定理;圆内接四边形的性质.分析:本题要通过构造圆周角求解;在优弧AC上取一点E,连接AE、CE;由圆周角定理,易求得∠AEC的度数;再根据圆内接四边形的性质即可求出∠ABD的度数.解答:解:在优弧AC上任意找一点E,连接AE、CE,根据圆周角定理,得∠E=65°;∵四边形ABCE内接于⊙O,∴∠ABD=∠E=65°.故选C.点评:本题主要考查的是圆周角定理和圆内接四边形的性质.9.(3分)(2019•大庆)已知a、b、c是△ABC的三边长,且满足a3+ab2+bc2=b3+a2b+ac2,则△ABC 的形状是()A.等腰三角形B.直角三角形C.等腰三角形或直角三角形D.等腰直角三角形考点:因式分解的应用.专题:压轴题;因式分解.分析:把所给的等式a3+ab2+bc2=b3+a2b+ac2能进行因式分解的要因式分解,整理为非负数相加得0的形式,求出三角形三边的关系,进而判断三角形的形状.解答:解:∵a3+ab2+bc2=b3+a2b+ac2,∴a3﹣b3﹣a2b+ab2﹣ac2+bc2=0,(a3﹣a2b)+(ab2﹣b3)﹣(ac2﹣bc2)=0,a2(a﹣b)+b2(a﹣b)﹣c2(a﹣b)=0,(a﹣b)(a2+b2﹣c2)=0,所以a﹣b=0或a2+b2﹣c2=0.所以a=b或a2+b2=c2.故△ABC的形状是等腰三角形或直角三角形.故选C.点评:本题考查了分组分解法分解因式,利用因式分解最后整理成多项式的乘积等于0的形式是解题的关键.10.(3分)(2019•常州)已知二次函数,当自变量x取m时对应的值大于0,当自变量x分别取m﹣1、m+1时对应的函数值为y1、y2,则y1、y2必须满足()A.y1>0、y2>0 B.y1<0、y2<0 C.y1<0、y2>0 D.y1>0、y2<0考点:抛物线与x轴的交点;二次函数图象上点的坐标特征.专题:计算题;压轴题.分析:根据函数的解析式求得函数与x轴的交点坐标,利用自变量x取m时对应的值大于0,确定m﹣1、m+1的位置,进而确定函数值为y1、y2.解答:解:令=0,解得:x=,∵当自变量x取m时对应的值大于0,∴<m<,∵点(m+1,0)与(m﹣1,0)之间的距离为2,大于二次函数与x轴两交点之间的距离,∴m﹣1的最大值在左边交点之左,m+1的最小值在右边交点之右.∴点(m+1,0)与(m﹣1,0)均在交点之外,∴y1<0、y2<0.故选B.点评:本题考查了抛物线与x轴的交点和二次函数图象上的点的特征,解题的关键是求得抛物线与横轴的交点坐标.二、填空题:本大题共8小题,每小题3分,共24分,请将答案答在试卷后面的答题纸的相应位置.11.(3分)(2019•云南)写出一个大于2小于4的无理数:、、、π…(只要是大于小于无理数都可以).考点:实数大小比较;估算无理数的大小.专题:开放型.分析:根据算术平方根的性质可以把2和4写成带根号的形式,再进一步写出一个被开方数介于两者之间的数即可.解答:解:∵2=,4=,∴写出一个大于2小于4的无理数是、、、π….故答案为:、、、π…(只要是大于小于无理数都可以)等.本题答案不唯一.点评:此题考查了无理数大小的估算,熟悉算术平方根的性质是解题关键.12.(3分)(2019•娄底)计算:|﹣2|+(﹣3)0﹣=1.考点:实数的运算;零指数幂.专题:计算题.分析:分别根据绝对值的性质、0指数幂及算术平方根的定义计算出各数,再根据实数的运算法则进行计算即可.解答:解:原式=2+1﹣2=1.故答案为:1.点评:本题考查的是实数的运算,熟知绝对值的性质、0指数幂及算术平方根的定义是解答此题的关键.13.(3分)(2005•扬州)当x=2005时,代数式﹣1的值为2005.考点:分式的化简求值.专题:计算题.分析:先对x2﹣1分解因式,再进行通分化简求值.解答:解:﹣1===x把x=2005代入得原式=2005.点评:解答此题时不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.14.(3分)(2019•西宁)5张不透明的卡片,除正面画有不同的图形外,其它均相同.把这5张卡片洗匀后,正面向下放在桌上,从中随机抽取一张,与卡片上图形相对应的这种地板砖能进行平面镶嵌的概率是.考点:概率公式;平面镶嵌(密铺).专题:压轴题.分析:根据镶嵌的定义可得这5个图形中只有正三角形,正方形,正六边形能够进行平面镶嵌,再根据概率的概念即可求出利用一种地板砖能进行平面镶嵌的概率.解答:解:∵这5个图形中只有正三角形,正方形,正六边形能够进行平面镶嵌,∴P(单独一种能镶嵌)=.故答案为:.点评:本题考查的是平面镶嵌以及概率的定义:P(A)=,n表示该试验中所有可能出现的基本结果的总数目.m表示事件A包含的试验基本结果数.15.(3分)(2019•江西)已知一次函数y=kx+b(k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过第三象限.考点:待定系数法求一次函数解析式;一次函数的性质.分析:根据题意画出图形即可直观发现函数图象所过象限.解答:解:由于函数过(2,﹣1)、(﹣3,4)两点,如图:可见,函数不经过第三象限.故答案为:三.点评:本题考查了一次函数的图象和性质,画出图象并观察图象得出结论是解题的关键.16.(3分)(2019•岳阳)圆锥底面半径为,母线长为2,它的侧面展开图的圆心角是90°.考点:圆锥的计算.分析:易得圆锥的底面周长,就是圆锥的侧面展开图的弧长,利用弧长公式可得圆锥侧面展开图的角度,把相关数值代入即可求解.解答:解:∵圆锥底面半径是,∴圆锥的底面周长为π,设圆锥的侧面展开的扇形圆心角为n°,=π,解得n=90.故答案为90°.点评:此题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.17.(3分)(2019•莱芜)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 4.8.考点:勾股定理;垂线段最短.专题:计算题.分析:根据点到直线的连线中,垂线段最短,得到当BP垂直于AC时,BP的长最小,过A作等腰三角形底边上的高AD,利用三线合一得到D为BC的中点,在直角三角形ADC中,利用勾股定理求出AD的长,进而利用面积法即可求出此时BP的长.解答:解:根据垂线段最短,得到BP⊥AC时,BP最短,过A作AD⊥BC,交BC于点D,∵AB=AC,AD⊥BC,∴D为BC的中点,又BC=6,∴BD=CD=3,在Rt△ADC中,AC=5,CD=3,根据勾股定理得:AD==4,又∵S△ABC=BC•AD=BP•AC,∴BP===4.8.故答案为:4.8.点评:此题考查了勾股定理,等腰三角形的三线合一性质,三角形的面积求法,以及垂线段最短,熟练掌握勾股定理是解本题的关键.18.(3分)(2019•河北区一模)如图,四边形ABCD为一梯形纸片,AB∥CD,AD=BC.翻折纸片ABCD,使点A与点C重合,折痕为EF.连接CE、CF、BD,AC、BD的交点为O,若CE⊥AB,AB=7,CD=3.下列结论中:①AC=BD,②EF∥BD,③S四边形AECF=AC•EF,④EF=,⑤连接F0;则F0∥AB.正确的序号是①②④.考点:翻折变换(折叠问题).专题:压轴题.分析:根据等腰梯形的特点和对角线互相垂直的四边形的面积=对角线积的一半的知识来判断.解答:解:∵四边形ABCD为等腰梯形,∴∠A=∠B∵AD=BC,AB=AB,∴△ADB≌△BCA,∴AC=DB,①正确;∵CE⊥AB∴∠AEF=45°,由翻折得到EF⊥AC,∴∠CAB=45°由全等得到∠OBA=∠OAB=45°,∴∠OBA=∠AEF=45°那么EF∥BD,②对;∠S四边形AECF=×AC•EF,③错;易得BE=(7﹣3)÷2=2,CE=AE=5,做FM⊥AB于点M,∴CE:BE=FM:AM,∵FM=ME,∴AM=5﹣x,解得x=,那么EF=④正确;OG=OA﹣AG=﹣=,FG=﹣易得OG≠FG,那么∠FOG≠45°,∴⑤错.正确的序号是①②④.点评:注意使用等腰梯形中的三角形全等,以及常用的辅助线方法,对角线互相垂直的四边形的面积=对角线积的一半等知识.三、解答题:本大题共8小题,共66分,解答应写出文字说明,演算步骤或证明过程,请将答案答在试卷后面的答题纸的相应位置.19.(6分)(2019•岳阳)解不等式组,并将解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集表示在数轴上即可.