八年级数学下《数据的分析》练习题

合集下载

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

《好题》初中八年级数学下册第二十章《数据的分析》经典练习(含答案)

一、选择题1.某市6月份日平均气温统计如图所示,则在日平均气温这组数据中,众数和中位数分别是( )A .21,21B .21,21.5C .21,22D .22,22C解析:C 【解析】这组数据中,21出现了10次,出现次数最多,所以众数为21, 第15个数和第16个数都是22,所以中位数是22. 故选C.2.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数 B .方差C .平均数D .中位数D解析:D 【分析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析. 【详解】由于总共有7个人,且他们的成绩各不相同,第3的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少. 故选:D . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用. 3.已知数据12,,,n x x x 的平均数是2,方差是0.1,则1242,42,,42n x x x ---的平均数和标准差分别为( ) A .2,1.6 B .210C .6,0.4D .210D 解析:D【分析】根据平均数和方差公式直接计算即可求得. 【详解】 解:()12312n x x x x x n=+++⋯+=, ∴()1231424242424226n x x x x n -+-+-+⋯+-=⨯-=, ()()()()22222123122220.1n S x x x x n ⎡⎤=-+-+-+⋯+-=⎣⎦,()()()()22222421231426426426426x n S x x x x n -⎡⎤=--+--+--+⋯+--⎣⎦ 0.116=⨯1.6=,∴42x S -=故选:D . 【点睛】本题考查了方差和平均数,灵活利用两个公式,进行准确计算是解答的关键. 4.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”C 解析:C 【分析】可根据调查的选择、中位数和众数的求法、方差及随机事件的意义,逐个判断得结论. 【详解】解:因为我国中学生人数众多,其课外阅读的情况也不需要特别精确, 所以对我国中学生课外阅读情况的调查,宜采用抽样调查,故选项A 不正确; 因为B 中数据按从小到大排列为1、2、3、3、5、5、5,位于中间的数是3,故该组数据的中位数为3, 所以选项B 说法不正确;因为0.003<0.1,方差越小,波动越小,数据越稳定, 所以甲组数据比乙组数据稳定,故选项C 说法正确;因为抛掷硬币属于随机事件,抛掷一枚硬币100次,不一定有50次“正面朝上” 故选项D 说法不正确. 故选:C . 【点睛】本题的关键在于掌握调查的选择、中位数和众数的求法、方差及随机事件的意义.5.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学 80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁C解析:C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.【点睛】本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大.6.如图是根据我市某天七个整点时的气温绘制成的统计图,则下列说法正确的是()A.这组数据的众数是14B.这组数据的中位数是31C.这组数据的标准差是4D.这组是数据的极差是9D解析:D【解析】【分析】根据中位数,众数、极差、标准差的定义即可判断.【详解】解:七个整点时数据为:22,22,23,26,28,30,31所以中位数为26,众数为22,平均数为:22+22+23+26+28+3032167+=;极差是31-22=9,标准差是:故D正确,故选:D【点睛】此题考查中位数,众数、极差、标准差的定义,解题关键在于看懂图中数据7.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

(必考题)初中八年级数学下册第二十章《数据的分析》经典练习题(含答案解析)

(必考题)初中八年级数学下册第二十章《数据的分析》经典练习题(含答案解析)

