2018届高三数学一轮复习: 第2章 第1节 课时分层训练4
2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.11.2

——[通·一类]—— 1.设 f(x)=2x3+ax2+bx+1 的导数为 f′(x),若函数 y=f′(x)
的图象关于直线 x=-12对称,且 f′(1)=0. (1)求实数 a,b 的值; (2)求函数 f(x)的极值.
第七页,编辑于星期六:二十二点 二十三分。
——[悟·技法]—— 求函数 f(x)在[a,b]上的最大值和最小值的步骤
(1)求函数在(a,b)内的极值; (2)求函数在区间端点的函数值 f(a),f(b); (3)将函数 f(x)的各极值与 f(a),f(b)比较,其中最大的一个为 最大值,最小的一个为最小值.
第十二页,编辑于星期六:二十二点 二十三分。
第九页,编辑于星期六:二十二点 二十三分。
考向二 利用导数研究函数的最值 [例 2] (2017·湖北省七市(州)联考)设 n∈N*,a,b∈R,函 数 f(x)=alxnn x+b,已知曲线 y=f(x)在点(1,0)处的切线方程为 y= x-1. (1)求 a,b; (2)求 f(x)的最大值.
第十八页,编辑于星期六:二十二点 二十三分。
——[通·一类]—— 3.(2017·云南省第一次统一检测)已知常数 a≠0,f(x)=aln x
+2x. (1)当 a=-4 时,求 f(x)的极值; (2)当 f(x)的最小值不小于-a 时,求实数 a 的取值范围.
第十九页,编辑于星期六:二十二点 二十三分。
考向三 函数极值与最值的综合问题 [互动讲练型] [例 3] (2016·全国甲,理 21)(1)讨论函数 f(x)=xx-+22ex 的单 调性,并证明:当 x>0 时,(x-2)ex+x+2>0; (2)证明:当 a∈[0,1)时,函数 g(x)=ex-xa2x-a(x>0)有最小 值.设 g(x)的最小值为 h(a),求函数 h(a)的值域.
2018届高三数学一轮复习: 第2章 第10节 课时分层训练13