解答:解:,由①得2x≥2,即x≥1;由②得x<3;在数轴上表示为:故不等式组的解集为:1≤x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x≥较小的数、<较大的数,那么解集x介于两数之间.20.(8分)(2019•襄阳)如图,直线y=k1x+b与双曲线y=相交于A(1,2)、B(m,﹣1)两点.(1)求直线和双曲线的解析式;(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)为双曲线上的三点,且x1<x2<0<x3,请直接写出y1,y2,y3的大小关系式;(3)观察图象,请直接写出不等式k1x+b>的解集.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将点A(1,2)代入双曲线y=,求出k2的值,将B(m,﹣1)代入所得解析式求出m的值,再用待定系数法求出k1和b的值,可得两函数解析式;(2)根据反比例函数的增减性在不同分支上进行研究;(3)根据A、B点的横坐标结合图象进行解答.解答:解:(1)∵双曲线y=经过点A(1,2),∴k2=2,∴双曲线的解析式为:y=.∵点B(m,﹣1)在双曲线y=上,∴m=﹣2,则B(﹣2,﹣1).由点A(1,2),B(﹣2,﹣1)在直线y=k1x+b上,得,解得,∴直线的解析式为:y=x+1.(2)∵在第三象限内y随x的增大而减小,故y2<y1<0,又∵y3是正数,故y3>0,∴y2<y1<y3.(3)由图可知x>1或﹣2<x<0.点评:本题考查了反比例函数与一次函数的交点问题,求出交点坐标是解题的关键一步.21.(8分)(2019•济南)济南以“泉水”而闻名,为保护泉水,造福子孙后代,济南市积极开展“节水保泉”活动,宁宁利用课余时间对某小区300户居民的用水情况进行了统计,发现5月份各户居民的用水量比4月份有所下降,宁宁将5月份各户居民的节水量统计整理如下统计图表:节水量(米3) 1 1.5 2.5 3户数50 80 100 70(1)300户居民5月份节水量的众数,中位数分别是多少米3?(2)扇形统计图中2.5米3对应扇形的圆心角为120度;(3)该小区300户居民5月份平均每户节约用水多少米3?考点:扇形统计图;统计表;加权平均数;中位数;众数.分析:(1)众数是一组数据中出现次数最多的数据;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,根据定义可求解;(2)首先计算出节水量2.5米3对应的居名民数所占百分比,再用360°×百分比即可;(3)根据加权平均数公式:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则=,进行计算即可;解答:解:(1)数据2.5出现了100次,次数最多,所以节水量的众数是2.5(米3);位置处于中间的数是第150个和第151个,都是2.5,故中位数是2.5米3.(2)×100%×360°=120°;(3)(50×1+80×1.5+2.5×100+3×70)÷300=2.1(米3).答:该小区300户居民5月份平均每户节约用水2.1米3.点评:此题主要考查了统计表,扇形统计图,平均数,中位数与众数,关键是看懂统计表,从统计表中获取必要的信息,熟练掌握平均数,中位数与众数的计算方法.22.(8分)(2019•河北区一模)如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;(2)若AD:AE=4:5,BC=6,求⊙O的直径.考点:圆的综合题;三角形中位线定理;圆周角定理;切线的判定.专题:证明题;压轴题.分析:(1)连接OD、DE,求出∠A=∠ADO,求出∠ADO+∠CDB=90°,求出∠ODB=90°,根据切线的判定推出即可;(2)求出∠ADE=90°=∠C,推出BC∥DE,得出E为AB中点,推出AE=AB,DE=BC=3,设AD=4a,AE=5a,由勾股定理求出DE=3a=3,求出a=1,求出AE即可.解答:(1)证明:连接OD、DE,∵OA=OD,∴∠A=∠ADO,∵∠A+∠CDB=90°,∴∠ADO+∠CDB=90°,∴∠ODB=180°﹣90°=90°,∴OD⊥BD,∵OD是⊙O半径,∴直线BD与⊙O相切.(2)解:∵AE是⊙O直径,∴∠ADE=90°=∠C,∴BC∥DE,∴△ADE∽△ACB,∴=∵D为AC中点,∴AD=DC=AC,∴AE=BE=AB,DE是△ACB的中位线,∴AE=AB,DE=BC=×6=3,∵设AD=4a,AE=5a,在Rt△ADE中,由勾股定理得:DE=3a=3,解得:a=1,∴AE=5a=5,答:⊙O的直径是5.点评:本题考查的知识点有圆周角定理、切线的判定、三角形的中位线定理,解(1)小题的关键是求出OD⊥BD,解(2)小题的关键是求出DE长,题目比较好,综合性比较强.23.(8分)(2019•宿迁)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m)考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:根据CE=xm,则由题意可知BE=xm,AE=(x+100)m,再利用解直角得出x的值,即可得出CD的长.解答:解:设CE=xm,则由题意可知BE=xm,AE=(x+100)m.在Rt△AEC中,tan∠CAE=,即tan30°=,∴,3x=(x+100),解得x=50+50=136.6,∴CD=CE+ED=136.6+1.5=138.1≈138(m).答:该建筑物的高度约为138m.点评:此题主要考查了解直角三角形的应用,根据tan∠CAE=得出x的值是解决问题的关键.24.(8分)(2019•连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择,方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,(1)请分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程x(公里)之间的函数关系式;(2)你认为选用哪种运输方式较好,为什么?考点:一次函数的应用.专题:应用题.分析:(1)根据方式一、二的收费标准即可得出y1(元)、y2(元)与运输路程x(公里)之间的函数关系式.(2)比较两种方式的收费多少与x的变化之间的关系,从而根据x的不同选择合适的运输方式.解答:解:(1)由题意得:y1=4x+400;y2=2x+820;(2)令4x+400=2x+820,解得x=210,所以当运输路程小于210千米时,y1<y2,选择邮车运输较好,当运输路程等于210千米时,y1=y2,两种方式一样,当运输路程大于210千米时,y1>y2,选择火车运输较好.点评:此题考查了一次函数的应用,解答本题的关键是根据题意所述两种运输方式的收费标准,得出总费用y1(元)、y2(元)与运输路程x(公里)关系式.25.(10分)(2009•攀枝花)如图所示,已知OABC是一张放在平面直角坐标系中的矩形纸片,O 为坐标原点,点A在x轴上,点C在y轴上,且OA=15,OC=9,在边AB上选取一点D,将△AOD 沿OD翻折,使点A落在BC边上,记为点E.(1)求DE所在直线的解析式;(2)设点P在x轴上,以点O、E、P为顶点的三角形是等腰三角形,问这样的点P有几个,并求出所有满足条件的点P的坐标;(3)在x轴、y轴上是否分别存在点M、N,使四边形MNED的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.考点:翻折变换(折叠问题);待定系数法求一次函数解析式;等腰三角形的判定;正方形的性质.专题:压轴题.分析:(1)由于OE=OA=15,AD=DE,在Rt△OCE中,由勾股定理求得CE的值,再在Rt△BED 中,由勾股定理建立关于DE的方程求解;(2)分四种情况:在x的正半轴上,OP=OE时;在x的负半轴上,OP=OE时;EO=EP时;OP=EP时,分别可以求得点P对应的点的坐标;(3)作点D关于x的对称点D′,点E关于y轴的对称点E′,连接E′D′,分别交于y轴、x 轴于点N、点M,则点M、N是所求得的点,能使四边形的周长最小,周长且为E′D′+ED.