一、选择题1.某市连续10天的最低气温统计如下(单位:℃):4,5,4,7,7,8,7,6,5,7,该市这10天的最低气温的中位数是( ) A .6℃B .6.5℃C .7℃D .7.5℃2.为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果:那么关于这10户居民月用电量(单位:度),下列说法错误的是( ) A .中位数是55B .众数是60C .平均数是54D .方差是293.在我县“我的中国梦”演讲比赛中,有7名同学参加了比赛,他们最终决赛的成绩各不相同.其中一名学生想要知道自己是否进入前3名,不仅要知道自己的分数,还得知道这7名学生成绩的( ) A .众数B .方差C .平均数D .中位数4.下面说法正确的个数有( )(1)二元一次方程组的两个方程的所有解,叫做二元一次方程组的解; (2)如果a b >,则ac bc >;(3)三角形的外角等于与它不相邻的两个内角的和; (4)多边形内角和等于360︒; (5)一组数据1,2,3,4,5的众数是0 A .0个B .1个C .2个D .3个5.某地区汉字听写大赛中,10名学生得分情况如下表: 分数 50 85 90 95 人数3421那么这10名学生所得分数的中位数和众数分别是( ) A .85和85B .85.5和85C .85和82.5D .85.5和806.下列说法正确的是( )A .为了解我国中学生课外阅读的情况,应采取全面调查的方式B .一组数据1、2、5、5、5、3、3的中位数和众数都是5C .若甲组数据的方差是003,乙组数据的方差是0.1,则甲组数据比乙组数据稳定D .抛掷一枚硬币100次,一定有50次“正面朝上”7.一组数据3,4,6,8,8,9的中位数和众数分别是( )8.某班有40人,一次体能测试后,老师对测试成绩进行了统计.由于小亮没有参加本次集体测试因此计算其他39人的平均分为90分,方差s2=41.后来小亮进行了补测,成绩为90分,关于该班40人的测试成绩,下列说法正确的是()A.平均分不变,方差变大B.平均分不变,方差变小C.平均分和方差都不变D.平均分和方差都改变9.在学校举行的“我为祖国献首歌”的合唱比赛中,六位评委给初三某班的评分分别是:87、90、83、87、87、83,这组数据的众数和中位数分别是()A.87,87 B.87,85 C.83,87 D.83,8510.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

人教版八年级数学下册第二十章数据的分析练习(包含答案)

人教版八年级数学下册第二十章数据的分析练习(包含答案)

