chp033连续信源及信源熵

合集下载

信息论连续信源

信息论连续信源

其他连续熵的定义:
h( XY ) p( xy) log p( xy)dxdy
R2
h( X ) p( xy) log p( x )dxdy Y y 2
R
h(Y
y )dxdy ) p( xy) log p( X x 2
R
2.3.2 几种特殊连续信源的熵
1
均匀分布的连续信源的熵
n
0


lim log p ( x)dx
n
0


连续信源熵定义:
1
h( X ) p( x) log p( x)dx


为了在形式上与离散信源熵统一 熵差仍然具有信X ) H ( X ) Y

求均匀分布的连续信源熵
原因
2影响信源的整体特性,m
对整体特性无影响
3 指数分布的连续信源的熵
1 e x0 p ( x) m 0 其它 h( X ) p( x) log p( x)dx
x m
0
1 p( x) log( e )dx 0 m x log m p( x)dx log e p( x) dx 0 0 m log( me)


x m
2.3.3 连续熵的性质
1 2
连续信源熵可为负值 可加性
h( XY ) h ( X ) h (Y
X
)
h( XY ) h (Y ) h ( X ) Y
3
非负性
Ic ( X ;Y ) 0
4
对称性
I c ( X ;Y ) I c (Y ; X )
2.3.4 最大熵和熵功率
p( x i )

李梅 李亦农 《信息论基础教程》 课件教案 第三章 信源及信源熵

李梅 李亦农 《信息论基础教程》 课件教案 第三章 信源及信源熵
怎样确定信源产生的信息量、产生信息的速率 √
信源编码
(第五章)
根据信源输出消息在时间和取值上是离散或连续分类:
时间 (空间) 离散 取值 信源种类 举例 消息的数学描述
离散
离散信源 (数字信源)
文字、数据 、 离散化图象
离散随机变量序列
P ( X) P ( X1 X 2 X N )
离散 连续
第三章:信源及信源熵
信源分类
单符号信源
多符号信源 连续信源
1. 预备知识(续3)
定义2:随机变量序列中,对前N个随机变量的联合熵求平均称 为平均符号熵:
1 H N ( X ) H ( X1 X 2 X N ) N
如果当 N 时上式极限存在,则 lim H N ( X ) 被称为熵率 N ,或极限熵,记为
第三章:信源及信源熵
信源分类
单符号信源
多符号信源 连续信源
3. 离散平稳有记忆信源(续4)
例2:信源X的信源模型为
x x x X 1 2 3 1 4 11 P X 4 9 36
条件概率 P( X 2 | X 1 )
X2 X1
x1
7 9 1 8 0
单符号信源
多符号信源 连续信源
1. 预备知识(续2)
对离散平稳信源,由联合概率与条件概率的关系可以推出:
P( X i 1 | X i ) P( X j 1 | X j )

P( X i N | X i X i 1 X i N 1 ) P( X j N | X j X j 1 X j N 1 )
P( X i ) P( X j ) P( X i X i 1 ) P( X j X j 1 )

连续信源的最大熵与最大熵条件

连续信源的最大熵与最大熵条件

青岛农业大学本科生课程论文论文题目连续信源的最大熵与最大熵条件学生专业班级信息与计算科学 0902学生姓名(学号)指导教师吴慧完成时间 2012-6-25 2012 年 6 月 25 日课程论文任务书学生姓名指导教师吴慧论文题目连续信源的最大熵与最大熵条件论文内容(需明确列出研究的问题):1简述连续信源的基本概要。

2 定义了连续信源的差熵公式,分别介绍了满足均匀分布和高斯分布的两种特殊信源。

3推导了连续信源的最大熵值及最大熵条件。

资料、数据、技术水平等方面的要求:1概率论的均匀分布、高斯分布的相关知识。

2以及在这两种分布下的连续信源和高斯信源。

3在不同的约束条件下,求连续信源差熵的最大值一种是信源的输出值受限,另一种是信源的输出平均功率受限。

4 詹森不等式以及数学分析的定积分和反常积分、不定积分等数学公式。

发出任务书日期 2012-6-6 完成论文日期 2012-6-25 教研室意见(签字)院长意见(签字)连续信源的最大熵与最大熵条件信息与计算科学指导老师吴慧摘要:本文简述了连续信源的基本概要并定义了连续信源的差熵公式,分别介绍了满足均匀分布和高斯分布的两种特殊信源,推导了连续信源的最大熵值及最大熵条件。

关键词:连续信源最大熵均匀分布高斯分布功率受限The maximum entropy and maximum entropy conditionof consecutive letter of the sourceInformation and Computing Sciences Bian jiangTutor WuhuiAbstract:: On the base of continuous source this eassy describes the basic outline and define differential entropy formula, introduced a uniform distribution and Gaussian distribution of the two special source, derivation of a continuous source of maximum entropy and maximum entropy conditions.Keyword: Continuous source Maximum entropy Uniform distributionNormal distribution Power is limited引言:科学技术的发展使人类跨入了高度发展的信息化时代。