解答:解:(1)由题意知,OE=OA=15,AD=DE,在Rt△OCE中,由勾股定理得:CE===12,∴BE=BC﹣CE=15﹣12=3在Rt△BED中,由勾股定理知:AD2=DE2=BE2+BD2,即DE2=(9﹣DE)2+32,解得DE=5,∴AD=5∴D(15,5),E(12,9)设DE直线的解析式为y=kx+b,∴解得k=﹣,b=25∴DE直线的解析式为y=﹣x+25;(2)当在x的正半轴上,OP1=OE=15时,点P1与点A重合,则P1(15,0);当在x的负半轴上,OP2=OE=15时,则P2(﹣15,0);当OE=EP3时,作EH⊥OA于点H,有OH=CE=HP3=12,则P3(24,0);当OP4=EP4时,由勾股定理知P4H2+EH2=P4E2,即(12﹣P4E)2+92=P4E2解得OP4=EP4=,即P4(,0);∴满足△OPE为等腰三角形的点有四个:P1(15,0);P2(﹣15,0);P3(24,0);P4(,0);(3)作点D关于x的对称点D′,点E关于y轴的对称点E′,连接E′D′,分别交于y轴、x轴于点N、点M,则点M、N是所求得的点.在Rt△BE′D′中,D′E′==5∴四边形DENM的周长=DE+EN+MN+MD=DE+D′E′=5+5.点评:本题综合考查矩形的性质、翻折的性质、勾股定理、待定系数法、轴对称的性质、等腰三角形.注意第2小题中不要漏了某种情况.26.(10分)(2019•襄阳)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处.分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线y=ax2+bx+c经过O,D,C三点.(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动.设运动时间为t秒,当t为何值时,以P、Q、C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E 为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.考点:二次函数综合题.专题:压轴题;动点型;数形结合;分类讨论.分析:(1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB﹣BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式.(2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE 相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值.(3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.解答:解:(1)∵四边形ABCO为矩形,∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10.由题意,△BDC≌△EDC.∴∠B=∠DEC=90°,EC=BC=10,ED=BD.由勾股定理易得EO=6.∴AE=10﹣6=4,设AD=x,则BD=ED=8﹣x,由勾股定理,得x2+42=(8﹣x)2,解得,x=3,∴AD=3.∵抛物线y=ax2+bx+c过点D(3,10),C(8,0),O(0,0)∴,解得∴抛物线的解析式为:y=﹣x2+x.(2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,∴∠DEA=∠OCE,由(1)可得AD=3,AE=4,DE=5.而CQ=t,EP=2t,∴PC=10﹣2t.当∠PQC=∠DAE=90°,△ADE∽△QPC,∴=,即=,解得t=.当∠QPC=∠DAE=90°,△ADE∽△PQC,∴=,即=,解得t=.∴当t=或时,以P、Q、C为顶点的三角形与△ADE相似.(3)假设存在符合条件的M、N点,分两种情况讨论:①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点;则:M(4,);而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则N(4,﹣);②EC为平行四边形的边,则EC MN,设N(4,m),则M(4﹣8,m+6)或M(4+8,m﹣6);将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,此时N(4,﹣38)、M(﹣4,﹣32);将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,此时N(4,﹣26)、M(12,﹣32);综上,存在符合条件的M、N点,且它们的坐标为:①M1(﹣4,﹣32),N1(4,﹣38);②M2(12,﹣32),N2(4,﹣26);③M3(4,),N3(4,﹣).点评:考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.。

天津市河北区2019届高中学业水平考试模拟 数学试题(解析版)

天津市河北区2019届高中学业水平考试模拟 数学试题(解析版)

故选:B. 【点睛】本题考查不等式的基本性质,正确理解不等式的基本性质是解题的关键.
21.为了得到函数
, 的图象,只需将函数
, 的图象上所有的点( )
A. 向左平行移动 个单位长度 B. 向右平行移动 个单位长度
C. 向左平行移动 个单位长度 【答案】D 【解析】
D. 向右平行移动 个单位长度
【分析】
故选 A.
【点睛】本题考查集合的交集,属基础题.
2.
的值是( )
A.
B.
【答案】B
【解析】
C.
D.
试题分析:根据诱导公式可得 考点:1.诱导公式.
3.已知直线

,故选 B. ,若 ,则实数 的值为( )
A. 8 B. 2 C. 【答案】A
D. -2
【解析】
【分析】
利用两条直线平行的充要条件求解.
【详解】:∵直线 l1:2x+y-2=0,l2:ax+4y+1=0,l1∥l2,
A. ①②④ 【答案】B 【解析】 【分析】
B. ①④
C. ①③④
D. ②③
由不等式的基本性质可知:①(可加性)④(可乘性)正确,②不正确. ②③可通过举反例否定.
【详解】:①∵a>b,c>d,由不等式的可加性得 a+c>b+d,故①正确; ②由①正确,可知②不正确;
③取 4>-2,-1>-3,则 4×(-1)>(-2)×(-3)不成立,故③不正确; ④∵a>b,c>0,∴ac>bc.故④正确. 综上可知:只有①④正确.
”,依次求出等差数列中
的公差与首项,然后再运用等差数列的通项公式求出该数列的通项公式

28.已知奇函数 【答案】

天津市河北区2018-2019年中考数学一模试卷(含答案)

天津市河北区2018-2019年中考数学一模试卷(含答案)
2.计算 •tan 60°的值等于( )
A. B. C. D.
【考点】T5:特殊角的三角函数值.
原式= × = ,
故选:D.
【点评】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.
(1)求证:直线EF是⊙O的切线;
(2)求cos∠E的值.
22.(10分)如图,某渔船航行至B处时,侧得一海岛位于B处的正北方向20(1+ )海里的C处,为了防止意外,渔船请求A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位子B的北偏西300的方向上,求A,C之间的距离.
23.(10分)在南宁市地铁1号线某段工程建设中,甲队单独完成这项工程需要150天,甲队单独施工30天后增加乙队,两队又共同工作了15天,共完成总工程的 .
4.将0.0000026用科学记数法表示为( )
A.2.6×106B.0.26×10﹣5C.2.6×10﹣6D.2.6×10﹣7
5.用5个完全相同的小正方体组合成如图所示的立体图形,它的俯视图为( )
A. B. C. D.
6.计算2 ﹣ 的结果是( )
A.﹣ B.﹣2 C.﹣4 D.﹣8
7.化简 ﹣ 等于( )
(1)求乙队单独完成这项工程需要多少天?
(2)为了加快工程进度,甲、乙两队各自提高工作效率,提高后乙队的工作效率是 ,甲队的工作效率是乙队的m倍(1≤m≤2),若两队合作40天完成剩余的工程,请写出a关于m的函数关系式,并求出乙队的最大工作效率是原来的几倍?
24.(10分)如图①,在平面直角坐标系中,点A(0,3),点B(﹣3,0),点C(1,0),点D(0,1),连AB,AC,BD.
参考答案与试题解析
一、选择题:本大题共12小题,每小题3分,共36分.

