直流电动机转速电流双闭环控制系统设计
双闭环直流调速系统设计及仿真

双闭环直流调速系统设计及仿真一转速、电流双闭环控制系统一般来说,我们总希望在最大电流受限制的情况下,尽量发挥直流电动机的过载能力,使电力拖动控制系统以尽可能大的加速度起动,达到稳态转速后,电流应快速下降,保证输出转矩与负载转矩平衡,进入稳定运行状态[1]。
这种理想的起动过程如图1所示。
nnt图1 转速调节系统理想起动过程为实现在约束条件快速起动,关键是要有一个使电流保持在最大值的恒流过程。
根据反馈控制规律,要控制某个量,就要引入这个量的负反馈。
因此很自然地想到要采用电流负反馈控制过程。
这里实际提到了两个控制阶段。
起动过程中,电动机转速快速上升,而要保持电流恒定,只需电流负反馈;稳定运行过程中,要求转矩保持平衡,需使转速保持恒定,应以转速负反馈为主。
如何才能做到使电流、转速两种负反馈在不同的控制阶段发挥作用呢?答案是采用转速、电流双闭环控制系统。
如图2所示。
图2 双闭环直流调速控制系统原理图参考双闭环的结构图和一些电力电子的知识,采用机理分析法可以得到双闭环系统的动态结构图。
如图3所示。
图3 双闭环直流调速系统动态结构图在转速环、电流环的反馈通道和输入端增加了转速滤波、电流滤波和给定滤波环节。
因为电流检测信号中常含有交流成分,须加低通滤波,其滤波时间常数按需要而定。
滤波环节可以抑制检测信号中的交流分量,但同时也个反馈检测信号带来延迟。
所以在给定信号通道中加入一个给定滤波环节,使给定信号与反馈信号同步,并可使设计简化。
由测速发电机得到的转速反馈电压含有电机的换向纹波,因此也需要滤波,其时间常数用表示[2]。
二双闭环控制系统起动过程分析前面已经指出,设置双闭环控制的一个重要目的就是要获得接近于理想的起动过程,因此在分析双闭环调速系统的动态性能时,有必要先探讨它的起动过程。
双闭环调速系统突加给定电压由静止状态起动时,转速和电流的过渡过程如图4所示。
由于在起动过程中转速调节器ASR 经历了不饱和、饱和、退饱和三个阶段,整个过渡过程也就分为三个阶段,在图中表以Ⅰ、Ⅱ和Ⅲ。
双闭环直流调速系统的设计

双闭环直流调速系统设计一、系统组成与数学建模1)系统组成为了实现转速和电流两种负反馈分别起作用,可在系统中设置两个调节器,分别调节转速和电流,即分别引入转速负反馈和电流负反馈。
二者之间实行嵌套(或称串级)联接如下图所示。
L+-图中,把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
为了获得良好的静、动态性能,转速和电流两个调节器一般都采用P I 调节器,这样构成的双闭环直流调速系统的电路原理图示于下图。
图中标出了两个调节器输入输出电压的实际极性,它们是按照电力电子变换器的控制电压U c为正电压的情况标出的,并考虑到运算放大器的倒相作用。
2)数学建模图中W ASR(s)和W ACR(s)分别表示转速调节器和电流调节器的传递函数。
如果采用PI调节器,则有ss K s W i i iACR 1)(ττ+= ss K s W n n nASR 1)(ττ+=二、 设计方法采用工程设计法 1、设计方法的原则: (1)概念清楚、易懂; (2)计算公式简明、好记;双闭环直流调速系统的动态结构图(3)不仅给出参数计算的公式,而且指明参数调整的方向; (4)能考虑饱和非线性控制的情况,同样给出简单的计算公式; (5)适用于各种可以简化成典型系统的反馈控制系统。
2、工程设计方法的基本思路:(1)选择调节器结构,使系统典型化并满足稳定和稳态精度。
(2)设计调节器的参数,以满足动态性能指标的要求。
一般来说,许多控制系统的开环传递函数都可表示为∏∏==++=n1i irm1j j )1()1()(s T ss K s W τ上式中,分母中的 sr 项表示该系统在原点处有 r 重极点,或者说,系统含有 r 个积分环节。
根据 r=0,1,2,……等不同数值,分别称作0型、I 型、Ⅱ型、……系统。
实验二转速电流双闭环直流调速系统

实验二 转速、电流双闭环直流调速系统一、实验目的1.了解转速、电流双闭环直流调速系统的组成。
2.掌握双闭环直流调速系统的调试步骤,方法及参数的整定。
3.测定双闭环直流调速系统的静态和动态性能及其指标。
4.了解调节器参数对系统动态性能的影响。