2.6连续信源的熵

2.6连续信源的熵

2.6连续信源的熵所谓连续信源就是指其输出在时间上和取值上都是连续的信源。

见图2.6.1。

各采样值的概率可用其概率分布密度函数来确定。

图2.6.2表示一个连续信源输出的幅度和其概率分布密度的关系。

设各种采样值之间无相关性,信源熵可写成:])(log[)(dx x p dx x p i ii ∑[例2.6.1]一连续信源,其输出信号的概率分布密度如图2.6.3所示,试计算其熵。

连续信源的熵不再具有非负性,这与离散信源显然不同。

同样可以定义两个连续变量的联合熵:⎰⎰-=dxdy xy lbp xy p XY H )()()(以及定义两个连续变量的条件熵;⎰⎰-=dxdy y x lbp xy p Y X H )/()()/( ⎰⎰-=dxdy x y lbp xy p X Y H )/()()/(连续信源的共熵、条件熵、单独熵之间也存在如下关系:)()()(Y H X H XY H +≤2.6.1三种特定连续信源的最大熵与离散信源不同,求连续信源的最大熵需要附加条件,常见的有三种。

1.输出幅度范围受限(或瞬时功率受限)的信源2.输出平均功率受限的信源 3.输出幅度平均值受限的信源 (1)限峰值功率的最大熵定理若代表信源的N 维随机变量的取值被限制在一定的范围之内,则在有限的定义域内,均匀分布的连续信源具有最大熵。

设N 维随机变量∏=∈Ni iib a X 1),( iia b>其均匀分布的概率密度函数为⎪⎪⎩⎪⎪⎨⎧-∉-∈-=∏∏∏===Ni i i Ni i i Ni i i a b x a b x a b x p 111)(0)()(1)(除均匀分布以外的其他任意概率密度函数记为)(x q ,并用[]X x p H c),(和[]X x q H c),(分别表示均匀分布和任意非均匀分布连续信源的熵。

在1)()(11112121==⎰⎰⎰⎰N b a b a N b a b a dx dx dxx q dx dx dxx p N NN N的条件下有[]⎰⎰-=1112)(log)(),(b a Nb ac dx dx x q x q X x q H NN⎰⎰⎰⎰⎰⎰+-=⎥⎦⎤⎢⎣⎡∙=111111121212)()(log)()(log)()()()(1log )(b a Nb a b a N b a b a Nb a dx dx x q x p x q dx dx x p x q dx dx x p x p x q x q NNNNN N令0,)()(≥=z x q x p z显然运用著名不等式1ln -≤z z 0>z 则]),([11)(log1)()()()(1log)(]),([1211121111X x p H a bdx dx x q x p x q dx dx a bx q X x q H c Ni i ib a Nb a b a N Ni i ib ac N N NN=-+-=⎥⎦⎤⎢⎣⎡-+--≤∏⎰⎰⎰∏⎰==则证明了,在定义域有限的条件下,以均匀分布的熵为最大。

信息论与编码2-信源及信源熵

信息论与编码2-信源及信源熵
随机英文字母信源,其中每个英文字母出现的概率是固定的。
实例3
随机天气状况信源,其中晴天、雨天、雪天出现的概率分别是0.7、0.2、0.1。
实例1
随机二进制信源,其中每个二进制符号(0或1)出现的概率为0.5。
离散无记忆信源的实例
离散有记忆信源
03
离散有记忆信源是输出符号序列中符号与符号之间存在记忆关系的离散随机序列。
应用场景
广泛应用于网络通信、金融交易、军事通信等领域,保障信息安全和隐私。
加密通信
03
应用景
广泛应用于通信系统、数据存储等领域,如CD、DVD、硬盘等存储设备的纠错编码。
01
纠错原理
通过在数据中添加冗余信息,检测和纠正数据传输过程中的错误。
02
常见纠错编码
如奇偶校验码、海明码、循环冗余校验码等,这些编码利用数学原理对数据进行校验,确保数据的正确性。
纠错编码
THANKS
感谢观看
离散有记忆信源的输出符号之间存在统计依赖关系,这种关系会影响信息熵的计算。
定义
性质
离散有记忆信源的定义与性质
计算方法
条件熵
联合熵
离散有记忆信源熵的计算
离散有记忆信源熵是描述信源不确定性的度量,可以通过统计模型来计算。具体计算方法包括条件熵和联合熵等。
条件熵是在给定前一个或多个符号条件下,输出符号的熵。
应用场景
广泛应用于文件存储、网络传输、多媒体处理等领域,如JPEG图片压缩、MP3音频压缩等。
数据压缩原理
通过去除数据中的冗余信息,将数据压缩至更小的存储空间,提高存储和传输效率。
数据压缩
加密原理
通过特定的加密算法将明文转换为密文,确保信息在传输过程中的保密性。