天津市河北区2019-2020学年中考数学模拟试题(2)含解析

天津市河北区2019-2020学年中考数学模拟试题(2)含解析

天津市河北区2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23B.2 C.3 D.62.如图,等腰直角三角板ABC的斜边AB与量角器的直径重合,点D是量角器上60°刻度线的外端点,连接CD交AB于点E,则∠CEB的度数为()A.60°B.65°C.70°D.75°3.-2的倒数是()A.-2 B.12C.12D.24.下列运算正确的是()A.a6÷a2=a3B.(2a+b)(2a﹣b)=4a2﹣b2C.(﹣a)2•a3=a6D.5a+2b=7ab5.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为()A.18元B.36元C.54元D.72元6.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是()A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮7.计算(﹣5)﹣(﹣3)的结果等于()A.﹣8 B.8 C.﹣2 D.28.甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米其中正确的结论有()A.1个B.2个C.3个D.4个9.已知一个多边形的内角和是外角和的2倍,则此多边形的边数为( )A.6 B.7 C.8 D.910.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°11.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A.6.75×103吨B.67.5×103吨C.6.75×104吨D.6.75×105吨12.下列博物院的标识中不是轴对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将一对直角三角形卡片的斜边AC重合摆放,直角顶点B,D在AC的两侧,连接BD,交AC 于点O,取AC,BD的中点E,F,连接EF.若AB=12,BC=5,且AD=CD,则EF的长为_____.14.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,点P、Q分别在边BC、AC上,PQ∥AB,把△PCQ 绕点P旋转得到△PDE(点C、Q分别与点D、E对应),点D落在线段PQ上,若AD平分∠BAC,则CP的长为_________.15.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生1500人,则据此估计步行的有_____.16.如图,菱形ABCD的边长为15,sin∠BAC=,则对角线AC的长为____.17.分解因式:4x 2﹣36=___________.18.(2017黑龙江省齐齐哈尔市)如图,在等腰三角形纸片ABC 中,AB=AC=10,BC=12,沿底边BC 上的高AD 剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图1,在平面直角坐标系中,O 为坐标原点,抛物线y=ax 2+bx+3交x 轴于B 、C 两点(点B 在左,点C 在右),交y 轴于点A ,且OA=OC ,B (﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D 为抛物线的顶点,连接CD ,点P 是抛物线上一动点,且在C 、D 两点之间运动,过点P 作PE ∥y 轴交线段CD 于点E ,设点P 的横坐标为t ,线段PE 长为d ,写出d 与t 的关系式(不要求写出自变量t 的取值范围);(3)如图3,在(2)的条件下,连接BD ,在BD 上有一动点Q ,且DQ=CE ,连接EQ ,当∠BQE+∠DEQ=90°时,求此时点P 的坐标.20.(6分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.21.(6分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率. 22.(8分)在平面直角坐标系xOy 中,抛物线y=mx 2﹣2mx ﹣3(m≠0)与x 轴交于A (3,0),B 两点. (1)求抛物线的表达式及点B 的坐标;(2)当﹣2<x <3时的函数图象记为G ,求此时函数y 的取值范围;(3)在(2)的条件下,将图象G 在x 轴上方的部分沿x 轴翻折,图象G 的其余部分保持不变,得到一个新图象M .若经过点C (4.2)的直线y=kx+b (k≠0)与图象M 在第三象限内有两个公共点,结合图象求b 的取值范围.23.(8分)如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.(1)求A ,B 两点间的距离(结果精确到0.1km ).(2)当运载火箭继续直线上升到D 处,雷达站测得其仰角为56°,求此时雷达站C 和运载火箭D 两点间的距离(结果精确到0.1km ).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.1.)24.(10分)先化简2211a a a a ⎛⎫-÷ ⎪--⎝⎭,然后从22a -≤<中选出一个合适的整数作为a 的值代入求值. 25.(10分)如图是某旅游景点的一处台阶,其中台阶坡面AB 和BC 的长均为6m ,AB 部分的坡角∠BAD 为45°,BC 部分的坡角∠CBE 为30°,其中BD ⊥AD ,CE ⊥BE ,垂足为D ,E .现在要将此台阶改造为直接从A 至C 的台阶,如果改造后每层台阶的高为22cm ,那么改造后的台阶有多少层?(最后一个台阶的高超过15cm 且不足22cm 2≈1.4143)26.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=27,AC=22,求AD的长.27.(12分)如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,∴BE=AB=1223,即最小值是23,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.2.D【解析】【详解】解:连接OD∵∠AOD=60°,∴ACD=30°.∵∠CEB是△ACE的外角,∴△CEB=∠ACD+∠CAO=30°+45°=75°故选:D3.B【解析】【分析】根据倒数的定义求解. 【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握4.B【解析】【分析】A选项:利用同底数幂的除法法则,底数不变,只把指数相减即可;B选项:利用平方差公式,应先把2a看成一个整体,应等于(2a)2-b2而不是2a2-b2,故本选项错误;C选项:先把(-a)2化为a2,然后利用同底数幂的乘法法则,底数不变,只把指数相加,即可得到;D选项:两项不是同类项,故不能进行合并.【详解】A选项:a6÷a2=a4,故本选项错误;B选项:(2a+b)(2a-b)=4a2-b2,故本选项正确;C选项:(-a)2•a3=a5,故本选项错误;D选项:5a与2b不是同类项,不能合并,故本选项错误;故选:B.【点睛】考查学生同底数幂的乘除法法则的运用以及对平方差公式的掌握,同时要求学生对同类项进行正确的判断.5.D【解析】【分析】设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.【详解】解:根据题意设y=kπx2,∵当x=3时,y=18,∴18=kπ•9,则k=2,∴y=kπx2=2•π•x2=2x2,当x=6时,y=2×36=72,故选:D.【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键.6.D【解析】【分析】根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.7.C【解析】分析:减去一个数,等于加上这个数的相反数.依此计算即可求解.详解:(-5)-(-3)=-1.故选:C.点睛:考查了有理数的减法,方法指引:①在进行减法运算时,首先弄清减数的符号;②将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数).8.A【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选A.【点睛】本题考查了函数图象,弄清题意,读懂图象,从中找到必要的信息是解题的关键.9.A【解析】试题分析:根据多边形的外角和是310°,即可求得多边形的内角的度数为720°,依据多边形的内角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故选A.考点:多边形的内角和定理以及多边形的外角和定理10.