最新七年级数学上册第一章知识点总结资料

合集下载

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点

七年级上册数学书第一章知识点七年级上册数学书第一章知识点. 一、正数与负.. 1.在实际中表示意义相反的.上升5米记为5米.-8米则表示下降8米.. 2.正数:大于0的数.. 3.负数:在正数的前面加上“-〞.. 4.0的含义.. ①既不是正数也不是负数.. ②0在计数时表示没有,比如0元.. ③0表示某种量的基准,比如0℃表示温度的基.. 5.有理数的分.. 分数概.. (1)小学学的分数,百分数,有限小数,无限循环小数都可以转化为分数,现统称分数.. (2)无限不循环小数不属于有理数,如:π=3.141592...2.010010001.... “非〞的概.. 非负数:正数和.非正分数:负分.. 非正数:负数和.非负分数:正分.. 非负整数:正整数和.. 非正整数:负整数和..二、数.. 1.三要素:原点、正方向、单位长度。

通常原点用“O〞表示,向右的方向为正方向,单位长度为1.. 2.如何画数.. ①画直线(一般画成水平的),定原点,标出原点“O〞.. ②取原点向右的方向为正方向,并标出箭头.. ③选适当的长度为单位长度,并标出-3,-2,-1,1,2,3……各点.. 3.数轴上的点与有理数.. (1)数轴上的点与有理数一一对.(2)左边的数右边的.. 三、相反.. ①只有符号不同的两个数,叫做互为相反数。

0的相反数是0.. ②a的相反数-.. ③a与b互为相反数:a+b=.. ④a-b的相反数是:-a+b或b-.. ⑤a+b的相反数是:-a-.. ⑥求一个数的相反数方法:在这个数的前面加“-〞号.. ⑦在数轴上,表示相反数的两个点位于原点的两侧,并且到原点的距离相等..四、绝对.. 1.几何意义:从数轴上表示a的点到原点的距离即为|a.. 2.①一个正数的绝对值等于它本身.当a是正数时,|a|=a.. ②一个负数的绝对值等于它的相反数.当a是负数时,|a|=-a.. ③0的绝对值等于0.当a=0时,|a|=0.. 3.互为相反数的两个数的绝对值相等.. 五、有理数的大小比.. 1.正数0负数.. 2.两个负数比.. ①右边的点表示的数比左边的点表示的数大.. ②绝对值大的反而小.. 六、有理数的运.. 1.有理数的加法.. 加法一般步骤.. ①确定符号:同号取相同的符号.. 异号取绝对值大的加数的符号.. ②确定绝对值:同号将绝对值相加.. 异号用较大的绝对值减去较小的绝对值.. 互为相反数的两个数相加得0。

七年级上册 数学 第一章 知识点整理

七年级上册 数学 第一章 知识点整理

第一章有理数1、正负数的概念:正数就是大家小学学过的自然数+小数;在正数前面加“-”(负)的数叫做负数。

2、0既不是正数,也不是负数。

(0是正负数的分界线)3、“-”(负号):表示相反意义的概念。

例如:增加记为“+”,则减少记为“-”。

(“+”通常省略不写)4、整数和分数统称为有理数。

(π和无限不循环小数不是有理数)。

5、整数包括:正整数、0、负整数。

6、分数包括:正分数、负分数。

7、数轴三要素:原点、正方向、单位长度。

每一个数在数轴上都能找到它对应的位置。

8、一般地,设a是一个正数,则数轴上表示a的点要在数轴的_____边,与原点的距离是_____个单位长度;表示数-a的点在原点的_____边,它与原点的距离是_____个单位长度。

9、一般地,设a是一个正数,数轴上与原点的距离是a的点有____个,他们分别在原点的左右两边,表示为____和____。

10、只有______不同的两个数互为相反数,互为相反数的两个数到原点的距离______。

11、a的相反数记为____,容易看出,在任何一个数前面添上“-”号,新的数就表示原数的相反数。

12、_____的相反数是它本身。

13、如果a与b互为相反数,则a+b=____,a=___。

14、简单理解,一个数变相反数就是把这个数前面的符号变相反就行了。

即:-(-5)=______ -(+5)=______15、一般地,数轴上表示数a的点与_______的距离叫做数a的绝对值,记作|a|。

这里,a可以是任何数,显然,我们容易发现,正数的绝对值是_______,0的绝对值是______,负数的绝对值是__________。

所以,|a|={________,a>0 ________,a=0 _______,a<016、由绝对值的定义不难的出,互为相反数的两个数,它们的绝对值_____,反过来|a|=5表示数a到原点的距离为5,显然这样的点左右两侧各有一个,也就是说|a|=5时,a=______。

初中数学七年级上册知识点总结(最新最全)

初中数学七年级上册知识点总结(最新最全)

