清华大学(数学建模获奖论文)

合集下载

全国研究生数学建模竞赛获奖论文

全国研究生数学建模竞赛获奖论文

全国研究生数学建模竞赛获奖论文一、概要《全国研究生数学建模竞赛获奖论文》是对全国范围内研究生数学建模竞赛的优胜者论文的集结和展示。

该竞赛旨在鼓励研究生群体深入探究数学建模理论与实践,挖掘科研潜力,锻炼解决实际问题的能力。

本书收录的论文,均为经过激烈竞争,展现出色创新思维、建模能力和问题解决能力的佳作。

这些论文涉及的领域广泛,包括物理、化学、生物、工程、经济、社会科学等多个学科。

本次竞赛的获奖论文展示了中国研究生在数学建模领域的最新研究成果和前沿思考。

通过对这些论文的研读,可以了解当前研究生数学建模的总体水平,以及未来的发展趋势和研究方向。

这些论文对于推动相关领域的研究进展,提供新的研究思路和方法,具有重要的参考价值和实践指导意义。

本书的一大部分内容是对获奖论文的高度概括和深入分析,包括问题的提出、建模过程、解决方法、结果讨论等各个方面。

通过详尽的阐述,让读者可以全面理解每一篇论文的研究思路和方法。

书中还会介绍各篇论文的创新点、难点及解决策略,以展现研究生们在面对复杂问题时所展现出的科研能力和创新思维。

还将介绍全国研究生数学建模竞赛的背景、发展历程以及未来的发展方向,为读者提供一个全面的视角来理解和参与这一重要的学术活动。

1. 介绍全国研究生数学建模竞赛的背景和意义全国研究生数学建模竞赛是一项针对全国范围内研究生的重要学术竞赛活动,旨在激发研究生在数学建模领域的创新精神和研究热情。