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF∥GH,∴∠2=∠ABC+∠1=30°+20°=50°,故选D.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.12.A【解析】【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,对题中选项进行分析即可.【详解】A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】此题考查轴对称图形的概念,解题的关键在于利用轴对称图形的概念判断选项正误二、填空题:(本大题共6个小题,每小题4分,共24分.)13.724.【解析】【分析】先求出BE的值,作DM⊥AB,DN⊥BC延长线,先证明△ADM≌△CDN(AAS),得出AM=CN,DM=DN,再根据正方形的性质得BM=BN,设AM=CN=x,BM=AB-AM=12-x=BN=5+x,求出x=72,BN=172,根据BD为正方形的对角线可得出BD=1722,BF=12BD=1742,EF=22BE BF-=742.【详解】∵∠ABC=∠ADC,∴A,B,C,D四点共圆,∴AC为直径,∵E为AC的中点,∴E为此圆圆心,∵F为弦BD中点,∴EF⊥BD,连接BE,∴BE=12AC=1222AB BC+1222512+=132;作DM⊥AB,DN⊥BC延长线,∠BAD=∠BCN,在△ADM 和△CDN 中,AD DN BAD NCD AMD CND =⎧⎪∠=∠⎨⎪∠=∠⎩,∴△ADM ≌△CDN (AAS ),∴AM=CN ,DM=DN ,∵∠DMB=∠DNC=∠ABC=90°,∴四边形BNDM 为矩形,又∵DM=DN,∴矩形BNDM 为正方形,∴BM=BN ,设AM=CN=x ,BM=AB-AM=12-x=BN=5+x ,∴12-x=5+x ,x=72,BN=172, ∵BD 为正方形BNDM 的对角线,∴BN=172,BF=12BD=174,∴74. 故答案为74【点睛】本题考查了正方形的性质与全等三角形的性质,解题的关键是熟练的掌握正方形与全等三角形的性质与应用.14.1【解析】【分析】连接AD ,根据PQ ∥AB 可知∠ADQ=∠DAB ,再由点D 在∠BAC 的平分线上,得出∠DAQ=∠DAB ,故∠ADQ=∠DAQ ,AQ=DQ .在Rt △CPQ 中根据勾股定理可知,AQ=11-4x ,故可得出x 的值,进而得出结论.【详解】连接AD ,∵PQ∥AB,∴∠ADQ=∠DAB,∵点D在∠BAC的平分线上,∴∠DAQ=∠DAB,∴∠ADQ=∠DAQ,∴AQ=DQ,在Rt△ABC中,∵AB=5,BC=3,∴AC=4,∵PQ∥AB,∴△CPQ∽△CBA,∴CP:CQ=BC:AC=3:4,设PC=3x,CQ=4x,在Rt△CPQ中,PQ=5x,∵PD=PC=3x,∴DQ=1x,∵AQ=4-4x,∴4-4x=1x,解得x=23,∴CP=3x=1;故答案为:1.【点睛】本题考查平行线的性质、旋转变换、等腰三角形的判定、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.15.1【解析】【分析】【详解】∵骑车的学生所占的百分比是126360×100%=35%,∴步行的学生所占的百分比是1﹣10%﹣15%﹣35%=40%,∴若该校共有学生1500人,则据此估计步行的有1500×40%=1(人),故答案为1.16.24【解析】试题分析:因为四边形ABCD 是菱形,根据菱形的性质可知,BD 与AC 互相垂直且平分,因为,AB=10,所以BD=6,根据勾股定理可求的AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;17.4(x+3)(x ﹣3)【解析】分析:首先提取公因式4,然后再利用平方差公式进行因式分解.详解:原式=()()()2494x 3x 3x -=+-. 点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.18.10,273,413.【解析】解:如图,过点A 作AD ⊥BC 于点D ,∵△ABC 边AB=AC=10,BC=12,∴BD=DC=6,∴AD=8,如图①所示:可得四边形ACBD 是矩形,则其对角线长为:10;如图②所示:AD=8,连接BC ,过点C 作CE ⊥BD 于点E ,则EC=8,BE=2BD=12,则BC=413; 如图③所示:BD=6,由题意可得:AE=6,EC=2BE=16,故AC=22616+=273.故答案为10,273,413.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=﹣x 2+2x+3;(2)d=﹣t 2+4t ﹣3;(3)P (52,74).【解析】【分析】(1)由抛物线y=ax2+bx+3与y轴交于点A,可求得点A的坐标,又OA=OC,可求得点C的坐标,然后分别代入B,C的坐标求出a,b,即可求得二次函数的解析式;(2)首先延长PE交x轴于点H,现将解析式换为顶点解析式求得D(1,4),设直线CD的解析式为y=kx+b,再将点C(3,0)、D(1,4)代入,得y=﹣2x+6,则E(t,﹣2t+6),P(t,﹣t2+2t+3),PH=﹣t2+2t+3,EH=﹣2t+6,再根据d=PH﹣EH即可得答案;(3)首先,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,根据题意在(2)的条件下先证明△DQT≌△ECH,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t﹣1+(3﹣t),即可求得答案.【详解】解:(1)当x=0时,y=3,∴A(0,3)即OA=3,∵OA=OC,∴OC=3,∴C(3,0),∵抛物线y=ax2+bx+3经过点B(﹣1,0),C(3,0)∴30 9330 a ba b-+=⎧⎨++=⎩,解得:12ab=-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x2+2x+3;(2)如图1,延长PE交x轴于点H,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4),设直线CD的解析式为y=kx+b,将点C(3,0)、D(1,4)代入,得:430k bk b+=⎧⎨+=⎩,解得:26kb=-⎧⎨=⎩,∴y=﹣2x+6,∴E(t,﹣2t+6),P(t,﹣t2+2t+3),∴PH=﹣t2+2t+3,EH=﹣2t+6,∴d=PH﹣EH=﹣t2+2t+3﹣(﹣2t+6)=﹣t2+4t﹣3;(3)如图2,作DK⊥OC于点K,作QM∥x轴交DK于点T,延长PE、EP交OC于H、交QM于M,作ER⊥DK于点R,记QE与DK的交点为N,∵D(1,4),B(﹣1,0),C(3,0),∴BK=2,KC=2,∴DK垂直平分BC,∴BD=CD,∴∠BDK=∠CDK,∵∠BQE=∠QDE+∠DEQ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°,∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P (52,74). 【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.20.(1)223y x x =--+;(2)30x -<<.【解析】【分析】(1)将()30A -,和()10B ,两点代入函数解析式即可; (2)结合二次函数图象即可.【详解】解:(1)∵二次函数23y ax bx =++与x 轴交于(3,0)A -和(1,0)B 两点, 933030a b a b -+=⎧∴⎨++=⎩解得12a b =-⎧⎨=-⎩∴二次函数的表达式为223y x x =--+.(2)由函数图象可知,二次函数值大于一次函数值的自变量x 的取值范围是30x -<<.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质. 21.解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20﹣(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A 1,A 2来自一个班,B 1,B 2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:=.【解析】(1)首先求出班级数,然后根据条形统计图求出只有2名留守儿童的班级数,再求出总的留守儿童数,最后求出每班平均留守儿童数;(2)利用树状图确定可能种数和来自同一班的种数,然后就能算出来自同一个班级的概率.22.(1)抛物线的表达式为y=x2﹣2x﹣2,B点的坐标(﹣1,0);(2)y的取值范围是﹣3≤y<1.(2)b的取值范围是﹣83<b<25.【解析】【分析】(1)、将点A坐标代入求出m的值,然后根据二次函数的性质求出点B的坐标;(2)、将二次函数配成顶点式,然后根据二次函数的增减性得出y的取值范围;(2)、根据函数经过(-1,0)、(3,2)和(0,-2)、(3,2)分别求出两个一次函数的解析式,从而得出b的取值范围.