提分数学七年级上知识清单第一章 有理数一.正数和负数⒈正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数注意:①字母a 可以表示任意数,当a 表示正数时,-a 是负数;当a 表示负数时,-a 是正数;当a 表示0时,-a 仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

3.0表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

二.有理数1.有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

2. (1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;(2)有理数的分类: ①按正、负分类: ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数②按有理数的意义来分:⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数三.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。

七年级上册数学第一章知识点归纳

七年级上册数学第一章知识点归纳

第一章:有理数★重点★有理数的有关概念及性质,有理数的运算一、重要概念1、数的分类及概念:学会区分正数、负数、整数、分数正整数(>0)自然数整数0负整数(<0)有理数正分数分数负分数例:有理数是()和()的统称。

【正数】大于0的数【负数】小于0的数【0 】既不是正数,也不是负数如果一个问题中出现相反意义的量,我们就可以用正数和负数表示。

例:记海平面为0米,那么-375米表示;+375米表示。

2、【数轴】用一条直线上的点表示数,这条直线就叫做数轴。

一般地,正方向向右时,数轴左边的数小于右边的数。

【数轴的三要素】原点、正方向/负方向、单位长度【数轴的作用】直观地比较实数的大小;明确体现绝对值意义;建立点与实数的一一对应关系。

负数<0<正数;两个负数绝对值大的数反而小一般地,设a 为一个正数,则数轴上表示a 的点在原点右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离也是a 个单位长度。

3、【相反数】①定义:只有符号不同的两个数叫做互为相反数;0的相反数是0; ②性质: a ≠0时,a ≠-aa 与-a 在数轴上的位置(关于原点对称,即原点两侧到原点距离相等的点)和为0,商为-1。

例:想一想,设a 为一个数,-a 一定是负数吗?4、【绝对值】①定义(两种):代数定义:几何定义:数a 所对应的点到原点的距离。

②│a │≥0,符号“││”是“非负数”的标志;③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉它一个正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

5、【非负数】正数与零的统称。

(表为:x ≥0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。

6、【乘方】求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂,a(a≥-a(a<0│a │=在a n中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作:a的n次幂。

