六年级奥数行程问题讲解
六年级奥数行程问题知识归纳及训练

六年级奥数行程问题知识归纳及训练一、知识整理基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、路程三者之间的关系.基本题型:已知路程(相遇路程、追及路程)、时间(相遇时间、追及时间)、速度(速度和、速度差)中任意两个量,求第三个量。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定运动过程中的位置和方向。
相遇问题:速度和×相遇时间=相遇路程(请写出其他公式)追及问题:追及时间=路程差÷速度差(写出其他公式)流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2流水问题关键是确定物体所运动的速度,参照以上公式。
过桥问题:关键是确定物体所运动的路程,参照以上公式。
过程问题主要解决方法是画线段图法。
二、细分类型题训练1.停走问题解题要领:这类题抓住一个关键--假设不停走,算出本来需要的时间。
1)、龟兔赛跑,全程5.4千米,兔子每小时跑25千米,乌龟每小时跑4千米,乌龟不停的跑,但兔子却边跑边玩,它先跑1分,然后再玩15分,又跑2分,玩15分,再跑3分,玩15分,……,那么先到达终点的比后到达终点的快几分钟呢?2)、在一条公路上,甲、乙两个地点相距600米。
每小时行走4千米,李强每小时5千米。
8点整,他们两人从甲、乙两地同时出发相向而行,1分钟后他们都的掉头反向而行,再过3分钟,他们又掉头相向而行,依次按照1,3,5,7,9,……分钟数掉头行走,那么,张、李二人相遇时间是8点几分呢?2、多人行程解题要领:这类问题主要涉及的人数为3人,主要考察的问题就是求前两个人相遇或追及的时刻,第三个人的位置,解题的思路就是把三人问题转化为寻找两两人之间的关系。
1)、有甲、乙、丙三人同时同地出发,绕一个花圃行走,乙、丙二人同方向行走,甲于乙、丙背向而行。
六年级下小升初典型奥数之行程问题

六年级下小升初典型奥数之行程问题在小学六年级的数学学习中,行程问题一直是一个重点和难点,也是小升初奥数考试中经常出现的题型。
今天,咱们就来好好探讨一下这类问题。
行程问题主要涉及速度、时间和路程这三个量之间的关系。
基本的公式就是:路程=速度×时间。
而常见的行程问题类型有相遇问题、追及问题、流水行船问题等等。
咱们先来说说相遇问题。
比如说,甲从 A 地出发,速度是每小时 5千米;乙从 B 地出发,速度是每小时 3 千米。
A、B 两地相距 16 千米,两人相向而行,问经过多长时间两人相遇。
解决这个问题,我们可以先算出两人的速度和,也就是 5 + 3 = 8千米/小时。
然后用总路程除以速度和,就能得到相遇时间:16÷8 = 2小时。
再来看一个稍微复杂点的相遇问题。
甲、乙两人分别从 A、B 两地同时出发,相向而行。
甲每小时走 4 千米,乙每小时走 6 千米,经过 3 小时两人相遇。
A、B 两地相距多远?这时候我们就可以先算出甲 3 小时走的路程是 4×3 = 12 千米,乙 3 小时走的路程是 6×3 = 18 千米。
然后把两人走的路程相加,12 + 18= 30 千米,就是 A、B 两地的距离。
接下来是追及问题。
比如甲在乙前面 10 千米处,甲的速度是每小时 3 千米,乙的速度是每小时 5 千米,问乙多长时间能追上甲。
因为乙的速度比甲快,所以每小时乙能比甲多走 5 3 = 2 千米。
而两人一开始的距离差是 10 千米,所以追上甲需要的时间就是 10÷2 = 5 小时。
再看一个例子,甲、乙两人同时同向出发,甲在前,乙在后。
甲每小时走 2 千米,乙每小时走 5 千米。
出发 4 小时后,乙追上甲。
一开始两人相距多远?我们先算出乙 4 小时走的路程是 5×4 = 20 千米,甲 4 小时走的路程是 2×4 = 8 千米。
因为乙追上了甲,所以一开始两人的距离差就是乙比甲多走的路程,即 20 8 = 12 千米。
六年级奥数行程问题解题技巧

六年级奥数行程问题解题技巧一、行程问题解题技巧之相遇问题。
1. 题目。