【详解】(1)∵将A(2,0)代入,得m=1,∴抛物线的表达式为y=2x-2x-2.令2x-2x-2=0,解得:x=2或x=-1,∴B点的坐标(-1,0).(2)y=2x-2x-2=()21x--3.∵当-2<x<1时,y随x增大而减小,当1≤x<2时,y随x增大而增大,∴当x=1,y最小=-3.又∵当x=-2,y=1,∴y的取值范围是-3≤y<1.(2)当直线y=kx+b经过B(-1,0)和点(3,2)时,解析式为y=25x+25.当直线y=kx+b经过(0,-2)和点(3,2)时,解析式为y=54x-2.由函数图象可知;b的取值范围是:-2<b<25.【点睛】本题主要考查的就是二次函数的性质、一次函数的性质以及函数的交点问题.在解决第二个问题的时候,我们首先必须要明确给出x的取值范围是否是在对称轴的一边还是两边,然后根据函数图形进行求解;对于第三问我们必须能够根据题意画出函数图象,然后根据函数图象求出取值范围.在解决二次函数的题目时,画图是非常关键的基本功.23.(1)1.7km ;(2)8.9km ;【解析】【分析】(1)根据锐角三角函数可以表示出OA 和OB 的长,从而可以求得AB 的长;(2)根据锐角三角函数可以表示出CD ,从而可以求得此时雷达站C 和运载火箭D 两点间的距离.【详解】解:(1)由题意可得,∠BOC=∠AOC=90°,∠ACO=34°,∠BCO=45°,OC=5km ,∴AO=OC•tan34°,BO=OC•tan45°,∴AB=OB ﹣OA=O C•tan45°﹣OC•tan34°=OC (tan45°﹣tan34°)=5×(1﹣0.1)≈1.7km ,即A ,B 两点间的距离是1.7km ;(2)由已知可得,∠DOC=90°,OC=5km ,∠DCO=56°,∴cos ∠DCO=,OC CD即5cos56,CD =o ∵sin34°=cos56°, ∴50.56CD=, 解得,CD≈8.9答:此时雷达站C 和运载火箭D 两点间的距离是8.9km .【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用数形结合的思想和锐角三角函数解答.24.-1【解析】【分析】先化简,再选出一个合适的整数代入即可,要注意a 的取值范围.【详解】 解:2211a a a a⎛⎫-÷ ⎪--⎝⎭ (1)(1)12a a a a a ---=•-1(1)12a a a a a -+-=•- 2a =, 当2a =-时,原式212-==-. 【点睛】 本题考查的是代数式的求值,熟练掌握代数式的化简是解题的关键.25.33层.【解析】【分析】根据含30度的直角三角形三边的关系和等腰直角三角形的性质得到BD 和CE 的长,二者的和乘以100后除以20即可确定台阶的数.【详解】解:在Rt △ABD 中,m ,在Rt △BEC 中,EC=12BC=3m ,∴,∵改造后每层台阶的高为22cm ,∴改造后的台阶有()×100÷22≈33(个)答:改造后的台阶有33个.【点睛】本题考查了坡度的概念:斜坡的坡度等于斜坡的铅直高度与对应的水平距离的比值,即斜坡的坡度等于斜坡的坡角的正弦.也考查了含30度的直角三角形三边的关系和等腰直角三角形的性质.26.(1)证明见解析;(2).【解析】【分析】(1)如图,连接OA ,根据同圆的半径相等可得:∠D=∠DAO ,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO ,再由直径所对的圆周角是直角得:∠BAD=90°,可得结论;(2)先证明OA ⊥BC ,由垂径定理得:»»AB AC =,FB=12BC ,根据勾股定理计算AF 、OB 、AD 的长即可.【详解】(1)如图,连接OA ,交BC 于F ,则OA=OB ,∴∠D=∠DAO ,∵∠D=∠C ,∴∠C=∠DAO ,∵∠BAE=∠C ,∴∠BAE=∠DAO ,∵BD 是⊙O 的直径,∴∠BAD=90°,即∠DAO+∠BAO=90°,∴∠BAE+∠BAO=90°,即∠OAE=90°,∴AE ⊥OA ,∴AE 与⊙O 相切于点A ;(2)∵AE ∥BC ,AE ⊥OA ,∴OA ⊥BC ,∴»»AB AC =,FB=12BC , ∴AB=AC ,∵7,2,∴72,在Rt △ABF 中,()()22227-,在Rt △OFB 中,OB 2=BF 2+(OB ﹣AF )2,∴OB=4, ∴BD=8,∴在Rt △ABD 中,22648214BD AB -=-=【点睛】本题考查了圆的切线的判定、勾股定理及垂径定理的应用,属于基础题,熟练掌握切线的判定方法是关键:有切线时,常常“遇到切点连圆心得半径,证垂直”.27.(1)见解析;(2)见解析【解析】【分析】(1)从所给的条件可知,DE是△ABC中位线,所以DE∥BC且2DE=BC,所以BC和EF平行且相等,所以四边形BCFE是平行四边形,又因为BE=FE,所以四边形BCFE是菱形.(2)因为∠BCF=120°,所以∠EBC=60°,所以菱形的边长也为4,求出菱形的高面积就可.【详解】解:(1)证明:∵D、E分别是AB、AC的中点,∴DE∥BC且2DE=BC.又∵BE=2DE,EF=BE,∴EF=BC,EF∥BC.∴四边形BCFE是平行四边形.又∵BE=FE,∴四边形BCFE是菱形.(2)∵∠BCF=120°,∴∠EBC=60°.∴△EBC是等边三角形.∴菱形的边长为4,高为∴菱形的面积为4×。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019 年天津市河北区中考数学一模试卷一、选择题:本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.计算(﹣5)﹣3 的结果等于()A.﹣8 B.﹣2 C.2 D.82.sin45°的值等于()A. B. C. D.13.下列表示天气的图形中,是中心对称图形的是()A.B.C.D.4.据国家统计局全国农村贫困监测调查,按现行国家农村贫困标准测算,2018 年末,全国农村贫困人口1660 万人,比上年末减少13860000 人.将13860000 用科学记数法表示为()A.0.1386×108 B.1.386×107 C.13.86×106 D.1386×1045.如图是由5 个相同的小正方体组成的立体图形,它的俯视图是()A. B. C.D.6.估计2的值在()A.4 和5 之间B.5 和6 之间C.6 和7 之间D.7 和8 之间7.计算+1 的结果为()A. B. C. D.8.若关于x,y 的方程组的解是,则mn 的值为()A.﹣2 B.﹣1 C.1 D.29.已知在反比例函数y=上有两个点A(x A,y A),B(x B,y B),若x A<0<x B,则下列结论正确的是()A.y A+y B<0 B.y A+y B>0 C.y A<y B D.y A>y B10.某同学记录了一个秋千离地面的高度h(m)与摆动时间t(s)之间的关系,如图所示,则这个秋千摆动第一个来回所需的时间为()A.0.7s B.1.4s C.2.8s D.5.4s11.如图,已知点E 是矩形ABCD 的对角线AC 上的一个动点,正方形EFGH 的顶点G、H 都在边AD上,若AB=2,BC=5,则tan∠AFE 的值()A.等于B.等于C.等于D.不确定,随点E 位置的变化而变化12.如图,一段抛物线y=﹣x2+9(﹣3≤x≤3)为C1,与x 轴交于A0,A1 两点,顶点为D1;将C1绕点A1 旋转180°得到C2,顶点为D2;C1 与C2 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2 交于点P3(x3,y3),且x1,x2,x3 均为正数,设t=x1+x2+x3,则t 的最大值是()A.15 B.18 C.21 D.24二、填空题:本大题共6 小题,每小题3 分,共18 分.13.计算a4(a3)2 的结果等于.14.分解因式:ab﹣ac=.15.在“绿水青ft就是金ft银ft”这句话中任选一个汉字,这个字是“ft”的概率是.16.已知正多边形的一个外角等于40°,那么这个正多边形的边数为.17.若m 为任意实数,则关于x 的一元二次方程(x﹣3)(x﹣2)m2=m+1 实数根的个数为.18.如图,在每个小正方形的边长为1 的网格中,点A、B、O、P 均在格点上.(I)O B 的长等于;(II)点M 在射线OA 上,点N 在射线OB 上,当△PMN 的周长最小时,请在如图所示的网格中,用无刻度的直尺,画出△PMN,并简要说明点M,N 的位置是如何找到的(不要求证明).三、解答题:本大题共7 小题,共66 分,解答应写出文字说明,演算步骤或证明过程.19.(8 分)本小题8 分解不等式组请结合题意填空,完成本题的解答.(I)解不等式①,得;(II)解不等式②,得;(III)把不等式①和②的解集在数轴上表示出来:(IV)原不等式组的解集为.20.(8 分)某学校组织全校1500 名学生进行经典诗词诵背活动,为了解本次系列活动的效果,学校团委在活动开展一个月之后,随机抽取部分学生调查了“一周诗词诵背数量”,并根据调查结果绘制成如下的统计图1 和图2.