第二十章数据的剖析一、单项选择题1.已知一组数据x1, x2, x3, x4, x5的均匀数是2,方差是1,那么另一组数据3x1 2 ,33x2 2 , 3x3 2 , 3x42, 3x5 2 ,的均匀数和方差分别是() .A .2,1B.2,1C.4,2D.4,3 332.某中学规定学生的学期体育成绩满分为100 分,此中课外体育占20% ,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95 分, 90 分, 88 分,则小彤这学期的体育成绩为()A . 89 分B. 90 分C.92 分D. 93 分3.在一次体育测试中,小芳所在小组8 个人的成绩分别是:46,47,48,48,49,49,49,50.则这 8 个人体育成绩的中位数是()A . 47B. 48C.48.5D. 4942甲172,S2乙256,.某次知识比赛中,两组学生成绩以下表,经过计算可知两组的方差为以下说法:①两组的均匀数同样;①甲组学生成绩比乙组学生成绩稳固;①甲构成绩的众数>乙构成绩的众数;①两构成绩的中位数均是80,但成绩80 的人数甲比乙组多,从中位数来看,甲构成绩总体比乙组好;①成绩高于或等于90 分的人数乙组比甲组多,高分段乙构成绩比甲组好.此中正确的有()个A . 2B. 3C.4D. 55.某铁工艺品商城某天销售了110 件工艺品,其统计如表:货种A B C D E销售量(件)10 40 30 10 20该店长假如想要认识哪个货种的销售量最大,那么他应当关注的统计量是()A .均匀数B.众数C.中位数D.方差6.从一组数据1, 2, 2, 3 中随意取走一个数,剩下三个数不变的是()A .均匀数B.众数C.中位数D.方差7.假如一组数据2, 3, 4, 5,x的方差与另一组数据101, 102, 103, 104,105 的方差相等,那么 x 的值()A . 6B. 1C.6 或 1D.没法确立8.甲、乙、丙、丁四位选手各10 次射击成绩的均匀数和方差以下表:选手甲乙丙丁均匀数 (环 )9.29.29.29.2方差 (环2)0.0350.0150.0250.027则这四人中成绩发挥最稳固的是()A .甲B.乙C.丙D.丁9.在一次捐钱活动中,某学习小组共有13 人参加捐钱,此中小王的捐钱数比13 人捐钱的均匀数多 2 元,据此可知,以下说法错误的选项是()A.小王的捐钱数不行能最少B.小王的捐钱数可能最多C.将捐钱数按从少到多摆列,小王的捐钱数可能排在第12 位D.将捐钱数按从少到多摆列,小王的捐钱数必定比第7 名多10.多多班长统计昨年1~8 月“书香校园”活动中全班同学的课外阅读数目(单位:本),绘制了如图折线统计图,以下说法正确的选项是()A .极差是47B .众数是42C.中位数是58D.每个月阅读数目超出40 的有 4 个月二、填空题11.九年级某班40 位同学的年纪如表所示:年纪(岁) 13141516人数316192则该班 40 名同学年纪的众数是_____.12.某校初三年级共有四个班,各班会考的均匀成绩挨次是82 分, 79 分, 81 分, 78 分.(1)假如各班的人数都是50 人,则会考的均匀成绩为__________.(2)假如各班的人数挨次为46 人;48 人;54 人;52 人;则该校会考的均匀成绩为_________ .13.某小组计划在本周的一个下午借用 A 、B、 C 三个艺术教室此中的一个进行元旦节目的彩排,他们去教课处查察了上一周 A 、B、 C 三个艺术教室每日下午的使用次数(一节课记为一次)状况,列出以下统计表:经过检查,本次彩排安排在礼拜______ 的下午找到空教室的可能性最大.14.一组数据3, 4, 6, 7, x 的均匀数为 6,则这组数据的方差为_____.15.有两名学员小林和小明练习飞镖,第一轮10 枚飞镖掷完后两人命中的环数以下图,已知生手的成绩不太稳固,那么依据图中的信息,预计小林和小明两人中生手是______ ;这名选手的10 次成绩的极差是______.三、解答题16.我们商定:假如身高在选定标准的± 2%范围以内都称为“普启遍身高”.为了认识某校九年级男生中拥有“广泛身高”的人数,我们从该校九年级男生中随机抽出 10 名男生,分别丈量出他们的身高 (单位: cm) ,采集并整理以下统计表:男生①①①①①①①①①①序号身高163171173159161174164166169164x(cm)依据以上信息,解答以下问题:(1)计算这组数据的三个统计量:均匀数、中位数、众数;(2) 请你选择此中一个统计量作为选定标准,找出这10 名男生中拥有“广泛身高”是哪几位男生?17.在全民念书月活动中,某校随机抽样检查了一部分学生本学期计划购置课外书的花费情况,依据图中的有关信息,解答下边问题;(1)此次检查获得的样本容量是;(2)由统计图可知,此次检查获得的样本数据的众数是;中位数是;(3)求此次检查获得的样本数据的均匀数;(4)若该校共有 1000 名学生,依据样本数据,预计该校本学期计划购置课外书的总花销.18.为了庆贺新中国建立70 周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘光阴”新中国建立70 周年知识比赛活动.将随机抽取的部分学生成绩进行整理后分红 5 组, 50~60 分( 50x60 )的小组称为“学童”组,60~70分 ( 60x 70 )的小组称为“秀才”组,70~x90 )的小组称为“进士”组, 90~80 分 ( 70x 80 )的小组称为“举人”组, 80~90 分( 80100 分 ( 90x100 )的小组称为“翰林”组,并绘制了不完好的频数散布直方图以下,请结合供给的信息解答以下问题:(1)在此次比赛中,抽取学生的成绩的中位数在组;(2)学校决定对成绩在70~100 分 ( 70x 100 )的学生进行奖赏,若八年级共有336 名学生,请经过计算说明,大概有多少名学生获奖?19.某中学展开“数学史”知识比赛活动,八年级(1)、(2)班依据初赛成绩,各选出 5 名选手参加复赛,两个班各选出的 5 名选手的复赛成绩(满分为100 分)以下图:(1)依据图示填写下表a、 b、 c 的值:统计量均匀数(分)中位数(分)众数(分)班别八年( 1)班a85c八年( 2)班85b100(2)联合两班复赛成绩的均匀数和中位数,剖析哪个班的选于复赛成绩较好;(3)经过计算八年(1)班 5 名选手的复赛成绩的方差S 八(1)2= 70,请你计算八年(2)班5名选手复赛成绩的方差并判断哪个班的选手复赛成绩较为平衡.20.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩以下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)依据表格中的数据,计算出甲的均匀成绩是环,乙的均匀成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)依据( 1)、( 2)计算的结果,你以为介绍谁参加全国比赛更适合,请说明原因.(计算方差的公式:s2=[])答案1. D2. B3. C4. C5. B6. C7. C8. B9. D10. C11. 1512. 8079.9713.三14. 615.小林,9 环16.( 1)均匀数166.4(cm),中位数165,众数164;( 2)①①①①①男生的身高拥有“广泛身高”.17.( 1)40( 2)30,50( 3)均匀数是 50.5 元( 4)该校本学期计划购置课外书的总花销为50500 元18.( 1) 70~80 或“举人”;(2) 231.19.( 1) a= 85 分; b= 80 分; c= 85 分;( 2)八年( 1)班成绩好些;( 3)八年( 2)班20.解:( 1) 9; 9.(2) s2甲=2;3s2乙=4.3(3)介绍甲参加比赛更适合。