甲、乙两人分别从A、B两地同时出发,相向而行,甲的速度是每小时15千米,乙的速度是每小时10千米,经过3小时两人相遇。
求A、B两地的距离。
解析。
根据相遇问题的公式:路程 = 速度和×相遇时间。
甲、乙的速度和为15 + 10=25(千米/小时),相遇时间是3小时,所以A、B两地的距离为25×3 = 75千米。
2. 题目。
A、B两地相距200千米,甲、乙两车分别从A、B两地同时相向开出,甲车的速度为每小时30千米,乙车的速度为每小时20千米。
问几小时后两车相遇?解析。
速度和为30+20 = 50千米/小时,根据相遇时间 = 路程÷速度和,可得相遇时间为200÷50=4小时。
3. 题目。
甲、乙两人在周长为400米的环形跑道上跑步,甲的速度是每秒6米,乙的速度是每秒4米。
两人同时同地反向出发,经过多少秒两人第一次相遇?解析。
在环形跑道上反向出发,相遇时两人跑的路程和就是跑道的周长。
速度和为6 + 4=10米/秒,根据时间 = 路程÷速度和,可得相遇时间为400÷10 = 40秒。
二、行程问题解题技巧之追及问题。
4. 题目。
甲、乙两人同向而行,甲的速度是每小时8千米,乙的速度是每小时6千米,乙先走2小时后,甲才出发,问甲几小时后能追上乙?解析。
乙先走2小时,则先走的路程为6×2 = 12千米。
甲、乙的速度差为8 6 = 2千米/小时。
根据追及时间 = 路程差÷速度差,可得追及时间为12÷2 = 6小时。
5. 题目。
一辆汽车以每小时60千米的速度从A地开往B地,3小时后一辆摩托车以每小时90千米的速度也从A地开往B地,问摩托车出发后几小时能追上汽车?解析。
汽车先出发3小时,行驶的路程为60×3 = 180千米。
摩托车与汽车的速度差为90 60 = 30千米/小时。
六年级奥数行程问题专题:走走停停的要点及解题技巧

六年级奥数行程问题专题:走走停停的要点及解题技巧六年级奥数行程问题专题:走走停停的要点及解题技巧一、行程问题里走走停停的题目应该怎么做1。
画出速度和路程的图。
2。
要学会读图。
3。
每一个加速减速、匀速要分清楚,这有利于你的解题思路。
4。
要注意每一个行程之间的联系。
二、学好行程问题的要诀行程问题可以说是难度最大的奥数专题。
类型多:行程分类细,变化多,工程抓住工作效率和比例关系,而行程每个类型重点不一,因此没有一个关键点可以抓题目难:理解题目、动态演绎推理——静态知识容易学,动态分析需要较高的理解能力、逻辑分析和概括能力跨度大:从三年级到六年级都要学行程——四年的跨度,需要不断的复习巩固来加深理解、夯实基础那么想要学好行程问题,需要掌握哪些要诀呢?要诀一:大部分题目有规律可依,要诀是"学透"基本公式要诀二:无规律的题目有"攻略",一画(画图法)二抓(比例法、方程法)竞赛考试中的行程题涉及到很多中数学方法和思想(比如:假设法、比例、方程)等的熟练运用,而这些方法和思想,都是小学奥数中最为经典并能考察孩子思维的专项。
奥数行程:走走停停的例题及答案(一)例1。
甲乙两人同时从一条800环形跑道同向行驶,甲100米/分,乙80米/分,两人每跑200米休息1分钟,甲需多久第一次追上乙?【解答】这样的题有三种情况:在乙休息结束时被追上、在休息过程中被追上和在行进中被追上。
很显然首先考虑在休息结束时的时间最少,如果不行再考虑在休息过程中被追上,最后考虑行进中被追上。
其中在休息结束时或者休息过程中被追上的情况必须考虑是否是在休息点追上的。
由此首先考虑休息800÷200-1=3分钟的情况。
甲就要比乙多休息3分钟,就相当于甲要追乙800+80×3=1040米,需要1040÷(100-80)=52分钟,52分钟甲行了52×100=5200米,刚好是在休息点追上的满足条件。
六年级行程问题的解题技巧

六年级行程问题的解题技巧一、基本公式1. 路程 = 速度×时间,即s = vt。
速度 = 路程÷时间,v=(s)/(t)。
时间 = 路程÷速度,t=(s)/(v)。
二、相遇问题1. 特点两个物体从两地同时出发,相向而行,最后相遇。
2. 公式总路程=(甲的速度 + 乙的速度)×相遇时间,即s=(v_1 + v_2)t。
3. 题目解析例:甲、乙两人分别从A、B两地同时出发,相向而行。