该竞赛不仅为研究生提供了一个展示自身才华的舞台,更是推动数学建模技术发展和应用的重要途径。

其背景源于数学建模在各个领域中的广泛应用,包括工程、经济、金融、生物、医学等多个领域。

随着科技的进步和学科交叉的加深,数学建模已经成为解决复杂问题不可或缺的工具。

全国研究生数学建模竞赛的举办,对于提高研究生的综合素质,培养创新思维和解决问题的能力,推动数学建模技术的研究和发展,具有十分重要的意义。

促进学术交流与合作。

全国研究生数学建模竞赛为来自全国各地的研究生提供了一个交流和学习的平台,促进了学术上的交流与合作,推动了数学建模技术的不断进步。

2024研究生数学建模优秀论文

2024研究生数学建模优秀论文

2024研究生数学建模优秀论文近年来,研究生数学建模领域涌现出了许多优秀的论文。

这些论文通过对实际问题的建模和求解,为相关领域的研究和实践提供了有力的支持。

一篇优秀的研究生数学建模论文是《基于改进的模拟退火算法的机器调度问题》,该论文通过对机器调度问题进行建模,并采用改进的模拟退火算法进行求解。

在问题建模方面,该论文提出了一种新的机器调度模型,该模型包括了机器的技术约束、资源约束和任务约束。

在算法设计方面,该论文通过对模拟退火算法的改进,提高了算法的收敛速度和求解质量。

通过大量的实验验证,该论文的结果表明,该算法在求解机器调度问题上具有较好的性能和可行性。

另一篇优秀的研究生数学建模论文是《基于网络流的城市交通优化研究》,该论文针对城市交通拥挤问题进行建模和优化方案设计。

在问题建模方面,该论文采用了网络流模型来描述城市交通情景,对城市交通流动进行了量化分析,并提出了一种基于网络流的城市交通优化算法。

在算法设计方面,该论文通过对交通流量的调整和限制,优化了城市交通系统的整体效率。

通过实验验证,该论文的结果表明,该算法能够有效地缓解城市交通拥堵问题,并提高交通系统的运行效率。

此外,还有一篇优秀的研究生数学建模论文是《基于支持向量机的股票价格预测模型》,该论文针对股票价格预测问题进行建模和预测模型设计。

在问题建模方面,该论文采用了支持向量机模型来对股票价格进行预测。

在模型设计方面,该论文基于支持向量机模型,通过对历史数据的学习和分析,构建了一种适合股票价格预测的模型。

通过实验验证,该论文的结果表明,该模型能够较为准确地预测股票价格的变动趋势,对于投资者进行股票投资决策具有较好的参考价值。

综上所述,这些优秀的研究生数学建模论文通过对实际问题的建模和求解,为相关领域的研究和实践提供了有力的支持。

通过不断地创新和实践,研究生们不仅在数学建模领域取得了突破,也为社会的发展和进步做出了贡献。

公选课-数学建模论文-钢管下料问题

公选课-数学建模论文-钢管下料问题

钢管下料问题摘要生产中常会遇到通过切割、剪裁、冲压等手段,将原材料加工成所需大小这种工艺过程,称为原料下料问题.按照进一步的工艺要求,确定下料方案,使用料最省,或利润最大是典型的优化问题.针对钢管下料问题,我们采用数学中的线性规划模型.对模型进行了合理的理论证明和推导,然后借助于解决线性规划的专业软件Lingo 11.0,对题目所提供的数据进行计算,从而得出最优解.关键词线性规划最优解钢管下料1、问题的提出某钢管零售商从钢管厂进货,将钢管按照顾客的要求切割出售.从钢管厂进货得到的原材料的钢管的长度都是1850mm ,现在一顾客需要15根290 mm ,28根315 mm ,21根350 mm 和30根455 mm 的钢管.为了简化生产过程,规定所使用的切割模式的种类不能超过4种,使用频率最高的一种切割模式按照一根原料钢管价值的1/10增加费用,使用频率次之的切割模式按照一根原料钢管价值的2/10增加费用,以此类推,且每种切割模式下的切割次数不能太多(一根原钢管最多生产5根产品),此外为了减少余料浪费,每种切割模式下的余料浪费不能超过100 mm ,为了使总费用最小,应该如何下料?2、问题的分析首先确定合理的切割模式,其次对于不同的分别进行计算得到加工费用,通过不同的切割模式进行比较,按照一定的排列组合,得最优的切割模式组,进而使工加工的总费用最少. 3、基本假设假设每根钢管的长度相等且切割模式理想化.不考虑偶然因素导致的整个切割过程无法进行.4、定义符号说明(1)设每根钢管的价格为a ,为简化问题先不进行对a 的计算. (2)四种不同的切割模式:1x 、2x 、3x 、4x .(3)其对应的钢管数量分别为:i r 1、i r 2、i r 3、i r 4(非负整数). 5、模型的建立由于不同的模式不能超过四种,可以用i x 表示i 按照第种模式(i =1,2,3,4)切割的原料钢管的根数,显然它们应当是非负整数.设所使用的第i 种切割模式下每根原料钢管生产290mm ,315mm,,350mm 和455mm 的钢管数量分别为i r 1,i r 2,i r 3,i r 4(非负整数). 决策目标 切割钢管总费用最小,目标为:Min=(1x ⨯1.1+2x ⨯1.2+3x ⨯1.3+4x ⨯1.4)⨯a (1) 为简化问题先不带入a 约束条件 为满足客户需求应有11r ⨯1x +12r ⨯2x +13r ⨯3x +14r ⨯4x ≧15 (2) 21r ⨯1x +22r ⨯2x +23r ⨯3x +24r ⨯4x ≧28 (3) 31r ⨯1x +32r ⨯2x +33r ⨯3x +34r ⨯4x ≧21 (4)41r ⨯1x +42r ⨯2x +43r ⨯3x +44r ⨯4x ≧15 (5)每一种切割模式必须可行、合理,所以每根钢管的成品量不能大于1850mm 也不能小于1750mm.