八年级下册数学期末复习《数据的分析》作业

八年级下册数学期末复习《数据的分析》作业

第二十章数据的分析作业卷一、选择题1、在端午节到来之前,儿童福利院对全体小朋友爱吃哪几种粽子作调查,以决定最终买哪种粽子.下面的调查数据中最值得关注的是()A、方差B、平均数C、中位数D、众数2、下列选项中,能够反映一组数据离散程度的统计量是()A、平均数B、中位数C、众数D、方差3、某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的()A、最高分B、中位数C、极差D、平均数4、要调查某校八年级学生周末的阅读课外书籍的时间,选取调查对象最合适的是()A、选取该校一个班级的学生B、选取该校50名学生C、随机选取该校50名八年级男生D、随机选取该校50名八年级学生5、图中是交警在一个路口统计的某个时段往来车辆的车速情况(单位:千米/小时),则大多数车速和中间车速分别为()A.52,52 B.52,52.5 C.53,52.5 D.53,526、为了考察甲、乙两种小麦的长势,分别从中抽取10株麦苗,测得苗高如下:(单位:cm)甲12 13 14 15 10 16 13 11 15 11乙11 16 17 14 13 19 6 8 10 16下列说法中正确的是()A.甲种小麦长势比乙种小麦整齐B.乙种小麦长势比甲种小麦整齐C.两种小麦长势一样整齐D.无法判断哪种小麦长势更整齐二、填空题7、为了检查一批零件的质量,从中抽取10件,测得它们的长度如下(单位:毫米)22.36 22.35 22.33 22.35 22.3722.34 22.38 22.36 22.32 22.35根据以上数据,计算这批零件的平均长度8、在青年歌手电视大奖赛中,采用10位评委现场打分,每位选手的最后得分为去掉一个最低分,去掉一个最高分后的平均分,已知10位评委给某位歌手的打分分别是:9.5 9.5 9.3 9.8 9.48.8 9.6 9.5 9.2 9.6则这位歌手的最后得分为9、为了解某一路口的汽车流量,调查了10天中同一时段通过该路口的汽车数量(单位:辆),结果如下:183 209 195 178 204 215 191 208 167 197在该时段中,平均约有辆汽车通过这个路口。

(必考题)初中八年级数学下册第二十章《数据的分析》经典习题(含答案解析)

(必考题)初中八年级数学下册第二十章《数据的分析》经典习题(含答案解析)