七年级上册第一章主要知识点

七年级上册第一章主要知识点

七年级上册第一章主要知识点七年级上册的第一章是学生们初次接触初中数学的重要时刻。

本章主要涉及数的基本概念、数的性质、数的加减法、数的乘除法等方面的知识点。

本文将从以下几个方面来阐述本章主要的知识点。

一、数的基本概念本章重点涉及的数的基本概念有自然数、零、负整数和正分数等。

自然数是指人们在生活中常用到的整数,例如1、2、3、4等。

在数轴上,自然数从左往右依次排列。

0是一种不大不小的数字,它比任何负数都大,比任何正数都小。

负整数是指小于0的整数,例如-1、-2、-3等。

正分数是指大于零的分数,例如1/2、3/4、5/8等。

二、数的性质本章重点讲解数的性质,其中最重要的是数的大小关系。

大小关系是比较两个数的大小,例如1和2的大小关系是1<2,2和5的大小关系是2<5。

数的性质不仅包括大小关系,还包括偶数、奇数、质数、合数、约数等方面的知识点。

偶数是除2以外的所有正整数,例如2、4、6等;奇数则是除2以外的所有正整数,例如1、3、5等。

质数指只能被1和它本身整除的正整数,例如2、3、5、7等;合数则是除了1和它本身之外还有其他因数的正整数,例如4、6、8等。

三、数的加减法本章重点讲解数的加减法。

加法是指将两个数相加,得到一个新的数的运算,例如2+3=5;减法是指将一个数减去另一个数,得到一个新的数的运算,例如5-2=3。

在加减法运算中,有一种很重要的概念——加减运算法则。

加减运算法则是指,在加减运算中,两个数的顺序可以改变,但结果不受影响。

四、数的乘除法本章还重点讲解了数的乘除法。

乘法是指将两个数相乘,得到一个新的数的运算,例如2*3=6;除法是指将一个数除以另一个数,得到一个新的数的运算,例如6÷2=3。

在乘除法运算中,考虑的一个重要概念是乘除运算法则。

乘除运算法则是指,在乘除运算中,两个数的顺序可以改变,但结果不受影响。

五、乘方和开方除了以上知识点,本章还介绍了乘方和开方的概念。

七年级上数学各章知识点第一章

七年级上数学各章知识点第一章

第一章:有理数
1.1自然数和整数的平方根
-平方根的定义和性质
-平方数
-二次方程
-平方跟的概念和计算方法
1.2有理数
-有理数的定义和性质
-有理数的加减运算和乘除运算
-有理数的比较和排序
-有理数的绝对值
-小数和有理数的表示方法
-实数的概念和实数在数轴上的表示1.3数轴及其应用
-数轴的定义和性质
-有理数和实数在数轴上的表示
-数轴上的有理数运算
-数轴上的加法和减法
-数轴上的乘法和除法
-数轴上的相反数和绝对值
1.4运算律的应用
-结合律、交换律和分配律的定义和性质
-运算律在有理数计算中的应用
-有理数运算中的应用问题
1.5有理数的乘方
-乘方及其运算法则
-幂次运算法则
-乘方的应用和问题
-有理数的开方
-有理数乘方的应用和问题
1.6有理数应用问题
-有理数的应用问题:交通运输、财务管理等实例
-有理数的实际应用问题解决方法和步骤
总结:第一章主要介绍了有理数的概念和基本性质,包括平方根、加减乘除运算、比较和排序、绝对值、小数表示、实数的概念和数轴表示等内容。

此外,还学习了运算律的应用和有理数的乘方运算,以及有理数的应用问题解决方法。

通过这一章的学习,学生可以掌握有理数的基本运算和应用,为后续数学学习打下坚实基础。

人教版七年级数学上册第一章有理数全章知识点归纳

人教版七年级数学上册第一章有理数全章知识点归纳人教版七年级数学上册第一章有理数全章知识点归纳一、知识要点1、正数和负数大于的数叫做正数。

在正数前面加上负号“-”的数叫做负数。

数既不是正数,也不是负数,是正数与负数的分界。

在同一个问题中,分别用正数与负数表示的量具有相反的意义。

2、有理数凡能写成分数形式的数,都是有理数,整数和分数统称有理数。

注意:即不是正数,也不是负数;-a不一定是负数,如:-(-2)=4,这个时候的a=-2.不是有理数;正有理数包括正整数和正分数,负有理数包括负整数和负分数。

3、数轴【重点】用一条直线上的点表示数,这条直线叫做数轴。

它满足以下要求:1.在直线上任取一个点表示数,这个点叫做原点;2.通常规定直线上从原点向右(或上)为正方向,从原点向左(或下)为负方向;3.选取适当的长度为单位长度,直线上从原点向右,每隔一个单位长度取一个点,依次表示1,2,3…;从原点向左,用类似的方法依次表示-1,-2,-3…数轴的三要素:原点、正方向、单位长度。

画数轴的步骤:一画(画一条直线并选取原点);二取(取正反向);三选(选取单位长度);四标(标数字)。

数轴的规范画法:是条直线,数字在下,字母在上。

注意:所有的有理数都可以用数字上的点表示,但是数轴上的所有点并不都表示有理数。

4、相反数只有符号不同的两个数叫做互为相反数。

a的相反数是-a;a-b的相反数是b-a;a+b的相反数是-(a+b)=-a-b;非零数的相反数的商为-1;相反数的绝对值相等。

一般地,设a是一个正数,数轴上与原点的距离是a的点有两个,他们分别在原点的两侧,表示a和-a,我们说这两点关于原点对称。

3、相反数的概念a和-a互为相反数。

一个数的相反数是指,正数的相反数是负数,负数的相反数是正数。

每个数都有它自己的相反数。

4、相反数的运用在任意一个数前面添加“-”号,这个新的数就表示原数的相反数。

如果两个数a和b互为相反数,那么a+b=0;反之,如果a+b=0,则a和b互为相反数。

七年级上册数学第一章总结知识点

七年级上册数学第一章总结知识点一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数,例如1,0, - 5等;分数包括有限小数和无限循环小数,如0.5=(1)/(2),0.3̇=(1)/(3)等。

2. 有理数的分类。

- 按定义分类:有理数可分为整数和分数。

整数又分为正整数、0、负整数;分数分为正分数和负分数。

- 按性质符号分类:有理数可分为正有理数(正整数和正分数)、0、负有理数(负整数和负分数)。

3. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可能表示无理数)。

- 利用数轴可以比较有理数的大小,数轴上右边的数总比左边的数大。

4. 相反数。

- 只有符号不同的两个数叫做互为相反数。

0的相反数是0。

- 若a与b互为相反数,则a + b=0;反之,若a + b = 0,则a与b互为相反数。

- 在数轴上,表示互为相反数的两个点位于原点两侧,且到原点的距离相等。

5. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即| a|=a(a > 0) 0(a = 0) - a(a < 0)- 两个负数比较大小,绝对值大的反而小。

二、有理数的运算。

1. 有理数的加法。

- 法则:- 同号两数相加,取相同的符号,并把绝对值相加。

例如3+5 = 8,(-3)+(-5)=-(3 + 5)=-8。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