于是:1750≦290⨯11r +315⨯21r +350⨯31r +455⨯41r ≦1850 (6)1750≦290⨯12r +315⨯22r +350⨯32r +455⨯42r ≦1850 (7)1750≦290⨯13r +315⨯23r +350⨯33r +455⨯43r ≦1850 (8) 1750≦290⨯14r +315⨯24r +350⨯34r +455⨯44r ≦1850 (9)由于排列顺序无关紧要因此有1x ≧2x ≧3x ≧4x (10)又由于总根数不能少于(15⨯290+28⨯315+21⨯350+30⨯455)/1850≧18.47 (11) 也不能大于(15⨯290+28⨯315+21⨯350+30⨯455)/1750≦19.525 (12) 由于一根原钢管最多生产5根产品,所以有i r 1+i r 2+i r 3+i r 4≦5 (13)7、模型的求解将(1)~(13)构建的模型输入Lingo11.0即取1x 切割模式14根及2x 切割模式5根,即可得到最优解: Min=(14⨯11/10+5⨯12/10)⨯a =21.4a6、结果分析、模型的评价与改进下料问题的建模主要有两部分组成,一是确定下料模式,二是构造优化模型.对于下料规格不太多时,可以采用枚举出下料模式,对规格太多的,则适用于本模型.而从本模型中可以看出尽管切割模式x3、x4的余料最少,但是其成本比较高因而舍弃. 7、参考文献【1】启源,金星,叶俊,数学模型(第三版),清华大学,第121页. 8、附录模型求解的算法程序:model:min=x1*1.1+x2*1.2+x3*1.3+x4*1.4;r11*x1+r12*x2+r13*x3+r14*x4>=15;r21*x1+r22*x2+r23*x3+r24*x4>=28;r31*x1+r32*x2+r33*x3+r34*x4>=21;r41*x1+r42*x2+r43*x3+r44*x4>=15;290*r11+315*r21+350*r31+455*r41<=1850;290*r12+315*r22+350*r32+455*r42<=1850;290*r13+315*r23+350*r33+455*r43<=1850;290*r14+315*r24+350*r34+455*r44<=1850;290*r11+315*r21+350*r31+455*r41>=1750;290*r12+315*r22+350*r32+455*r42>=1750;290*r13+315*r23+350*r33+455*r43>=1750;290*r14+315*r24+350*r34+455*r44>=1750;x1+x2+x3+x4>=19;x1+x2+x3+x4<=20;x1>=x2;x2>=x3;x3>=x4;r11+r21+r31+r41<=5;r12+r22+r32+r42<=5;r13+r23+r33+r43<=5;r14+r24+r34+r44<=5;gin(x1);gin(x2);gin(x2);gin(x4);gin(r11);gin(r12);gin(r13);gin(r14);gin(r21);gin(r22);gin(r23);gin(r24);gin(r31);gin(r32);gin(r33);gin(r34);gin(r41);gin(r42);gin(r43);gin(r44);end经运行得到输出如下:Global optimal solution found.Objective value: 21.40000Objective bound: 21.40000Infeasibilities: 0.000000Extended solver steps: 1Total solver iterations: 34507Variable Value Reduced Cost X1 14.00000 -0.1000000 X2 5.000000 0.000000 X3 0.000000 0.1000000 X4 0.000000 0.2000000 R11 0.000000 0.000000 R12 3.000000 0.000000 R13 0.000000 0.000000 R14 0.000000 0.000000 R21 2.000000 0.000000 R22 0.000000 0.000000 R23 1.000000 0.000000 R24 0.000000 0.000000 R31 2.000000 0.000000 R32 0.000000 0.000000 R33 3.000000 0.000000 R34 0.000000 0.000000 R41 1.000000 0.000000 R42 2.000000 0.000000 R43 1.000000 0.000000 R44 4.000000 0.000000。

数学建模全国一等奖论文系列(27)

数学建模全国一等奖论文系列(27)

数学建模全国⼀等奖论⽂系列(27)乘公交,看奥运摘要由于可供选择的车次很多,各种车辆的换乘⽅式也很多,为了避免上下⾏站点不⼀样的车次等对路线产⽣的影响,我们以由易到难的思路来完成模型。