甲的速度是每小时5千米,乙的速度是每小时4千米,经过3小时两人相遇。
求A、B两地的距离。
解析:已知甲的速度v_1 = 5千米/小时,乙的速度v_2=4千米/小时,相遇时间t = 3小时。
根据相遇问题公式s=(v_1 + v_2)t=(5 + 4)×3=9×3 = 27千米,所以A、B 两地的距离是27千米。
三、追及问题1. 特点两个物体同向而行,速度快的物体追速度慢的物体。
2. 公式追及路程=(快的速度慢的速度)×追及时间,即s=(v_1 v_2)t(v_1> v_2)。
3. 题目解析例:甲、乙两人同向而行,甲的速度是每小时6千米,乙的速度是每小时4千米,开始时两人相距10千米。
问甲几小时能追上乙?解析:甲的速度v_1 = 6千米/小时,乙的速度v_2 = 4千米/小时,追及路程s=10千米。
根据追及问题公式t=(s)/(v_1 v_2)=(10)/(6 4)=(10)/(2)=5小时,所以甲5小时能追上乙。
四、环形跑道问题1. 相遇情况(同地反向出发)公式:环形跑道一圈的长度=(甲的速度+乙的速度)×相遇时间,即s=(v_1 +v_2)t。
题目解析:例:甲、乙两人在周长为400米的环形跑道上同时从同一点反向跑步,甲的速度是每秒5米,乙的速度是每秒3米,问经过多少秒两人第一次相遇?解析:已知环形跑道周长s = 400米,甲的速度v_1 = 5米/秒,乙的速度v_2 = 3米/秒。
小学六年级奥数复杂行程问题例题10题详解

小学六年级奥数复杂行程问题1、甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺序针方向行走,乙与丙按逆时针方向行走。
甲第一次遇到乙后411分遇到丙,再过433分钟第二次遇到乙。
已知乙的速度是甲的32,湖的周长为600米,求丙的速度。
武汉童老师分析:环形跑道的问题,相遇:合走1圈,相遇1次,合走几圈,相遇几次;反过来,相遇1次,合走1圈,相遇几次,合走几圈。
特别的地方:甲第一次遇到乙,之后又遇到了乙,这个很特别。
第一次遇到乙的时候,这个时候说明甲乙在同一个地方,之后他们两合走1圈就会第二次相遇,所以甲乙用:411+433=5分钟,所以得到,甲乙合走1圈用5分钟,所以甲乙5分钟合走600米,V 甲+V 乙=600÷5=120米/分又因为V 乙:V 甲=2:3,所以V 乙=48米/分钟,V 甲=72米/分钟。
甲乙同时出发,5分钟后甲乙第一次相遇,之后再过5/4分钟,甲丙相遇,即:甲和丙相遇1圈的时间为:5+5/4=25/4分钟所以,V 甲+V 丙=600÷25/4=96米/分钟因为V 甲=72米/分钟,所以V 丙=96-72=24米/分钟。
题目不是很难,但是关系要理清楚。
一个是甲乙第一次相遇,过5分钟甲乙第二次相遇,还有甲和丙是25/4分钟第一次相遇。
2、绕湖的一周是24千米,小张和小王在湖边某一地点同时出发反向而行。
小王以每小时4千米速度走1小时后休息5分钟,小张以每小时6千米速度每走50分钟后休息10分钟。
两人出发多少时间第一次相遇?武汉童老师分析:方法1:假设两个人都不休息,那么需要多少时间相遇?24÷(4+6)=2.4小时,再加上休息的时间,那么时间肯定大于2.4小时,所以两个人相遇时间一定需要行走2.4小时之后再继续走一段时间才可能相遇。
所以我们把2.4小时看成第一个阶段,先计算一下走2.4小时两个人还相距多少路程?(这里为实际时间2.4小时必须把休息时间计算在内。
六年级 行程问题(综合)奥数 含答案

行程问题(综合)知识梳理教学重、难点作业完成情况典题探究例1. 小华在8点到9点之间开始解一道题,当时时针、分针正好成一直线,解完题时两针正好第一次重合.问:小明解这道题用了多长时间?例2. 甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走50米,丙每分钟走40米.甲从A地,乙和丙从B地同时出发相向而行,甲和乙相遇后,过了15分钟又与丙相遇,求A、B两地间的距离。