如5+(-3)=+(5 - 3)=2,3+(-5)=-(5 - 3)=-2。

- 一个数同0相加,仍得这个数。

- 运算律:- 加法交换律:a + b=b + a。

新人教版七年级上数学第一章有理数知识点汇总

第一章有理数知识点1.1正数和负数以前学过的0以外的数前面加上负号“-”的书叫做负数。

以前学过的0以外的数叫做正数。

数0既不是正数也不是负数,0是正数与负数的分界。

在同一个问题中,分别用正数和负数表示的量具有相反的意义1.2.1有理数正整数、0、负整数统称整数,正分数和负分数统称分数。

整数和分数统称有理数。

1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。

数轴的作用:所有的有理数都可以用数轴上的点来表达。

注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

⑵同一根数轴,单位长度不能改变。

一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

1.2.3相反数只有符号不同的两个数叫做互为相反数。

数轴上表示相反数的两个点关于原点对称。

在任意一个数前面添上“-”号,新的数就表示原数的相反数。

1.2.4绝对值一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

⑵两个负数,绝对值大的反而小。

1.3有理数的加减法1.3.1有理数的加法有理数的加法法则:⑴同号两数相加,取相同的符号,并把绝对值相加。

⑵绝对值不相等的饿异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

⑶一个数同0相加,仍得这个数。

两个数相加,交换加数的位置,和不变。

加法交换律:a+b=b+a三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

加法结合律:(a+b)+c=a+(b+c)1.3.2有理数的减法有理数的减法可以转化为加法来进行。

有理数减法法则:减去一个数,等于加这个数的相反数。

七年级上册数学第一章总结(汇总5篇)

七年级上册数学第一章总结(汇总5篇)1.七年级上册数学第一章总结第1篇⒈正数和负数的概念负数:比0小的数正数:比0大的数 0既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

表示的意义⑴0表示“ 没有”,如教室里有0个人,就是说教室里没有人;⑵0是正数和负数的分界线,0既不是正数,也不是负数。

2.七年级上册数学第一章总结第2篇有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数。

②有限小数和无限循环小数都可化成分数,都是有理数。

注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。

(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类: ①按正、负分类:②按有理数的意义来分:总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数? 0和正整数;a>0 ? a是正数;a<0 ? a是负数;a≥0 ? a是正数或0 ? a是非负数;a≤ 0 ? a是负数或0 ? a是非正数.3.七年级上册数学第一章总结第3篇乘方的概念求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.有理数:
(1)凡能写成)0p q ,p (p
q ≠为整数且形式的数,都是有理数,整数和分数统称有理数. 注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;
(2)有理数的分类: ① ⎪⎪⎩
⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;
(4)自然数⇔ 0和正整数; a >0 ⇔ a 是正数; a <0 ⇔ a 是负数;
a ≥0 ⇔ a 是正数或0 ⇔ a 是非负数; a ≤ 0 ⇔ a 是负数或0 ⇔ a 是非正数.
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意: a-b+c 的相反数是-a+b-c ;a-b 的相反数是b-a ;a+b 的相反数是-a-b ;
(3)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.
(4)相反数的商为-1.
(5)相反数的绝对值相等
4.绝对值:
(1)正数的绝对值等于它本身,0的绝对值是0,负数的绝对值等于它的相反数; 注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)
0a (a )0a (0)0a (a a 或
⎩⎨⎧≤-≥=)0()
0(a a a a a ; (3) 0a 1a a
>⇔= ; 0a 1a a
<⇔-=;
(4) |a|是重要的非负数,即|a|≥0;
5.有理数比大小:
(1)正数永远比0大,负数永远比0小;
(2)正数大于一切负数;
(3)两个负数比较,绝对值大的反而小;
(4)数轴上的两个数,右边的数总比左边的数大;
(5)-1,-2,+1,+4,-0.5,以上数据表示与标准质量的差,
绝对值越小,越接近标准。

6.倒数:
乘积为1的两个数互为倒数;
注意:0没有倒数; 若ab=1⇔ a 、b 互为倒数;
若ab=-1⇔ a 、b 互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
7. 有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大加数的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ). 10 有理数乘法法则:
(1)两数相乘,同号得正,异号得负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个因式都不为零,积的符号由负因式的个数决定.奇数个负数为负,偶数
个负数为正。

11 有理数乘法的运算律:
(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );
(3)乘法的分配律:a (b+c )=ab+ac .(简便运算)
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0
a .
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫
做幂;
(3)a 2是重要的非负数,即a 2≥0;若a 2+|b|=0 ⇔ a=0,b=0;
(4)据规律 ⇒⎪⎪⎭
⎪⎪⎬⎫⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅===100101101.01.0222底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只
有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减; 注意:不省过程,不跳步骤。

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.常用于填空,选择。

整式的加减
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.⎩
⎨⎧多项式单项式整式 .
6.同类项: 所含字母相同,并且相同字母的指数也相同的单项式是同类项.
7.合并同类项法则: 系数相加,字母与字母的指数不变.
8.去(添)括号法则:
去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:一找:(划线);二“+”(务必用+号开始合并)三合:(合并)
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).。

相关文档
最新文档