⾸先分析⼀辆车可以直接到达的情况,在这其中⼜考虑到环线的特殊性对其单独进⾏判断讨论;由于⼀辆车可使乘客到达⽬的地的可能性太⼩,我们接下来讨论要进⾏⼀次换乘的情况,在这⾥巧妙地利⽤矩阵来判断两辆车是否含有共同站这个思想,避免了⾄少两重循环,使运算速度⼤⼤提⾼;虽然这样就已经能够解决不少的问题,但并不完全,因此我们继续计算换乘两次的乘车路线,经过⼤量的运算,我们发现基本所有的站点间都可以通过换乘两次到达,⾄此对公交线路的讨论基本完成。

对加⼊地铁的讨论与只有公交车时类似,从最简单的两辆地铁换乘的情况开始考虑,由浅⼊深。

论⽂中并没有运⽤⼤量的符号,⽽是⽤⽂字来说明程序的主要步骤,这样可以让不了解程序的读者也清楚地知道模型的思路,⽽且,只要知道起始与终点,利⽤程序就可以计算所有可能路线,并可以在结果中为读者提供路线的相关信息,⽐如路费及所需时间,以供选择。

对于最优的解释,我们除了以时间最少、车费最省为原则,还对时间与车费进⾏了加权平均,⽽权数便是乘客对时间与⾦钱的偏好程度,当输⼊⾃⼰愿⽤1元钱去换多少分钟乘车时间时,程序会根据个⼈的不同喜好,来选择出适合每个⼈的最优路线。

这样将程序⼈性化,可以更符合实际中⼈们的需要。

关键词:公交线路选择最优化矩阵加权平均数组分类讨论⾃主查询问题重述北京是中国的⾸都,是政治、⽂化中⼼,同时也是国际交往的中⼼。

在成功取得2008年第29届夏季奥运会的举办权后,北京市城市建设的步伐将进⼀步加快。

众所周知,可靠的交通保障是成功举办奥运会的关键之⼀,公共客运交通服务系统尤为重要。

在保持公车票价⼀直相对较低的情况下,北京市⼜已经实⾏机动车单双号出⾏,⽬的就是为了⿎励⼈们乘公共汽车出⾏,缓解交通阻塞状况。

数学建模优秀论文

数学建模优秀论文

(数学建模B题)北京水资源短缺风险综合评价参赛队员:甘霖(20093133,数学科学学院)李爽(20093123,数学科学学院)崔骁鹏(20091292,计算机科学学院)参赛时间:2011年4月30 - 5月13日承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D 中选择一项填写):B所属学校(请填写完整的全名):黑龙江大学参赛队员:1.甘霖2、李爽3、崔骁鹏日期:2011 年5月12日目录1.摘要 -----------------------------------------42.关键词 ---------------------------------------43.问题重述 ---------------------------------------54.模型的条件和假设 ------------------------------55.符号说明 --------------------------------------56.问题的分析及模型的建立 ------------------------66.1问题一的分析与求解 -----------------------66.2问题二的分析与求解 -----------------------106.3问题三的分析与求解 -----------------------186.4问题死的求解 -----------------------------217.模型的评价 ------------------------------------238.参考文献 --------------------------------------239.附录 ------------------------------------------23北京水资源短缺风险综合评价甘霖﹑李爽﹑崔骁鹏【摘要】本文针对水资源短缺风险问题求出主要风险因子,并建立了水资源短缺风险评价模型,以北京为实例,做出了北京1979年到2009年的水资源短缺风险的综合风险评价,划分出了风险等级,以评价水资源短缺风险的程度。