二、实验系统组成及工作原理双闭环调速系统的特征是系统的电流和转速分别由两个调节器控制,由于调速系统调节的主要参量是转速,故转速环作为主环放在外面,而电流环作为副环放在里面,可以及时抑制电网电压扰动对转速的影响。
实际系统的组成如实验图2-1所示。
实验图2-1 转速、电流双闭环直流调速系统主电路采用三相桥式全控整流电路供电。
系统工作时,首先给电动机加上额定励磁,改变转速给定电压*n U 可方便地调节电动机的转速。
速度调节器ASR 、电流调节器ACR 均设有限幅电路,ASR 的输出*i U 作为ACR 的给定,利用ASR 的输出限幅*im U 起限制起动电流的作用;ACR 的输出c U 作为触发器TG 的移相控制电压,利用ACR 的输出限幅cm U 起限制αmin 的作用。
当突加给定电压*n U 时,ASR 立即达到饱和输出*im U ,使电动机以限定的最大电流I dm 加速起动,直到电动机转速达到给定转速(即*n n U U )并出现超调,使ASR 退出饱和,最后稳定运行在给定转速(或略低于给定转速)上。
三、实验设备及仪器1.主控制屏NMCL-322.直流电动机-负载直流发电机-测速发电机组3. NMCL -18挂箱、NMCL-333挂箱及电阻箱4.双踪示波器5.万用表四、实验内容1.调整触发单元并确定其起始移相控制角,检查和调整ASR 、ACR ,整定其输出正负限幅值。
2.测定电流反馈系数β和转速反馈系数α,整定过电流保护动作值。
3.研究电流环和转速环的动态特性,将系统调整到可能的最佳状态,画出)(t f I d =和)(t f n =的波形,并估算系统的动态性能指标(包括跟随性能和抗扰性能)。
直流电动机双闭环调速系统设计

1 设计方案论证电流环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
转速环调节器方案一,采用PID调节器,PID调节器是最理想的调节器,能够平滑快速调速,但在实际应用过程中存在微分冲击,将对电机产生较大的冲击作用,一般要小心使用。
方案二,采用PI调节器,PI调节器能够做到无静差调节,且电路较PID调节器简单,故采用方案二。
2双闭环调速控制系统电路设计及其原理综述随着现代工业的开展,在调速领域中,双闭环控制的理念已经得到了越来越广泛的认同与应用。
相对于单闭环系统中不能随心所欲地控制电流和转矩的动态过程的弱点。
双闭环控制那么很好的弥补了他的这一缺陷。
双闭环控制可实现转速和电流两种负反应的分别作用,从而获得良好的静,动态性能。
其良好的动态性能主要表达在其抗负载扰动以及抗电网电压扰动之上。
正由于双闭环调速的众多优点,所以在此有必要对其最优化设计进展深入的探讨和研究。
本次课程设计目的就是旨在对双闭环进展最优化的设计。
整流电路本次课程设计的整流主电路采用的是三相桥式全控整流电路,它可看成是由一组共阴接法和另一组共阳接法的三相半波可控整流电路串联而成。
共阴极组VT1、VT3和VT5在正半周导电,流经变压器的电流为正向电流;共阳极组VT2、VT4和VT6在负半周导电,流经变压器的电流为反向电流。
变压器每相绕组在正负半周都有电流流过,因此,变压器绕组中没有直流磁通势,同时也提高了变压器绕组的利用率。
三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。
为使负载电流连续平滑,有利于直流电动机换向及减小火花,以改善电动机的机械特性,一般要串入电感量足够大的平波电抗器,这就等同于含有反电动势的大电感负载。
三相桥式全控整流电路的工作原理是当a=0°时的工作情况。
转速、电流双闭环直流调速系统

第2章 转速、电流双闭环直流调速系统和调节器的工程设计方法2.1 转速、电流双闭环直流调速系统及其静特性采用PI 调节的单个转速闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,单闭环系统就难以满足需要,这主要是因为在单闭环系统中不能控制电流和转矩的动态过程。
电流截止负反馈环节是专门用来控制电流的,并不能很理想地控制电流的动态波形,图2-1a)。
在起动过程中,始终保持电流(转矩)为允许的最大值,使电力拖动系统以最大的加速度起动,到达稳态转速时,立即让电流降下来,使转矩马上与负载相平衡,从而转入稳态运行。