请根据相关信息,解答下列问题:(I)图2 中的m 值为;(I I)求统计的这组数据的平均数、众数和中位数;(I I I)估计此时该校学生一周诗词诵背6 首(含6 首)以上的人数.21.(10 分)已知△ABC 内接于⊙O,D 是上一点,OD⊥BC,垂足为H,连接AD、CD,AD 与BC 交于点P.(I)如图1,求证:∠ACD=∠APB;(I I)如图2,若AB 过圆心,∠ABC═30°,⊙O 的半径长为3,求AP 的长.22.(10 分)如图,某同学要测量海河某处的宽度AB,该同学使用无人机在C 处测得A,B 两点的俯角分别为45°和30°,若无人机此时离地面的高度CH 为1000 米,且点A,B,H 在同一水平直线上,求这处海河的宽度AB(结果取整数).参考数据:≈1.414,≈1.732.23.(10 分)某货运公司有大小两种货车,3 辆大货车与4 辆小货车一次可以运货29 吨,2 辆大货车与6 辆小货车一次可以运货31 吨.(I)请问1 辆大货车和1 辆小货车一次可以分别运货多少吨;(I I)目前有46.4 吨货物需要运输,货运公司拟安排大小货车共10 辆,全部货物一次运完,其中每辆大货车一次运货花费500 元,每辆小货车一次运货花费300 元,请问货运公司应如何安排车辆最节省费用?24.(10 分)如图,在平面直角坐标系xOy 第一象限中有正方形OABC,A(4,0),点P(m,0)是x 轴上一动点(0<m<4),将△ABP 沿直线BP 翻折后,点A 落在点E 处,在OC 上有一点M (0,t),使得将△OMP 沿直线MP 翻折后,点O 落在直线PE 上的点F 处,直线PE 交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t 与m 的函数关系式,并求出t 的最大值;(III)当△ABP≌△CBN 时,直接写出m 的值.25.(10 分)如图,抛物线y=x2+bx+c 与y 轴交于点A(0,2),对称轴为直线x=﹣2,平行于x 轴的直线与抛物线交于B、C 两点,点B 在对称轴左侧,BC=6.(I)求此抛物线的解析式;(II)已知在x 轴上存在一点D,使得△ABD 的周长最小,求点D 的坐标;(III)若过点C 的直线l 将△ABC 的面积分成2:3 两部分,试求直线l 的解析式.2019 年天津市河北区中考数学一模试卷参考答案与试题解析一、选择题:本大题共12 小题,每小题3 分,共36 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【分析】将减法转化为加法,再根据加法法则计算可得.【解答】解:(﹣5)﹣3=(﹣5)+(﹣3)=﹣8,故选:A.【点评】本题主要考查有理数的减法,解题的关键是掌握有理数的减法法则.2.【分析】根据特殊角度的三角函数值解答即可.【解答】解:sin45°=.故选:B.【点评】此题比较简单,只要熟记特殊角度的三角函数值即可.3.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180 度后两部分重合.4.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1 时,n 是非负数;当原数的绝对值<1 时,n 是负数.【解答】解:将13 860 000 用科学记数法表示为:1.386×107.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a| <10,n 为整数,表示时关键要正确确定a 的值以及n 的值.5.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上面看易得:有3 列小正方形第1 列有2 个正方形,第2 列有1 个正方形,第3 列有1 个正方形.故选:A.【点评】本题考查了简单组合体的三视图,解题时不但要具有丰富的数学知识,而且还应有一定的生活经验.6.【分析】根据的取值范围进行估计解答.【解答】解:∵2.6<<2.7,∴5<<6,故选:B.【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.7.【分析】根据分式的运算法则即可求出答案【解答】解:原式==,故选:B.【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.8.【分析】根据二元一次方程组的解的定义,把未知数的值代入方程组求出m、n 的值,根据有理数的乘法法则进行计算即可.【解答】解:把代入方程组中,可得:,解得:m=﹣1,n=2,所以mn=﹣2,故选:A.【点评】本题考查的是二元一次方程组的解的定义和有理数的乘方,掌握能使方程组中每个方程的左右两边相等的未知数的值即是方程组的解是解题的关键,注意有理数的乘法法则的正确运用.9.【分析】根据反比例函数图象上点的坐标特征解答.【解答】解:∵反比例函数y=﹣中的k=﹣1<0,∴反比例函数y=﹣的图象经过第二、四象限.∵x A<0<x B,∴点A(x A,y A)在第二象限,则y A>0,点B(x B,y B)在第四象限,则y B<0,∴y A>y B,故选:D.【点评】考查了反比例函数图象上点的坐标特征,解题的关键是掌握反比例函数图象与系数的关系.10.【分析】结合荡秋千的经验,秋千先从一端的最高点下落到最低点,再荡到另一端的最高点,再返回到最低点,最后回到开始的一端,符合这一过程的即是0~2.8s,由此即可得出结论.【解答】解:观察函数图象,可知:秋千摆动第一个来回需2.8s.故选:C.【点评】本题考查函数图象和函数概念,解答本题的关键是明确题意,利用数形结合的思想解答.11.【分析】由△AEH∽△ACD,找到EH 和AH 关系,从而得到FG 和AG 关系,根据tan∠AFE=tan∠FAG 求解.【解答】解:∵EH∥CD,∴△AEH∽△ACD.∴.设EH=2x,则AH=5x,∴HG=GF=2x.∴tan∠AFE=tan∠FAG=.故选:B.【点评】本题主要考查了正方形、矩形的性质、解直角三角形,解题的关键是转化角进行求解.12.【分析】先求出旋转后函数的顶点和对称轴,再由垂直于y 轴的直线l 与新图象相交,所以交点的横坐标关于对称抽对称,得到x1+x2=12,再结合0≤x3≤6 即可求t 的最大值.【解答】解:由已知可得:A1(3,0),D1(0,9),将C1 绕点A1 旋转180°后,得到:D2(6,﹣9),新函数的对称轴为x=6,垂直于y 轴的直线l 与新图象交于点P1(x1,y1),P2(x2,y2),∴P1(x1,y1),P2(x2,y2)两点关于对称轴x=6 对称,∴x1+x2=12,∵垂直于y 轴的直线l 与线段D1D2 交于点P3(x3,y3),∴0≤x3≤6,∴t=x1+x2+x3=12+x3,当x3=6 时,t 有最大值18.故选:B.【点评】本题考查二次函数图象的旋转.解题中找到旋转后的对称轴和顶点坐标是解题的关键,能够根据点的对称性将三个变量的关系转化为一个变量是解题的突破点.二、填空题:本大题共6 小题,每小题3 分,共18 分.13.【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则分别化简得出答案.【解答】解:原式=a4•a6=a10.故答案为:a10.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确掌握相关运算法则是解题关键.14.【分析】直接提取公因式a,进而分解因式即可.【解答】解:ab﹣ac=a(b﹣c).故答案为:a(b﹣c).【点评】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.15.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:∵在“绿水青ft就是金ft银ft”这10 个字中,“ft”字有 3 个,∴这句话中任选一个汉字,这个字是“ft”的概率是,故答案为:.【点评】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)=.16.【分析】由正多边形的每一个外角是,代入即可.【解答】解:∵正多边形外角和是360°,每一个外角是,又因为每个外角等于40°,∴n=9,故答案为9.【点评】本题考查正多边形的外角都相等,外角和360°.牢记性质和公式是解题的关键.17.【分析】将方程整理成一般式,再得出判别式△=(﹣5)2﹣4×1×(﹣m2﹣m+5)=(m+1 )2+4>0,据此可得答案.【解答】解:方程整理为一般式为x2﹣5x﹣m2﹣m+5=0,∵△=(﹣5)2﹣4×1×(﹣m2﹣m+5)=m2+2m+5=(m+1)2+4>0,∴这个方程有两个不相等的实数根,故答案为:两个不相等的实数根.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.18.【分析】(1)利用勾股定理即可解决问题;(2)作点P 关于OA,OB 的对称点,进而解答即可.【解答】解:(1)OB=,(2)如图所示:作点P 关于OA,OB 的对称点,连接两个对称点交OB 于N,交OA 于M 即可;故答案为:;作点P 关于OA,OB 的对称点,连接两个对称点交OB 于N,交OA 于M.