数学建模论文 - 席位公平分配问题1

数学建模论文 - 席位公平分配问题1

数学建模论文(席位公平分配问题)席位公平分配问题摘要本文讨论了席位公平分配问题以使席位分配方案达到最公平状态。

我主要根据了各系人数因素对席位获得的影响,首先定义了公平的定义及相对不公平的定义,采用了比例模型、汉丁顿模型和Q值模型制定了一个比较合理的分配方案。

首先,我根据相关资料的查阅,定义了公平的定义和不公平的定义以及不公平程度的定义和相对不公平数的定义以便来检验模型的公平性程度。

其次,我建立了一个比例模型,采用了比例相等的方法,列出一个关于所获席位与总席位数和各系人数与各系总人数的等式,进而求得所获席位数。

同时我建立了一D+Q值模型,通过汉丁顿模型和Q 值模型的结合,最终得出一个比较合理的分配方案。

最后,我用相对不公平数来检验两个模型的公平性程度。

关键词:数学建模公平定义 Q值模型 d'Hondt(汉丁顿)模型目录一、问题重述与分析: (3)1.1问题重述: (3)1.2问题分析: (3)二、模型假设 (4)三、符号说明 (4)四、模型建立: (5)4.1公平的定义: (5)4.2不公平程度的表示: (5)4.3相对不公平数的定义: (5)4.4模型一的建立:(比例分配模型) (6)4.5模型二的建立:(d'hondt模型和Q值模型) (6)五、模型求解 (8)5.1模型一求解: (8)5.2模型二的求解: (8)六、模型分析与检验 (9)七、模型的评价: (11)7.1、优点: (11)7.2、缺点: (11)7.3、改进方向: (11)八、模型优化 (11)九、参考文献 (12)一、问题重述与分析:1.1问题重述:三个系学生共200名(甲系100,乙系60,丙系40),代表会议共20席,按比例分配,三个系分别为10,6,4席。

现因学生转系,三系人数为103, 63, 34, 问20席如何分配。

若增加为21席,又如何分配。

因此存在席位公平分配问题,以下针对各系自身人数对所获席位数目的影响建立相关模型,解得最优的席位公平分配方案。

2017年全国数学建模论文

2017年全国数学建模论文

2017年全国数学建模论文数学建模是从现实问题中建立数学模型的过程.在对实际问题本质属性进行抽象提炼后,用简洁的数学符号、表达式或图形,形成便于研究的数学问题,并通过数学结论解释某些客观现象,预测发展规律,或者提供最优策略。

下文是店铺为大家搜集整理的关于2017年全国数学建模论文的内容,欢迎大家阅读参考!2017年全国数学建模论文篇1浅论数学建模中最优化方法的使用摘要:随着计算机等各项技术的发展,用数学思维解决实际问题显得越来越重要。

结合2006年全国大学生数学建模竞赛A题,本文给出了整数线性规划模型的建模过程,体现了最优化方法在数学建模中的重要作用。

并通过介绍几个简单的数学模型,加深了对最优化方法与数学建模的认识,阐述了数学建模与最优化方法之间的紧密关系,最优化方法是数学建模的本质,数学模型是最优化方法的实现方式。

关键词:最优化;数学建模;数学规划.1.引言数学建模是从实际课题中抽象、提炼出数学模型的过程。

人们常对实际事物建立种种数学模型以期通过对该模型的考察来描述、解释、预计或分析出实际事物相关的规律。

2.最优化模型典型的最优化模型可以描述成如下形式:Min{f(X)|X∈D}其中,X=(x1,x2,…xn)T表示一组决策变量,xi(i=1,…,n)通常在实数域R内取值,称决策变量的函数f(X)为该最优化模型的目标函数。

D为n维欧式空间Rn的某个子集,通常由一组关于决策变量的等式或不等式刻画,形如:Minf(X)s.t.Ci(X)≥0(i=1,2, (1)Ci(X)=0(I=m1+1,…m)这时,称模型中关于决策变量的等式或不等式Ci(X)≥0(i=1,2,…m1)、Ci(X)=0(I=m1+1,…m)为约束条件,而称满足全部约束条件的空间Rn中的点X为该模型的可行解,称即由所有可行解构成的集合为该模型的可行域。

称X*∈D为最优化模型Min{f(X)|X∈D}的(全局)最优解,若满足:对?X∈D均有f(X*)≤f(X),这时称X*∈D处的目标函数值f(X*)为最优化模型Min{f(X)|X∈D}的(全局)最优值;称X*∈D为最优化模型Min{f(X)|X∈D}的局部最优解,若存在δ>0,对?X∈D∩{X∈Rn| }均有f(X*)≤f(X)。