这样的理想起动过程波形示于图2-1b 。
为了实现在允许条件下的最快起动,关键是要获得一段使电流保持为最大值dm I 的恒流过程。
按照反馈控制规律,采用某个物理量的负反馈就可以保持该量基本不变,那么,采用电流负反馈应该能够得到近似的恒流过程。
应该在起动过程中只有电流负反馈,没有转速负反馈,达到稳态转速后,又希望只要转速负反馈,不再让电流负反馈发挥作用。
2.1.1 转速、电流双闭环直流调速系统的组成系统中设置两个调节器,分别调节转速和电流,如图2-2所示。
把转速调节器的输出当作电流调节器的输入,再用电流调节器的输出去控制电力电子变换器UPE 。
从闭环结构上看,电流环在里面,称作内环;转速环在外边,称作外环。
这就形成了转速、电流双闭环调速系统。
转速和电流两个调节器一般都采用PI 调节器,图2-3。
两个调节器的输出都是带限幅+TG nASRACRU*n+ -U nU iU*i+-U cTAM+-U dI dUPE-MT图2-2 转速、电流双闭环直流调速系统结构ASR —转速调节器 ACR —电流调节器 TG —测速发电机TA —电流互感器 UPE —电力电子变换器内外ni2作用的,转速调节器ASR 的输出限幅电压*im U 决定了电流给定电压的最大值,电流调节器ACR 的输出限幅电压cm U 限制了电力电子变换器的最大输出电压dm U 。
电流转速双闭环直流调速系统的工作原理

电流转速双闭环直流调速系统的工作原理(吴欢欢)(山东工商学院信息与电子工程学院电气122班山东省烟台 264005 )摘要:在工业生产中,需要高性能速度控制的电力拖动场合,直流调速系统发挥着极为重要的作用。
而采用电流转速双闭环直流调速系统,就可以充分利用电动机的过载能力获得最快的动态过程。
本次设计主要了解电流转速双闭环直流调速系统的工作原理、系统组成、静态几动态特性。
并绘出工作原理图。
关键词:双闭环控制系统、直流调速系统、ASR、直流电动机。
The working principle of current and speed double closed loop DC speed regulatingsystemWuhuanhuan(Shandong Institute of Business and Technology Yan Tai 264005)ABSTRACT:In industrial production, need to electric drive applications where high performance speed control, DC speed control system plays a very important role. While the current speed double loop speed control system, it can make full use of the overload capacity of a motor to obtain the dynamic process of the fastest. The working principle, the design of the main understanding current speed double loop DC motor control system, the static and dynamic characteristics. And draw the operating system diagram.KEYWORDS:The double closed loop control system、DC speed regulating system、ASR、continuous current motor一、引言直流电机调速,在额定转速以下,保持励磁电流恒定,可用改变电枢电压的方法实现恒转矩调速;在额定转速以上,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
双闭环直流电动机调速系统

04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
转速﹑电流双闭环直流调速系统