一、选择题1.初三体育素质测试,某小组5名同学成绩如下所示,有两个数据遮盖,如图: 编号 1 2 3 4 5 方差 平均成绩 得分3834■3740■37那么被遮盖的两个数据依次是( ) A .35 2B .36 4C .35 3D .36 32.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是( ) A .10,12 B .12,11 C .11,12 D .12,12 3.若一组数据2468x ,,,,的方差比另一组数据5791113,,,,的方差大,则 x 的值可以为( ) A .12B .10C .2D .04.在5轮“中国汉字听写大赛”选拔赛中,甲、乙两位同学的平均分都是90分,甲的成绩方差是15,乙的成绩的方差是3,下列说法正确的是( ) A .甲的成绩比乙的成绩稳定 B .乙的成绩比甲的成绩稳定 C .甲、乙两人的成绩一样稳定 D .无法确定甲、乙的成绩谁更稳定 5.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为( )A .1、3B .2、2.5C .1、2D .2、26.某校有21名同学们参加某比赛,预赛成绩各不同,要取前11名参加决赛,小颖已经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这21名同学成绩的( ) A .最高分B .中位数C .极差D .平均数7.下图是2019年5月17日至31日某市的空气质量指数趋势图.(说明:空气质量指数为0-50、51-100、101-150分别表示空气质量为优、良、轻度污染) 有如下结论:①在此次统计中,空气质量为优的天数少于轻度污染的天数;②在此次统计中,空气质量为优良的天数占45;③20,21,22三日的空气质量指数的方差小于26,27,28三日的空气质量指数的方差.上述结论中,所有正确结论的序号是()A.①B.①③C.②③D.①②③8.某次知识竞赛中,两组学生成绩如下表,通过计算可知两组的方差为S2甲172=,S2乙256=,下列说法:①两组的平均数相同;②甲组学生成绩比乙组学生成绩稳定;③甲组成绩的众数>乙组成绩的众数;④两组成绩的中位数均是80,但成绩≥80的人数甲比乙组多,从中位数来看,甲组成绩总体比乙组好;⑤成绩高于或等于90分的人数乙组比甲组多,高分段乙组成绩比甲组好.其中正确的有()个A.2 B.3 C.4 D.59.下表为某校八年级72位女生在规定时间内的立定投篮数统计,投进的个数56789101112131415人数37610118137142若投篮投进个数的中位数为a,众数为b,则+a b的值为()A.20 B.21 C.22 D.2310.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲乙丙丁平均数x(厘米)375350375350方差2s12.513.5 2.4 5.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是()A.甲B.乙C.丙D.丁11.小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S 1,S 2分别表示小明、小华两名运动员这次测试成绩的方差,则有( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1≥S 212.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩 13.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方 14.某公司全体职工的月工资如下: 月工资(元) 18000 12000 8000600040002500200015001200人数1(总经理)2(副总经理)3 4 10 20 22 12 6的普通员工最关注的数据是( ) A .中位数和众数 B .平均数和众数 C .平均数和中位数D .平均数和极差15.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表: 捐款金额/元 20 30 50 90 人数2431A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400二、填空题16.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.17.已知一组数据a,b,c的方差为2,那么数据a+3,b+3,c+3的方差是_____.18.若这8个数据-3, 2,-1,0,1,2,3,x的极差是11,则这组数据的平均数是______.19.小明用S2=110[(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=______.20.组数据2,x,1,3,5,4,若这组数据的中位数是3,则x的值是______.21.甲、乙二人在相同情况下,各射靶10次,两人命中环数的平均数都是7,方差2S甲=2.8,2S乙=1.5,则射击成绩较稳定的是______.(填“甲”或“乙”)22.某次数学竞赛共有15道题,下表是对于做对n(n=0,1,2…15)道题的人数的一个统计,如果又知其中做对4道题和4道以上的学生每人平均做对6道题,做对10道题和10道题以下的学生每人平均做对4道题,问这个表至少统计了______人.n0123 (12131415)做对 n道题的人数781021 (15631)23.根据李飞与刘亮射击训练的成绩绘制了如图所示的折线统计图.根据图中所提供的信息,若要推荐一位成绩较稳定的选手去参赛,应推荐______.24.为迎接2018年的体育中考,甲、乙两位同学参加排球训练,体育老师根据训练成绩算出他们成绩的方差分别为S甲2=1.6,S乙2=2.8,则_____(填“甲”或“乙”)成绩较稳定.25.已知数据x1,x2,…,x n的方差是2,则3x1﹣2,3x2﹣2,…,3x n﹣2的方差为_____.26.一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12_______________ S22(填“>”、“=”或“<”).三、解答题27.某市射击队甲、乙两名队员在相同的条件下各射耙10次,每次射耙的成绩情况如图所示:平均数 方差 中位数 甲 7 ① . 7 乙② .5.4③ .(1)请将右上表补充完整:(参考公式:方差2222121[()()()]n S x x x x x x n=-+-++-)(2)请从下列三个不同的角度对这次测试结果进行分析:①从平均数和方差相结合看,__________的成绩好些;②从平均数和中位数相结合看,___________的成绩好些; (3)若其他队选手最好成绩在9环左右,现要选一人参赛,你认为选谁参加,并说明理由.28.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m 的值为______. (2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分). (3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人? 29.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):甲789710109101010乙10879810109109(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.30.为响应我市创建“全国文明城市”的号召,我区某校举办了一次“秀美巴中,绿色家园”主题演讲比赛,满分10分,得分均为整数,成绩大于等于6分为合格,大于等于9分为优秀,这次演讲比赛中甲、乙两组学生(各10名学生)成绩分布的条形统计图如下图:(1)补充完成下列的成绩统计分析表:组别平均分中位数众数方差合格率优秀率甲 6.76 3.4190%20%乙7.17.5 1.6980%10%可知,小王是________组的学生;(填“甲”或“乙”)(3)结合两个小组的成绩分析,你觉得哪个组的成绩更好一些?说说你的理由.。

人教版初中八年级数学下册第二十章《数据的分析》习题(含答案解析)

人教版初中八年级数学下册第二十章《数据的分析》习题(含答案解析)