数学建模竞赛获奖论文范文

数学建模竞赛获奖论文范文

数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。

下面是店铺为大家推荐的数学建模论文,供大家参考。

数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。

要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。

高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。

因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。

国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。

"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。

第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。

这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。

第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘 要:本文以深圳河流域特区为例,模拟了“分流清源”与“混流截排”收集机制的雨水管道与污水管道网络,对两种系统对各种参数的灵敏性和稳定性进行了分析,并对经济效果进行了估算和判断。

本文设计了一种建设方案,得到在五年内建造污水管道网络的最佳策略,使得建设完成前排入环境的污水量最少,同时满足政府治污的“一、三、五年目标”,且最节约经济成本。

求解第一问“分流清源”建设方案: 我们根据资料中污水处理厂、污水产生源的位置通过“最小生成树”算法规划出“分流清源”模型中建设的管道主干,通过计算深圳水管网络的分形维数,得到整个系统长度共142公里,并根据资料估算工程费用约7.7亿元。

题目指出“后续管理困难而很难保证不会再出现污水管错接问题”,所以需要对该系统进行了稳定性评估。

在已知各污水厂容纳量和污水源产生量和管道连接状况的情况下,通过规划得到了在部分管道错接或损坏的情况下,分别会导致多少污水溢出。

结论是在一条管道损毁或错接的情况下,平均溢出增量百分比为6.6%,因此对于该最小生成树管道系统,除了一些关键路径需要额外措施保护之外,其他边稳定性良好。

对于“混流截排”方案: 题目提到“政府已有较大的投入到截排”,我们模拟设定雨水管道(连接污水源和初期雨水池)为三角形网格且已经建好,初期雨水池以及雨污管道已经建好,雨污管道仍然采用“最小生成树”。

我们分析了无雨、中小雨、暴雨三种情况下初期雨水池接收雨水和污水的比例。

通过“最小溢出固定流”的规划算法,得出各雨水池溢出混水量的最低值。

我们通过改变降雨强度、个别雨池容量、排污比例、排污点的参数,来研究这些参数对溢出混水量最低值的影响。

因为环境污染和经济投入量纲不一致,我们用隶属函数和稀释理论两种不同的角度去评估清源和截排的优劣。

根据文献中溢出混水的化学需氧量(COD )就可以估算溢出污水的环境代价,它与污水处理费在五年内共14.1亿元,而清源方案的总代价是18.6亿元。

另一方面,我们采取ω(x )=1-e −(x λ)2的隶属函数来评价污染和花费,把两个拐点分别设置为政府预算20亿和现有污染排放量467万吨这两个位置。

实施清源建造期间五年的污染及经济评价分别是0.045、0.35,然而截排则是0.39和0.11,这个评价指标越低越好,通过比较可以看出,清源虽然花费多,但是综合来看还是更占优势的。

求解污水治理的方案。

由于建设改造“分流清源”水管系统需要五年的进程,在这五年中,清源与截排共存。

我们提出方案:为保证居民秩序不受大规模影响,改造过程必须循序渐进,体现在总体上每年会有完成总长度一定百分比的要求(见第四章),同时对于局部地区也不能把一个节点两条及以上管道在一年内修建。

在这种限制条件下,修建进程还必须满足政府治污的“一、三、五年目标”。

我们采取搜索剪枝的做法有效解出了每年的修建方案,五年内分别修建水管道长。

同时我们算出了在没有修建完成时,每年的污水排放情况并保证五年内它的总数是最低的。

由此我们估算出在工程五年期间内环保和经济的总代价为17.1亿元。

我们这个模型还有一些可以后续改进的地方,首先是可以地形,可以通过成千上万个点的经纬度和海波,通过插值方法,做出三维地形图,根据地势高低确定驱动污水的电费以及污水的流向。