引言目前,转速﹑电流双闭环控制直流调速系统是性能很好﹑应用最广泛的直流调速系统。
我们知道采用转速负反馈和PI调节器的单闭环直流调速系统可以在保证系统稳定的前提下实现转速无静差。
但是,如果对系统的动态性能要求较高,例如:要求快速起制动,突加负载动态速降小等等,单闭环系统就难以满足需要。
故需要引入转速﹑电流双闭环控制直流调速系统,本文着重阐明其控制规律﹑性能特点和设计方法,是各种交﹑直流电力拖动自动控制系统的重要基础。
首先介绍转速﹑电流双闭环调速系统的组成及其静特性,接着说明该系统的动态数学模型,并从起动和抗扰两个方面分析其性能和转速与电流两个调节器的作用。
在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。
电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。
因此,调速技术一直是研究的热点。
长期以来,直流电动机由于调速性能优越而掩盖了结构复杂等缺点广泛的应用于工程过程中。
直流电动机在额定转速以下运行时,保持励磁电流恒定,可用改变电枢电压的方法实现恒定转矩调速;在额定转速以上运行时,保持电枢电压恒定,可用改变励磁的方法实现恒功率调速。
采用转速、电流双闭环直流调速系统可获得优良的静、动态调速特性。
在现代化的工业生产中,几乎无处不使用电力拖动装置。
轧钢机、电铲、提升机、运输机等各类生产机械都要采用电动机来传动。
随着对生产工艺,产品质量的要求不断提高和产量的增长,越来越多的生产机械能实现自动调速。
从20世纪60年代以来,现代工业电力拖动系统达到了全新的发展阶段。
这种发展是以采用电力电子技术为基础的,在世界各国的工业部门中,直流电力拖动系统至今仍广泛的应用着。
直流拖动的突出优点在于:容易控制,能在很宽的范围内平滑而精确的调速,以及快速响应等。
在一定时期以内,直流拖动仍将具有强大的生命力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
2.提高系统抗扰性能
通过调节器的适当设计可使系统“转速环”对于电网电压及负载 转矩的波动或突变等扰动予以控制(迅速抑制),在最大速降、 恢复时间等指标上达到最佳。
Id ,n
n
I dL 2
I dL1 tf
t1
t2
t
图 双闭环控制直流调速系统负载扰动特性
三、仿真实验
3.1 起动特性 3.2 抗扰性能
四、结论
Harbin Institute of Technology
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
自70年代以来,国内外在电气传动领域里,大量地 采用了“晶闸管整流电动机调速”技术(简称V-M调 速系统)。尽管当今功率半导体变流技术已有了突 飞猛进的发展,但在工业生产中V-M系统的应用还是 占有相当比重的。
一、系统建模
1.1 电动机的数学模型 1.2 晶闸管整流装置的数学模型 1.3双闭环调速系统的数学模型
二、电流环与转速环调节器设计
2.1 双闭环控制的目的 2.2 关于积分调节器的饱和非线性问题 2.3 ASR与ACR的工程设计方法
三、仿真实验
3.1 起动特性 3.2 抗扰性能
四、结论
Harbin Institute of Technology
四、结论
Harbin Institute of Technology
系统建模与仿真
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
比例放大器、测速发电机和电流互感器的响应通 常都可以认为是瞬时的,但是在电流和转速的检测信 号中常含有交流分量(噪声),故在反馈通道和给定 信号前均加入滤波环节。
直流电动机转速/电流双闭环控制系统设计
一、系统建模
1.1 电动机的数学模型 1.2 晶闸管整流装置的数学模型 1.3双闭环调速系统的数学模型
二、电流环与转速环调节器设计
2.1 双闭环控制的目的 2.2 关于积分调节器的饱和非线性问题 2.3 ASR与ACR的工程设计方法
三、仿真实验
3.1 起动特性 3.2 抗扰性能
automatic current regulator (ACR) 自动电流调节器 automatic speed regulator (ASR)自动速度调节器.实际上就是调速器 Harbin Institute of Technology