例3. 甲、乙、丙是一条路上的三个车站,乙站到甲、丙两站的距离相等,小强和小明同时分别从甲、丙两站出发相向而行,小强经过乙站100米时与小明相遇,然后两人又继续前进,小强走到丙站立即返回,经过乙站300米时又追上小明,问:甲、乙两站的距离是多少米?例4. 甲、乙、丙三人进行200米赛跑,当甲到终点时,乙离终点还有20米,丙离终点还有25米,如果甲、乙、丙赛跑的速度都不变,那么当乙到达终点时,丙离终点还有多少米?1耐心细心责任心例5. 甲、乙二人分别从A、B两地同时出发,如果两人同向而行,甲26分钟赶上乙;如果两人相向而行,6分钟可相遇,又已知乙每分钟行50米,求A、B两地的距离。
例6. 一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?例7. 甲、乙二人沿铁路相向而行,速度相同,一列火车从甲身边开过用了8秒钟,离甲后5分钟又遇乙,从乙身边开过,只用了7秒钟,问从乙与火车相遇开始再过几分钟甲乙二人相遇?演练方阵A档(巩固专练)1.两车同时从甲乙两地相对开出,甲每小时行48千米,乙车每小时行54千米,相遇时两车离中点36千米,甲乙两地相距千米.2.小明从甲地到乙地,去时每小时走6公里,回来时每小时走9公里,来回共用5小时.小明来回共走了公里.3.一个人步行每小时走5公里,如果骑自行车每1公里比步行少用8分钟,那么他骑自行车的速度是步行速度的倍.4.一位少年短跑选手,顺风跑90米用了10秒钟.在同样的风速下,逆风跑70米,也用了10秒钟.在无风的时候,他跑100米要用秒.5.A、B两城相距56千米.有甲、乙、丙三人.甲、乙从A城,丙从B城同时出发.相向而行.甲、乙、丙分别以每小时6千米、5千米、4千米的速度行进.求出发后经小时,乙在甲丙之间的中点?6.主人追他的狗,狗跑三步的时间主人跑两步,但主人的一步是狗的两步,狗跑出10步后,主人开始追,主人追上狗时,狗跑出了步.7.兄妹二人在周长30米的圆形水池边玩,从同一地点同时背向绕水池而行,兄每秒走1.3米,妹每秒走1.2米,他们第十次相遇时,妹妹还需走米才能回到出发点.8.骑车人以每分钟300米的速度,从102路电车始发站出发,沿102路电车线前进,骑车人离开出发地2100米时,一辆102路电车开出了始发站,这辆电车每分钟行500米,行5分钟到达一站并停车1分钟,那么需要分钟,电车追上骑车人.9.一个自行车选手在相距950公里的甲、乙两地之间训练,从甲地出发,去时每90公里休息一次,到达乙地并休息一天后再沿原路返回,每100公里休息一次.他发现恰好有一个休息的地点与去时的一个休息地点相同,那么这个休息地点距甲地有公里.10.如图,是一个边长为90米的正方形,甲从A 出发,乙同时从B 出发,甲每分钟行进65米,乙每分钟行进72米,当乙第一次追上甲时,乙在 边上.11.动物园里有8米的大树.两只猴子进行爬树比赛,一只稍大的猴子爬上2米时,另一只猴子才爬了1.5米.稍大的猴子先爬到树顶,下来的速度比原来快了2倍.两只猴子距地面多高的地方相遇?12.三个人自A 地到B 地,两地相距36千米,三个人只有一辆自行车,这辆车只能坐两人,自行车的速度比步行速度快两倍.13.铁路旁一条平行小路上,有一行人与一骑车人同时向南行进,行人速度为每小时3.6公里,骑车人速度为每小时10.8公里.这时有一列火车从他们背后开过来,火车通过行人用22秒钟,通过骑车人用26秒钟.这列火车的车身长多少米?14.一条小河流过A 、B 、C 三镇.A 、B 两镇之间有汽船来往,汽船在静水的速度为每小时11千米.B 、C 两镇之间有木船摆渡,木船在静水中的速度为每小时3.5千米.已知A 、C 两镇水路相距50千米,水流速度为每小时1.5千米.某人从A 镇乘汽船顺流而下到B 镇,吃午饭用去1小时,接着乘木船又顺流而下到C 镇,共用8小时,那么A 、B 两镇的水路路程是多少米.15.B A ,两地间的距离是950米.甲、乙两人同时由A 地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第____次迎面相遇时距B 地最近,距离是______米.16. 甲、乙两个运动员分别从相距100米的直跑道两端同时相对出发,甲以每秒6.25米,乙以每秒3.75米的速度来回匀速跑步,他们共同跑了8分32秒,在这段时间内两人多次相遇(两人同时到达同一地点叫做相遇).