一、选择题1.某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.892.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是()A.15,15 B.15,15.5 C.15,16 D.16,153.某校以“我和我的祖国”为主题的演讲比赛中,共有10位评委分别给出某选手的原始评分,在评定该选手成绩时,则从10个原始评分中去掉1个最高分和1个最低分,得到8个有效评分. 8个有效评分与10个原始评分相比,不变的是()A.平均数B.极差C.中位数D.方差4.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的()A.平均数改变,方差不变B.平均数改变,方差改变C.平均数不变,方差改变D.平均数不变,方差不变5.甲、乙、丙、丁四位同学五次数学测验成绩统计如右表所示,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选___________去.A.甲B.乙C.丙D.丁6.某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是( ) A .85和85B .85.5和85C .85和82.5D .85.5和807.方差计算公式()()()()()2222221476787117675s ⎡⎤=-+-+-+-+-⎣⎦中,数字5和7分别表示( ) A .数据个数、平均数 B .方差、偏差 C .众数、中位数D .数据个数、中位数8.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S 甲2=17,S 乙2=36,S 丙2=14,丁同学四次数学测试成绩(单位:分).如下表:则这四名同学四次数学测试成绩最稳定的是( ) A .甲B .乙C .丙D .丁9.有甲乙两个箱子,其中甲箱内有98颗球,分别标记号码1~98,且号码不重复的整数,乙箱内没有球。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下数学《数据的分析》1.平均数:(1)算术平均数:一组数据中,有n 个数据,则它们的算术平均数为 nx x x x n+++= 21.权的表示方法:比、百分比、频数(人数、个数、次数等)。

2.中位数:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。

3.众数:一组数据中出现次数最多的数据就是这组数据的众数。

4.极差:一组数据中的最大数据与最小数据的差叫做这组数据的极差。

极差反映的是数据的变化范围。

平均数:反映了一组数据的平均大小,常用来一代表数据的总体 “平均水平”。

(受极端值影响)中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。

众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表。

(中位数,众数不受极端值影响) 5.方差:设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x n S n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差。

方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。

一、选择或填空题:1、8个数的平均数12,4个数的平均为18,则这12个数的平均数为( ).2、衡量样本和总体的波动大小的特征数是( ) A .平均数 B .方差 C .众数 D .中位数3、一组数据按从小到大排列为1,2,4,x ,6,9这组数据的中位数为5,•那么这组数据的众数为( )4、某服装销售商在进行市场占有率的调查时,他最应该关注的是( )A .服装型号的平均数;B .服装型号的众数;C .服装型号的中位数;D .最小的服装型号 5、人数相同的八年级甲、乙两班学生在同一次数学单元测试中,班级平均分和方差如下:80==乙甲x x ,2402=甲s ,1802=乙s ,则成绩较为稳定的班级是( ) 6、某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是( ) 数据10,10,x, 8的中位数和平均数都相等,则中位数为 7、某班20名学生身高测量的结果如下,该班学生身高的中位数是_________抽取的样本容量是_________,8、如果一组数据1,2,3,4,5的方差是2,那么一组新数据101,102,103,104,105的方差是( ) 9,平均数均是7,甲的方差是1.2,乙的方差是5.8,下列说法中不正确的是( )A 、甲、乙射中的总环数相同。

B 、甲的成绩稳定。

C 、乙的成绩波动较大D 、甲、乙的众数相同。

10、样本方差的计算式S 2=120[(x 1-30)2+(x 2-30)2 +。

+(x 20-30)2]中,数字20和30分别表示样本中的( )和( )12.某超市购进了一批不同价格的皮鞋,下表是该超市在近几年统计的平均数据.要使该超市销售皮鞋收入最大,该超市应多购( )元的皮鞋13.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是( )A .200名运动员是总体B .每个运动员是总体C .20名运动员是一个样本D .样本容量是20 14.一城市准备选购一千株高度大约为2m 的树来进行绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下,应选购( )15.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表,上述结论中正确的番号是( )某同学得出如下结论:(1)甲、乙两班学生成绩的平均水平相同; (2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀) (3)甲班成绩的波动情况比乙班成绩的波动小 16.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成 绩如下(单位:分),学期总评成绩优秀的是( )17. 某同学随机调查了“幸福小区”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9利用上述数据估计该小区2000户家庭一周内需要环保方便袋 只。