信息论与编码-第2章信源熵辅助课件一

信息论与编码-第2章信源熵辅助课件一

一般情况,X和Y既非互相独立,也不是一一对应,那么 从Y获得的X信息必在零与H(X)之间,即常小于X的熵。
2.1单符号离散信源
4。凸函数性 结论: (1)固定信道,调整信源,I(X;Y)是p(x)的上凸 函数 证明:当n=2时的具体情形
用什么公式?为什么?如何用? 已知:P(x)及P(y|x) (2)固定信源,调整信道,I(X;Y)是p(y|x)的下凸函数
分布的连续消息的信源; 2. 离散信源:发出在时间上和幅度上都是离散
分布的信源。 离散信源又可以细分为:
2.1单符号离散信源
(1)离散无记忆信源:所发出的各个符号之间 是相互独立的,各个符号的出现概率是它自身 的先验概率。
(2)离散有记忆信源:发出的各个符号之间不 是相互独立的,各个符号出现的概率是有关联 的。
2.1单符号离散信源
总之:
H(X)代表接收到Y前关于X的平均不确定性, H(X/Y)代表接收到Y后尚存关于X的平均不确 定性。可见,通过信道传输消除了一些不确定 性,获得了一定的信息。所以定义平均互信息 量(2.1.5)
I(X;Y) = H(X ) − H(X /Y)
2.1单符号离散信源
2.1.5平均互信息量(交互熵)
2.1单符号离散信源
也可以根据信源发出一个消息所用符号的多 少,将离散信源分为:
1. 发出单个符号的离散信源:信源每次只发出 一个符号代表一个消息;
2. 发出多符号的离散信源:信源每次发出一组 含二个以上符号的符号序列代表一个消息。
将以上两种分类结合,就有四种离散信源:
2.1单符号离散信源
(1)发出单符号的无记忆离散信源; (2)发出多符号的无记忆离散信源; (3)发出单符号的有记忆离散信源; (4)发出多符号的有记忆离散信源。

信息论与编码ch连续信源及其熵

信息论与编码ch连续信源及其熵
log2(b-a)小于0,但两项相加还是正值,且一般还 是一个无限大量。因为连续信源的可能取值数有 无限多,若假定等概率,确知其输出值后所得信 息量也将为无限大; H表c连(X续)已信不源能输代出表的信信源息的量平。均不确定度,也不能代
2019/9/22
24
第二章 信源熵
连续信源熵的意义
这种定义可以与离散信源在形式上统一起来; 在实际问题中常常讨论的是熵之间的差值问题,如
2019/9/22
20
第二章 信源熵
这样连续变量x就可用取值为xi(i=1,2,…,n)的离散 变量近似。连续信源被量化成离散信源。
n
n
n
H ( X ) p(ai ) log2 p(ai ) p(ai ) log2 p(ai ) p(ai ) log2
i 1
i 1
i 1
当n , 0时,若极限存在,即得连续信源的熵为
n
n
lim H (X )
n 0

lim n 0
i 1
p(ai ) log2
p(ai
)

lim(log
n
2
0
)
i 1
p(ai )
b
b


a
p(x) log2
p(
x)dx

lim(log
2019/9/22
19
第二章 信源熵
设p(x)如图2.3.1所示。把连续随机变量X的取值分割成n个
小区间,各小区间等宽,即Δ=(b-a)/n。则变量落在第i个小
区间的概率为
ai
P(a (i 1) X a i) a(i1) p(x)dx p(ai )

连续信源

连续信源

11
HUST --- Information and Coding Theory
联合熵、条件熵和平均交互信息量
设有两个连续随机变量X 和Y
定义
H (X ,Y )
p(xy) log p(xy)dxdy
式中p( xy)为二维联合概率密度。
定义
H (Y | X )
p(xy) log p( y | x)dxdy
F x1,x2 ,L ,xn;t1,t2 ,L ,tn PX (t1) x1, X (t2 ) x2,..., X (tn ) xn
若F x1,x2 ,L ,xn;t1,t2 ,L ,tn 的 n 阶偏导数存在,则有
p(x1x2 L
xn ;t1t2 L
tn
)
n
F (x1, x2 ,L x1x2
3
2.3.1连续信源的熵
HUST --- Information and Coding Theory
简单连续信源的模型可写为
X x
P
p(
x)
p( x)dx
1
假设x [a,b],令x (b a) / n,xi [a (i 1)x, a ix], 则连续信源模型可改写成离散信源模型
2.4 离散无失真信源编码定理
6
连续信源的熵
HUST --- Information and Coding Theory
例1:均匀分布随机变量的概率密度为
p(x)
b
1
a
0
求其熵。
a xb 其它
例2:求均值为m、方差为 2的高斯分布的熵。
7
HUST --- Information and Coding Theory
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档