他们最后一次相遇的地点离乙的起点有______米.甲追上乙_____次,甲与乙迎面相遇_____次.17.甲、乙二人在400米圆形跑道上进行10000米比赛.两人从起点同时同向出发,开始时甲的速度为每秒8米,乙的速度为每秒6米.当甲每次追上乙以后,甲的速度每秒减少2米,乙的速度每秒减少0.5米.这样下去,直到甲发现乙第一次从后面追上自己开始,两人都把自己的速度每秒增加0.5米,直到终点.那么领先者到达终点时,另一人距终点多少米?B 档(提升精练)1. 甲乙两人分别从圆的直径两端点同时出发,沿圆周行进。
六年级奥数之行程问题

六年级奥数之行程问题(一)知识引入行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题分析例1甲、乙两人练习跑步,若让乙先跑12米,则甲经过6秒追上乙;若乙比甲先跑2秒,则甲要经过5秒追上乙;如果乙先跑9秒,甲再追乙,那么10秒后,两人相距多少米?分析与解:甲、乙的速度差为12÷6=2(米/秒),则乙的速度为2×5÷2=5(米/秒),如果乙先跑9秒,甲再追乙,那么10秒后,两人相距5×9-2×10=25米。
例2小陈和小许二人分别从两地同时骑车相向而行。
小陈每小时行16千米,小许每小时行13千米,两人相遇时距中点3千米。
求全程长多少千米?分析与解:要求全程长多少千米,必须知道“速度和”与“相遇时间”。
题目中已经给出了小陈和小许的速度,因此关键是求出相遇时间。
从线段图中可以看出,当小陈到达A点时,与相遇时小许所行的路程相同,因此二人相遇时,小陈比小许多行了3×2=6(千米)。
相遇时间:6÷(16-13)=2(小时)。
全程:2×(16+13)=58(千米)。
答:全程长58千米。
例3 兄妹二人同时从家里出发去上学,哥哥骑车每分钟行400米,妹妹步行每分钟行100米。
哥哥到校门时,发现忘了带课本,立即沿原路返回,途中与妹妹相遇。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行程问题(一一)专题简析:行程问题的三个基本量是距离、速度和时间。
其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。
行程问题的主要数量关系是:距离=速度×时间。
它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。
(3)同向而行:速度慢的在前,快的在后。
追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。
追及距离=速度差×时间。
解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。
例题1两辆汽车同时从某地出发,运送一批货物到距离165千米的工地。
甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米。
甲车行完全程用了多少小时?解答本题的关键是正确理解“已知甲车比乙车早到8分钟,当甲车到达时,乙车还距工地24千米”。
这句话的实质就是:“乙48分钟行了24千米”。
可以先求乙的速度,然后根据路程求时间。
也可以先求出全程165千米是24千米的多少倍,再求甲行完全程要用多少小时。
解法一:乙车速度:24÷48×60=30(千米/小时)48甲行完全程的时间:165÷30— =4.7(小时) 60解法二:48×(165÷24)—48=282(分钟)=4.7(小时)答:甲车行完全程用了4.7小时。
挑战自我1、甲、乙两地之间的距离是420千米。
两辆汽车同时从甲地开往乙地。
第一辆每小时行42千米,第二辆汽车每小时行28千米。
第一辆汽车到乙地立即返回。
两辆汽车从开出到相遇共用多少小时?2、A、B两地相距900千米,甲车由A地到B地需15小时,乙车由B地到A地需10小时。
两车同时从两地开出,相遇时甲车距B地还有多少千米?1千米。
继续行进到下午112.510点钟时两车相距A、B两城同时相向而行。