18.某鞋柜售货员为了了解市场的需求,需要知道所销售的鞋子码数的( )19.某班英语成绩的平均分是75分,方差为225分2,如果每个学生都多考5分,下列说法正确的是:( )A 方差不变平均分不变B 平均分变大方差不变化C 平均分不变方差变大D 平均分变大方差变大20.一组数据的方差为2s ,将每个数据都扩大三倍再加2,所得到的一组新的数据的方差为( ) 21,一个样本的方差是22221261[(5)(5)(5)]6sx x x =-+-++- ,则平均数为( ) 22.某班七个小组人数为:5,5,6,x ,7,7,8.已知这组数据的平均数是6,则这组数据的中位数是( ). 23、为了引导学生树立正确的消费观,某班随机调查了10名同学某日的零花钱情况,其统计图表如下:零花钱在4元以上(含4元)的学生所占比例为 ,该班学生每日零花钱的平均数大约是 元。

24、一组数据中游a 个x 1,b 个x 2,c 个x 3, 数组成一个样本,则一样本的平均数为 25.在数据-1,0,4,5,8中插入一个x ,使这组数据的中位数为3,则x =26.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若用去尾平均数计算这名歌手最后得分约为________.27.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.28.某人开车100km ,在前60km 内,时速为90km ,在后40km 内,时速为120km ,则平均速度为_________. 29.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________. 二、解答题1.当今,青少年视力水平下降已引起全社会的关注,为了了解某市30000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据绘制的频数分布直方图如下:①本次抽样调查共抽测了 名学生;②参 加抽测的学生的视力的众数在 范围内;中位数在 范围内;③若视力为4.9及以上为正常,试估计该市学生的视力正常的人数约为多少? 2、 甲、乙两台机床生产同种零件,10天出的次品个数分别是: 甲:0,1,0,2,1,0,1,1,2,2 乙:1,3,0,1,0,2,1,1,0,1请你运用学的知识作出判断,估计哪台机床性能较好。

为什么?(注意:要列出式子) 3. 2000年~2005年某市城市居民人均可支配收入情况(如图5所示).根据图示信息:(1)求该市城市居民人均可支配收入的中位数;(2)哪些年份该市城市居民人均可支配收入比上一年增加了1 000元以上? 说明理由。

4:某养鱼户养鱼三年,第一年放养了2万尾,成活率为7成,在秋季随意捞出10尾,称重为(单位:千克);0.8, 0.9, 1.2, 1.3, 0.8, 0.9, 1.1, 1.0, 1.2, 0.8 (1)估计池塘中鱼的总重量。

(2)若将鱼全部卖掉,市场售价为4元每千克,成本投入1600元,求纯收入,(3)若第三年纯收入为132400 元,求第一,二年每年平均增长率。

5、一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条做上标记,然后放回池塘里,过了一段时间,待带标记的一混合于鱼群后,再捕捞3次,记录如下:第一次共捕捞95条,平均重量是2.1千克,有标记的有6条;第二次捕捞107条,平均重量是2.3千克,,带有标记的有7条;第三次捕捞98条,平均重量是1.9千克,带有标记的有7条;(1)问他鱼塘内大约有多少条鱼?(2)问他鱼塘内大约有多少千克的鱼?6、某球队对对两人进行3分球投篮测试,每人每天投10次,五天中进球的个数统计结果如下:经过计算,甲进球的平均数为x 甲=8,方差为23.2s 甲.(1)求乙进球的平均数x 乙和方差2s 乙; (2)现从甲、乙两名队员中选出一人去参加3分球投篮大赛,你认为应该选哪名队员去?为什么?7.(8分)某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?9. 为了了解全校400名学生参加课外锻炼的情况,随机对40•名学生一周内平均每天锻炼的时间进行了调查如下:(单位:分)40 21 35 24 40 38 23 5235 62 36 15 51 45 40 42 40 32 43 36 34 53 38 40 39 32 45 40 42 45 50 45 40 50 26 45 40 45 35 40 10. (1):补全频率分布表和频率分布直方图.(2)填空:在这个问题中,总体是_________,样本是________.由统计分析得,•这组数据的平均数是39.35(分),众数是__________,中位数是________.(3)。

如果描述该校400名学生一周内平均每天参加锻炼的总体情况,•你认为用平均数、众数、中位数中的哪一个比较合适?(4)。

估计这所学校有多少名学生,平均每天参加锻炼的时间多于30分?11.有14个数据,由小到大排列,其平均数为34,现在有一位同学求得这组数据前8个数的平均数为32,后8个数的平均数为36,求这组数据的中位数。

相关文档
最新文档