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计——建模
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
晶闸管触发与整流装置可以看成是一个具有纯滞后 的放大环节,其滞后作用是由晶闸管装置的失控时间 引起的。考虑到失控时间很小,忽略其高次项,则其 传递函数可近似成一阶惯性环节,如下式所示
Ud0(s) Ks Uct (s) Tss 1
Harbin Institute of Technology
一、系统建模
1.1 电动机的数学模型 1.2 晶闸管整流装置的数学模型 1.3双闭环调速系统的数学模型
二、电流环与转速环调节器设计
2.1 双闭环控制的目的 2.2 关于积分调节器的饱和非线性问题 2.3 ASR与ACR的工程设计方法
三、仿真实验
3.1 起动特性 3.2 抗扰性能
四、结论
Harbin Institute of Technology
三、仿真实验
3.1 起动特性 3.2 抗扰性能
四、结论
Harbin Institute of Technology
I dL
U
n
1
+
Tons 1
-
WASR (s)
U
i
1 Tois 1
-
WACR (s) Uc
Kc Tcs 1
U dE
-
1/ R Id Tl s 1
-
R Tm s
1 Ce
n
转速环
电流环
Tois 1
Tons 1
Harbin Institute of Technology
直流电动机转速/电流双闭环控制系统设计
系统建模与仿真
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
1.启动的快速性问题
借助于PI调节器的饱和非线性特性,使得 系统在电动机允许的过载能力下尽可能地 快速启动。
Id ,n I dm
n I dL
t
图4-5 理想电动机起动特性
Harbin Institute of Technology
系统建模与仿真
Outline
1 直流电动机转速/电流双闭环控制系统设计 2 基于双闭环PID控制的一阶倒立摆控制系统设计 3 龙门吊车重物防摆的鲁棒PID控制方案 4 龙门吊车重物防摆的滑模变结构控制方案 5 一阶直线倒立摆系统的可控性研究 6 自平衡式两轮电动车运动控制技术研究 7 问题与探究---灵长类仿生机器人运动控制
Harbin Institute of Technology
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
一、系统建模
1.1 电动机的数学模型 1.2 晶闸管整流装置的数学模型 1.3双闭环调速系统的数学模型
二、电流环与转速环调节器设计
2.1 双闭环控制的目的 2.2 关于积分调节器的饱和非线性问题 2.3 ASR与ACR的工程设计方法
Harbin Institute of Technology
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
一、系统建模
1.1 电动机的数学模型 1.2 晶闸管整流装置的数学模型 1.3双闭环调速系统的数学模型
二、电流环与转速环调节器设计
2.1 双闭环控制的目的 2.2 关于积分调节器的饱和非线性问题 2.3 ASR与ACR的工程设计方法
Ud0(s) +
_
IdL (s)
_
1/ R Id (s)
R E(s) 1 n(s)
Tl s 1 +
Tm s
Ce
其中
Tl
L R
为电枢回路电磁时间常数
TmBiblioteka GD2 R 375CeCm
为电机系统机电时间常数
Harbin Institute of Technology
系统建模与仿真
1 直流电动机转速/电流双闭环控制系统设计
根据额定励磁下他励直流电动机的等效 电路,可以写出回路中电压和转矩平衡 的微分方程
Harbin Institute of Technology
系统建模与仿真
Harbin Institute of Technology
系统建模与仿真
电动机的数学模型
通过对上面两式进行拉氏变换后,可 以得到电动机的数学模型(动态传递 函数形式)