到83、甲、乙两辆汽车早上点钟分别从B两地间的距离是多少千米?、时,两车相距还是112.5千米。
A12例题千米的地方相遇。
之后,两车继续以原来的速度前进。
各两辆汽车同时从东、西两站相向开出。
第一次在离东站60 30千米处相遇。
两站相距多少千米?自到达对方车站后都立即返回,又在距中点西侧东西1—图33从东站出发的汽车行两辆汽车行一个全程时,从两辆汽车同时从东、西两站相对开出到第二次相遇共行了三个全程。
千米,也就是说这辆汽车再行3060千米,两车走三个全程时,这辆汽车走了3个60千米。
这时这辆汽车距中点了倍。
找到这个关系,东、西两这站之间的距离也就可以求出来30千米的话,共行的路程相当于东、西两站路程的1.5 了。
所以×3+30)÷1.5=140(千米)(60 千米。
答:东、西两站相距140挑战自我千米的地方相遇,之后两车继续以原来的速度前进。
各551、两辆汽车同时从南、北两站相对开出,第一次在离南站 15千米处相遇。
两站相距多少千米?自到站后都立即返回,又在距中点南侧千米的地方。
两车仍以原速继续前进。
各自到站后、两列火车同时从甲、乙两站相向而行。
第一次相遇在离甲站402 20千米的地方相遇。
两站相距多少千米?立即返回,又在离乙站千米。
然后各按原速继续行驶,分别到达90两地相对开出。
第一次相遇时离A站有3、甲、乙两辆汽车同时从A、B两站间的路程是多少千、B两站间全程的65%。
ABA对方车站后立即沿原路返回。
第二次相遇时在离地的距离占A、米?3例题分钟甲80分钟相遇;若同向行走,两地同时出发。
若相向而行,、米。
甲、乙两人分别从两地相距、AB960AB62B地要用多少分钟?可以追上乙。
甲从地走到A6=1600÷甲、乙两人从同时同向出发到相遇,6分钟共行的路程是960米,那么每分钟共行的路程(速度和)是96米,每分钟甲追乙的路程(速度分钟,甲追乙的路程是960(米);甲、乙两人从同时同向出发到甲追上乙需用去80地要用B 地到)÷1=86(米)。
甲从A差)是960÷80=12(米)。
根据甲、乙速度和与差,可知甲每分钟行(160+127 ,列算式为960÷86=11 (分钟)437 (分钟)80)÷2]=11 (960÷[960÷6+960÷437 11 分钟。
地走到答:甲从AB地要用43挑战自我分钟相遇;若同向行走,B两地出发,若先跟乡行走,12、1、一条笔直的马路通过AB两地,甲、乙两人同时从A、1800米。
甲、乙每分钟各行多少米?两地相距分钟甲就落在乙后面1864米。
已知A、B86若同向而行,分钟相遇;2他俩同时从同一地点出发。
若想8背而行,、2父子二人在一400米长的环行跑道上散步。
72分钟父亲可以追上儿子。
问:在跑道上走一圈,父子各需多少分钟?26 3分钟后,二103、两条公路呈十字交叉。
甲从十字路口南1350米处向北直行,乙从十字路口处向东直行。
同时出发分钟,这时二人离十字路口的距离又相等。
求甲、人离使字路口的距离相等;二人仍保持原来速度直行,又过了80 乙二人的速度。
4例题千米的地方追上了他,然后爸分钟后每爸爸骑摩托车去追他。
在离家4时上午88分,小明骑自行车从家里出发。
8,这时是几时几所示)8爸立即回家。
到家后他又立即回头去追小明。
再追上他的时候,离家恰好是千米(如图33-2 分?千米4千米4出发:08小明8出发:16爸爸82—图33由题意可知:爸爸第一次追上小明后,立即回家,到1分钟后,812家后又回头去追小名,再追上小明时走了千米。
可见小明的速度是爸爸的速度的。
那么,小明先走33爸爸只花了4分钟即可追上,这段时间爸爸走了4千米。
列式为爸爸的速度是小明的几倍:(4+8)÷4=3(倍)爸爸走4千米所需的时间:8÷(3—1)=4(分钟)爸爸的速度:4÷4=1(千米/分)爸爸所用的时间:(4+4+8)÷1=16(分钟)16+16=32(分钟)答:这时是8时32分。
挑战自我1、A、B两地相距21千米,上午8时甲、乙分别从A、B两地出发,相向而行。
甲到达B地后立即返回,乙到达A地后立即返回。
上午10时他们第二次相遇。
此时,甲走的路程比乙走的多9千米,甲一共行了多少千米?甲每小时走多少千米?2、张师傅上班坐车,回家步行,路上一共要用80分钟。