【点评】本题考查作图﹣应用与设计、勾股定理等知识,解题的关键是利用勾股定理和对称解答.三、解答题:本大题共7 小题,共66 分,解答应写出文字说明,演算步骤或证明过程.19.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式组的解集表示在数轴上即可.【解答】解:(I)解不等式①,得x≤3;(I I)解不等式②,得x>﹣1;(I I I)把不等式①和②的解集在数轴上表示出来:(I V)原不等式组的解集为:﹣1<x≤3.故答案为:(I)x≤3;(Ⅱ)x>﹣1;(Ⅳ)﹣1<x≤3.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.也考查了在数轴上表示不等式组的解集.20.【分析】(Ⅰ)根据统计图中的数据可以求得m 的值;(Ⅱ)根据条形统计图中的数据可以求得平均数、众数和中位数;(Ⅲ)根据统计图中的时,可以计算出该校学生一周诗词诵背6 首(含 6 首)以上的人数.【解答】解:(Ⅰ)m%==25%,则m=25,故答案为:25;(Ⅱ)平均数是:=5.2,众数是4,中位数是5;(Ⅲ)1500×=600(人),答:该校学生一周诗词诵背 6 首(含6 首)以上的有600 人.【点评】本题考查条形统计图、扇形统计图、平均数、众数、中位数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【分析】(I)由垂径定理得出,由圆周角定理得出∠DAC=∠BCD,再由三角形的外角性质,即可得出结论;(II)由圆周角定理得出∠ACB=90°,求出∠BAC=60°,AC=AB=3,由圆周角定理得出∠ BAD=∠CAD=30°,在Rt△ACP 中,∠CAP=30°,得出AP=2CP,AC=CP=3,求出CP=,即可得出AP 的长.【解答】(I)证明:∵OD⊥BC,∴,∴∠DAC=∠BCD,∵∠ACD=∠ACB+∠BCD,∠APB=∠ACB+∠DAC,∴∠ACD=∠APB;(II)解:∵AB 是⊙O 的直径,∴∠ACB=90°,∵∠ABC=30°,AB=2OB=6,∴∠BAC=60°,AC=AB=3,∵OD⊥BC,∴,∴∠BAD=∠CAD=30°,在Rt△ACP 中,∠CAP=30°,∴AP=2CP,AC=CP=3,∴CP=,∴AP=2 .【点评】本题考查了圆周角定理、垂径定理、直角三角形的性质、勾股定理等知识;熟练掌握垂径定理和圆周角定理是解决问题的关键.22.【分析】在Rt△ACH 和Rt△HCB 中,利用锐角三角函数,用CH 表示出AH、BH 的长,然后计算出AB 的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH 中,∵∴∠CAH=45°∴AH=CH=1200 米,在Rt△HCB,∵tan∠B=,∴HB=(米).∴AB=HB﹣HA=1000 ﹣1000=1000(﹣1)米. 【点评】本题考查了锐角三角函数的仰角、俯角问题.题目难度不大,解决本题的关键是用含 CH的式子表示出 AH 和 BH .23. 【分析】(I )设 1 辆大货车和 1 辆小货车一次可以分别运货 x 吨和 y 吨,根据“3 辆大货车与 4辆小货车一次可以运货 18 吨、2 辆大货车与 6 辆小货车一次可以运货 17 吨”列方程组求解可得;(II )设货运公司安排大货车 m 辆,则安排小货车(10﹣m )辆.根据 10 辆货车需要运输 46.4 吨货物列出不等式.【解答】解:(I )设 1 辆大货车和 1 辆小货车一次可以分别运货 x 吨和 y 吨,根据题意可得:,答:1 辆大货车和 1 辆小货车一次可以分别运货 5 吨和 3.5 吨;(II )设货运公司安排大货车 m 辆,则安排小货车(10﹣m )辆,根据题意可得:5m +3.5(10﹣m )≥46.4,解得:m ≥7.6,因为 m 是正整数,且 m ≤10,所以 m =8 或 9 或 10.所以 10﹣m =2 或 1 或 0.方案一:所需费用=500×8+300×2=4600(元)方案二:所需费用=500×9+300×1=4800(元)方案三:所需费用=500×10+300×0=5000(元)因为 4600<4800<5000.所以货运公司安排大货车 8 辆,则安排小货车 2 辆,最节省费用.【点评】考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量, 解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.24. 【分析】(Ⅰ)由折叠知,∠APB =∠NPB ,∠OPM =∠NPM ,再由平角即可得出结论;(Ⅱ)先表示出 AP =OA ﹣OP =4﹣m ,进而得出 OM =t ,再判断出△MOP ∽△PAB ,进而得出 t ,解得:=﹣(m﹣2)2+1即可得出结论;(Ⅲ)先判断出∠CBN=∠ABP,BP=BN,再判断出NE=PE,∠NBE=∠PBE,进而得出∠CBE =∠ABE=45°,再求出PN=m,进而得出MN=ON=OM=m﹣t,再判断出△OMP∽△NMG ,得出=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,即可得出结论.【解答】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC 是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2 时,t 的最大值为1;(Ⅲ)∵△ABP≌△CBN,∵∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC 是正方形,∴∠OBC=∠OBA=45°,∴点E 在OB 上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N 作OP 的平行线交PM 的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.【点评】此题是四边形综合题,主要考查了正方形的性质,折叠的性质,全等三角形的判定和性质,相似三角形的判定和性质,周长辅助线构造出相似三角形是解本题的关键.25.【分析】(I)由抛物线过点A(0,2)及对称轴为直线x=﹣2,可得出关于b,c 的方程,解之即可得出b,c 的值,进而可得出抛物线的解析式;(II)由抛物线的对称轴及线段BC 的长度可得出点B,C 的坐标,作点A 关于x 轴的对称点A′,连接A′B 交x 轴于点D,此时△ABD 的周长最小,由点A 的坐标可得出点A′的坐标,由点A ′,B 的坐标利用待定系数法可求出直线A′B 的解析式,再利用一次函数图象上点的坐标特征可得出点D 的坐标;(III)由点A,B 的坐标可得出AB 的长度,设直线l 与线段AB 交于点P,由过点C 的直线l 将△ ABC 的面积分成2:3 两部分可得出AP 的长度,过点P 作PE∥y 轴,过点A 作AE∥x 轴,交直线PE 于点E,则△APE 为等腰直角三角形,由AP 的长度结合等腰直角三角形的性质可得出AE,PE 的长度,进而可得出点P 的坐标,再由点C,P 的坐标利用待定系数法可求出直线l 的解析式.【解答】解:(I)依题意,得:,解得:,∴此抛物线的解析式为y=x2+4x+2.(I I)∵抛物线的对称轴为直线x=﹣1,BC=6,且点B,C 关于直线x=﹣2 对称,∴点B 的横坐标为﹣5,点 C 的横坐标为1,∴点B 的坐标(﹣5,7),点C 的坐标为(1,7).作点A 关于x 轴的对称点A′,连接A′B 交x 轴于点D,此时△ABD 的周长最小,如图1 所示.∵点A 的坐标为(0,2),∴点A′的坐标为(0,﹣2).设直线A′B 的解析式为y=kx+a(k≠0),将点A′(0,﹣2),B(﹣5,7)代入y=kx+a,得:,解得:,∴直线A′B 的解析式为y=﹣x﹣2.当y=0 时,﹣x﹣2=0,解得:x=﹣,∴点D 的坐标为(﹣,0).(I I I)∵点A 的坐标为(0,2),点B 的坐标为(﹣5,7),∴AB=5 .设直线l 与线段AB 交于点P,则AP=3或2.过点P 作PE∥y 轴,过点 A 作AE∥x 轴,交直线PE 于点E,如图2 所示.∵点A 的坐标为(0,2),点B 的坐标为(﹣5,7),∴直线AB 的解析式为y=﹣x+2,∴∠PAE=45°,∴△APE 为等腰直角三角形,∴AE=PE=2 或3,∴点P 的坐标为(﹣2,4)或(﹣3,5).当点P 的坐标为(﹣2,4)时,直线l 的解析式为y=x+6;当点P 的坐标为(﹣3,5)时,直线l 的解析式为y=x+.综上所述:直线l 的解析式为y=x+6 或y=x+ .【点评】本题考查了二次函数图象上点的坐标特征、二次函数的性质、待定系数法求一次函数解析式、一次函数图象上点的坐标特征以及等腰直角三角形,解题的关键是:(I)利用二次函数图象上点的坐标特征及二次函数的性质,求出b,c 的值;(II)利用两点之间线段最短,找出点D 的位置;(III)利用等腰直角三角形的性质,求出点P 的坐标.。

相关文档
最新文档