我们可以根据污染物在自然中降解和扩散的情况来列出相应的偏微分方程。

通过时间序列模型,白化方程来预测污染停止之后几年后的水质,另外就是如果拿到更多的水文数据,污染指标应该采取更加科学的内梅罗指数法。

还有一个问题是,我们在建立动态模型时,直接采取静态模型最优的结果来,没有考虑优化目标变化导致建造边的变化。

最后,如果因为某种原因,建造顺序受到了影响,需要调整,改变程序也很容易求解出新的顺序以及新情况中的总污染和花费。

关键词:清源截排最小生成树最小费用最大流整数规划遗传算法目录摘要 (1)第一章背景介绍 (4)1.1深圳市河水污染严重 (4)1.2雨污水管分流系统 (4)1.3名词定义、符号和变量声明 (5)第二章“分流清源”与“混流截排”建设比较 (6)2.1“清源”基本假设 (6)2.2“清源”管道数学模型 (6)2.3“清源”管道图与费用 (8)2.4“截排”基本假设 (12)2.5“截排”流量数学模型 (13)2.6 两种方案环境效益与经济成本比较——河流污染物稀释理论 (15)2.7两种方案环境效益与经济成本比较——隶属函数法 (16)第三章两种建设方案稳定性分析 (17)3.1“清源”有管道断开的流量计算 (17)3.2关键雨水池扩容后的“截排”溢出量计算 (20)3.3降雨强度波动的“截排”溢出量计算 (21)3.4其他因素变化对“截排”溢出量的影响 (22)3.5提升管道系统稳定性的途径 (22)第四章建造“清源”管道顺序的分析 (23)4.1改造思路与基本假设 (23)4.2建造顺序的数学模型 (23)4.3结果与分析 (24)总结 (28)参考文献 (29)附录 (30)污水源、初期雨水池、污水处理厂每日污水量与位置坐标 (30)第一章背景介绍1.1深圳市河水污染严重河水浑然天成,原本美好而洁净,但是却被现代化进程中的人们有意或无意地糟蹋着。

以茅洲河为例,它在五六十年代是深圳的饮用水源,七八十年代,孩子们还能到河里抓鱼、游泳。

一位深圳市老市民回忆着,“我静静站在河里,河水没过我膝盖,我能清楚看到可爱的小鱼在脚边穿梭。

”他说河底还有柔软的沙子和漂亮的小石头,放学后的下午,村里的伙伴便到茅洲河打水仗、游泳[1]。

然而现在,茅洲河由于生活污水的排放,先变泛黄,然后泛绿,最终汇聚成墨黑色。

家住在河边附近的都不敢开窗,尤其是夏天,气温又高,河流的腥臭在热浪的蒸腾下异常刺鼻。

像茅洲河这种情况,只是深圳众多被污染的河流之一,广东省环保厅监测显示,茅洲河干流和15条主要支流水质均劣于Ⅴ类(最差级别),氨氮、总磷等指标严重超标,相比干流,茅洲河的支流水质差得更甚,在深圳境内的10条支流中,老虎坑水污染的氨氮指标数竟然超标23.2倍[1],堪称“珠三角污染最严重的河流”。

工业污水非法排放属于点源污染,过去深圳将电子信息产业作为传统支柱产业,而茅洲河流域内的部分街道则聚集了一批电镀线路板等配套生产企业。

近年来随着环保部门执法力度的提升,工业点源污染逐步得到控制和解决。

在点源污染被逐步得到控制之后,河道的另一个主要污染源就是初期雨水造成的面源污染[2]。

1.2雨污水管分流系统导致深圳建成区水体黑臭的原因是污水直排入河、海。

具体表现是,原本按“雨污分流”设计的城市污水收集、处理系统,由于建设及管理上的问题,相当面积的建成区排水管网实际处于“雨污混流”状态[3]。

所谓“截排”措施,是于治理区域的排水管网末端建设拦截管道或箱涵,将雨、污混合水收集起来送至污水厂处理。

如小范围的城中村“截排”工程可以是围绕城中村修建“截污箱涵”,拦截雨污混流水;“大截排”工程则是直接在河岸两侧修建“截污箱涵”,把大区域内原本通向河道的排洪管口接入箱涵,将污水和雨水全部收集到箱涵里送入污水工厂处理。