如果往、返都坐车,全部行程要50千米;如果往、返都步行,全部行程要多长时间?3、当甲在60米赛跑中冲过终点线时,比乙领先10米,比丙领先20米。
如果乙和丙按原来的速度继续冲向终点,那么乙到达终点时将比丙领先多少米?例题5甲、乙、丙三人,每分钟分别行68米、70.5米、72米。
现甲、乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙和乙相遇后,又过2分钟与甲相遇。
东、西两镇相距多少器秒年米毫?乙、丙相遇点东西甲、丙相遇点米?图33——3)68+72乙比甲多行的路程正好是后来甲、丙2分钟所行的路程和,是(丙两人相遇时,33-3如图所示,可以看出,乙、,因此,求(分钟)÷2.5=112(米)可见,乙、丙相遇时间是。
而每分钟乙比甲多行×2=280(米)70.5—68=2.5280 东、西两镇间的距离可用速度和乘以相遇时间求出。
列式为 2(68+72)×÷2.5=112(分钟)乙、丙相遇时间:÷)×(东、西两镇相距的千米数:70.5+721121000=15.96(千米)4挑战自我地去BB地,丙从75、有甲、乙、丙三人,甲每分钟行70米,乙每分钟行60米,丙每分钟行米,甲、乙从A地去1 两地相距多少千米?、BA地,三人同时出发,丙遇到甲8分钟后,再遇到乙。
A秒钟后猎人向狼开了一枪。
狼立米,62、一只狼以每秒15米的速度追捕在它前面100米处的兔子。
兔子每秒行4.5 米?16.5即转身以每秒米的速度背向兔子逃去。
问:开枪多少秒后兔子与狼又相距100千米,因此比乙车迟一小时到达。
6地开往B地,乙车小时可以到达,甲车每小时比乙车慢83、甲、乙两车同时从A A、B两地间的路程是多少千米?行程问题(二)三十四、行程问题(二):专题简析一是两人同地在行程问题中,与环行有关的行程问题的解决方法与一般的行程问题的方法类似,但有两点值得注意:背向运动,从第一次相遇到下次相遇共行一个全程;二是同地、同向运动时,甲追上乙时,甲比乙多行了一个全程。
1例题甲、乙、丙三人沿着湖边散步,同时从湖边一固定点出发。
甲按顺时针方向行走,乙与丙按逆时针方向行走。
甲第一231 米,求丙的速度。
,湖的周长为3次遇到乙后1 分钟于到丙,再过分钟第二次遇到乙。
已知乙的速度是甲的60034431分。
甲、乙=120÷(60甲第一次与乙相遇后到第二西与乙相遇,刚好共行了一圈。
甲、乙的速度和为01+3)米/4451213(米)=961+3+172=48/分),120—(米/分)。
甲、丙的速度和为60的速度分别是:1200÷(÷(1+)=72(米4443分),这样,就可以求出丙的速度。
列算式为/31分))=120(米/1甲、乙的速度和:600÷(+3442分))=72(米/1+甲速:120÷(3分)—72=48(米/乙速:120113=96(米/分)÷(1+3+1)甲、丙的速度和:600444(千米/分)丙的速度:96—72=24 24米。
答:丙每分钟行挑战自我、甲、乙、丙三人环湖跑步。
同时从湖边一固定点出发,乙、丙两人同向,甲与乙、丙两人反向。
在甲第一次遇到131米,求三2000分钟第二次遇到途。
已知甲速与乙速的比为3:2,湖的周长为乙后1 分钟第一次遇到丙;再过344 人的速度。
米。
米的圆形小池边玩。
从同一地点同时背向绕水池而行。
兄每秒走1.3米。
妹每秒走1.2、兄、妹22人在周长为30 他们第10次相遇时,劢还要走多少米才能归到出发点?点第一次相CAB是圆的直径的两端,小张在点,小王在B点,同时出发反向而行,他们在A3、如图34-1所示,、60米。
求这个圆的周长。
点离米;在A点80D点第二次相遇,DB点点离遇,C CABD134图——62例题甲、乙两人在同一条椭圆形跑道上做特殊训练。
他们同时从同一地点出发,沿相反方向跑。
每人跑完第一圈到达出发12,乙跑第二点后,立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的,甲跑第二圈时的速度比第一圈提高了331 米。
这条椭圆形跑道长多少米?。
已知甲、乙两人第二次相遇点距第一次相遇点190圈时速度提高了55A8C23乙B甲2图34——2。