当然,“截排”措施除了拦截雨污混流水的功能之外,对于拦截前七分钟降雨形成的面源污染污水也有良好的效果。

所谓“清源”措施,则是力图从源头起建立“雨污分流”排污机制,在治理区域内以两套管网分别收集污水和雨水,让污水经污水管进入污水厂处理,让雨水经排洪口直接进入河道,使城市处于一种理想的污水治理状态[4]。

1.3名词定义、符号和变量声明污水源:假定所有生活污水、工业污水的都通过管道汇聚到污水源点,再由这些点向其他地方运输污水处理厂:可以有效处理污水,并回收再利用。

只接收污水或雨污混水,不向外输运。

初期雨水池:接收下雨时前45分钟的雨水[4]。

在“混流截排”措施里,可以接收错排的污水。

它与污水处理厂通过管道相连。

不下雨时,只接收污水;下小雨中雨时,2/7容积接收雨水,5/7容积接收污水,具体论述见第三章;暴雨时只接收雨水,不接收污水。

雨水管道:将雨水汇集到初期雨水池。

在“混流截排”措施里,将错接的污水输运到初期雨水池。

污水管道:直接将污水源的污水输运到污水处理厂,属于“分流清源”措施。

Figure 2 混流截排[5] Figure 1 分流清源[5]第二章“分流清源”与“混流截排”建设比较2.1“清源”基本假设A、本章假设管道系统从零开始建造,不考虑已有建设的水管网系统,也不考虑错接现象。

B、假设管道系统连接的两点位置都是走直线距离,不考虑因为地下地质原因或地铁建造导致管道绕路、或走折线的情况C、重力流污水管以管径划分从300mm口径到2000mm以上口径不等,建造水管网络费用主要包括挖掘费用、管道费用,施工人工费以及封路施工造成的间接叫用损失等。

由于施工费用占主导,不考虑由于管径变化导致的费用变化,即假设所有管道都一样粗,都可以容纳污水流通过。

D、把所有污水源简化为31个点,假定所有生活污水、工业污水的都通过管道汇聚到这31个点,再向其他地点输运。

只考虑主干线,不考虑分支线。

E、本模型是静态模型,考虑所有线路都能快速建设好,不考虑因为关键路径缺失带来的损失F、考虑污水处理厂已经建好,位置确定,不再新增污水厂。

2.2“清源”管道数学模型为了建设我们的清源管网,我们决定把建设分为两步,第一步是根据点源设计出主干管道,第二步是运用数学里的分形方法估算出分支管道和整套清源系统的管道总长。

Figure 3本章用到了深圳河流域特区内规划预测2020年污水量[2],得到31个污染源每天共产生污水56.97万吨。

我们通过百度地图查找了相应经度(x1,x2)纬度(y1,y2),然后计算球面距离可以得到不同污水点的距离。

污水源每日产生污水量与污水源位置见附表1。

三个已经建立的污水处理厂每日处理污水量上限及其位置坐标数据见附表2,同理通过球面距离得到污水处理厂和污水点的距离。

Distance(P1,P2)=R×arccos⁡(sin x1×sin x2+cos(y1−y2)×cos x1×cos x2)Figure 4算法:Kruskal最小生成树假设:不同粗细管道价格差异可以忽略,铺设管道费用仅与管道路程长度有关三个污水厂距离都比较远,不会在算法中直接相连目标:min∑w建设管道总长度最小⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∀i,j ⁡x ij=1 所有点连通Figure 5Figure 62.3分形法估算“清源”管道图总长我们通过最小生成树建立了一套网络,最终算出从开始到建立一套污水管道网络最少需要管道长为70.15千米(只是计算了主干线路)。

Figure 7主干管道设计完成,怎么去估算分支管道和整个系统的长度呢?我们引入分形这个数学方法来解决。

相关文档
最新文档