课时分层训练(十三)变化率与导数、导数的计算A组基础达标(建议用时:30分钟)一、选择题1.函数f(x)=(x+2a)(x-a)2的导数为()【导学号:01772077】A.2(x2-a2) B.2(x2+a2)C.3(x2-a2) D.3(x2+a2)C[∵f(x)=(x+2a)(x-a)2=x3-3a2x+2a3,∴f′(x)=3(x2-a2).]2.已知函数f(x)的导函数为f′(x),且满足f(x)=2xf′(1)+ln x,则f′(1)等于()A.-e B.-1C.1D.eB[由f(x)=2xf′(1)+ln x,得f′(x)=2f′(1)+1 x,∴f′(1)=2f′(1)+1,则f′(1)=-1.]3.曲线y=sin x+e x在点(0,1)处的切线方程是()A.x-3y+3=0 B.x-2y+2=0C.2x-y+1=0 D.3x-y+1=0C[y′=cos x+e x,故切线斜率为k=2,切线方程为y=2x+1,即2x-y +1=0.]4.(2014·全国卷Ⅱ)设曲线y=ax-ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0 B.1C.2D.3D[令f(x)=ax-ln(x+1),则f′(x)=a-1x+1.由导数的几何意义可得在点(0,0)处的切线的斜率为f′(0)=a-1.又切线方程为y=2x,则有a-1=2,∴a=3.]5.已知f(x)=x3-2x2+x+6,则f(x)在点P(-1,2)处的切线与坐标轴围成的三角形的面积等于()【导学号:01772078】A.4 B.5C.254 D.132C[∵f(x)=x3-2x2+x+6,∴f′(x)=3x2-4x+1,∴f′(-1)=8,故切线方程为y-2=8(x+1),即8x-y+10=0,令x=0,得y=10,令y=0,得x=-5 4,∴所求面积S=12×54×10=254.]二、填空题6.(2017·郑州二次质量预测)曲线f(x)=x3-x+3在点P(1,3)处的切线方程是________.2x-y+1=0[由题意得f′(x)=3x2-1,则f′(1)=3×12-1=2,即函数f(x)的图象在点P(1,3)处的切线的斜率为2,则切线方程为y-3=2(x-1),即2x -y+1=0.]7.若曲线y=ax2-ln x在点(1,a)处的切线平行于x轴,则a=________.【导学号:01772079】12[因为y′=2ax-1x,所以y′|x=1=2a-1.因为曲线在点(1,a)处的切线平行于x轴,故其斜率为0,故2a-1=0,a=1 2.]图2-10-18.如图2-10-1,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.0 [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.] 三、解答题9.求下列函数的导数:(1)y =x ·tan x ;(2)y =(x +1)(x +2)(x +3);(3)y =ln (2x +1)x. [解] (1)y ′=(x ·tan x )′=x ′tan x +x (tan x )′=tan x +x ·⎝ ⎛⎭⎪⎫sin x cos x ′=tan x +x ·cos 2x +sin 2x cos 2x =tan x +x cos 2x .(2)y ′=(x +1)′[(x +2)(x +3)]+(x +1)[(x +2)(x +3)]′=(x +2)(x +3)+(x +1)(x +2)+(x +1)(x +3)=3x 2+12x +11.(3)y ′=⎣⎢⎡⎦⎥⎤ln (2x +1)x ′=[ln (2x +1)]′x -x ′ln (2x +1)x 2 =(2x +1)′2x +1·x -ln (2x +1)x 2=2x 2x +1-ln (2x +1)x 2=2x -(2x +1)ln (2x +1)(2x +1)x 2.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围.[解] (1)y ′=x 2-4x +3=(x -2)2-1≥-1,2分所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53,4分 斜率k =-1,所以切线方程为x +y -113=0.6分(2)由(1)得k ≥-1,9分所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12分 B 组 能力提升(建议用时:15分钟)1.(2016·山东高考)若函数y =f (x )的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB.y =ln x C .y =e x D.y =x 3A [若y =f (x )的图象上存在两点(x 1,f (x 1)),(x 2,f (x 2)),使得函数图象在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x >0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x ,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2;对于D:y′=3x2,若有3x21·3x22=-1,即9x21x22=-1,显然不存在这样的x1,x2.综上所述,选A.]2.(2016·全国卷Ⅲ)已知f(x)为偶函数,当x<0时,f(x)=ln(-x)+3x,则曲线y=f(x)在点(1,-3)处的切线方程是________.y=-2x-1[因为f(x)为偶函数,所以当x>0时,f(x)=f(-x)=ln x-3x,所以f′(x)=1x-3,则f′(1)=-2.所以y=f(x)在点(1,-3)处的切线方程为y+3=-2(x-1),即y=-2x-1.]3.已知函数f(x)=x-2x,g(x)=a(2-ln x)(a>0).若曲线y=f(x)与曲线y=g(x)在x=1处的切线斜率相同,求a的值,并判断两条切线是否为同一条直线.【导学号:01772080】[解]根据题意有f′(x)=1+2x2,g′(x)=-ax. 2分曲线y=f(x)在x=1处的切线斜率为f′(1)=3,曲线y=g(x)在x=1处的切线斜率为g′(1)=-a,所以f′(1)=g′(1),即a=-3. 6分曲线y=f(x)在x=1处的切线方程为y-f(1)=3(x-1),所以y+1=3(x-1),即切线方程为3x-y-4=0.9分曲线y=g(x)在x=1处的切线方程为y-g(1)=3(x-1),所以y+6=3(x-1),即切线方程为3x-y-9=0,所以,两条切线不是同一条直线. 12分。
2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.4

当 m=1 时,m2-2m-3=1-2-3=-4(舍去).当 m=2 时, m2-2m-3=22-2×2-3=-3,所以 m=2.
答案:2
第二十二页,编辑于星期六:二十二点 二十三 分。
第二十六页,编辑于星期六:二十二点 二十三 分。
——[悟·技法]—— 求二次函数解析式的方法
第二十七页,编辑于星期六:二十二点 二十三 分。
——[通·一类]—— 3.已知二次函数 f(x)有两个零点 0 与-2,且它有最小值-
1.求 f(x)的解析式. 解析:由于 f(x)有两个零点 0 和-2, 所以可设 f(x)=ax(x+2)(a≠0), 这时 f(x)=ax(x+2)=a(x+1)2-a. 由于 f(x)有最小值-1,
y=xα(α∈R)才是幂函数,如
y=3x
1 2
不是幂函数.
第十五页,编辑于星期六:二十二点 二十三分。
第十六页,编辑于星期六:二十二点 8 页]
考向一 幂函数的图象与性质[自主练透型]
[例 1]
(1)(2017·太原模拟)当
0<x<1
时,f(x)=x2,g(x)=x
a=-4, 解得b=4,
c=7.
故所求二次函数为 f(x)=-4x2+4x+7.
第二十四页,编辑于星期六:二十二点 二十三 分。
方法二:利用二次函数的顶点式.设 f(x)=a(x-m)2+n. ∵f(2)=f(-1),∴抛物线对称轴为 x=2+2-1=12. ∴m=12,又根据题意函数有最大值 8,∴n=8, ∴y=f(x)=a(x-12)2+8. ∵f(2)=-1,∴a(2-12)2+8=-1,解得 a=-4, ∴f(x)=-4(x-12)2+8=-4x2+4x+7.
2018版高中数学一轮全程复习(课件)第二章 函数、导数及其应用 2.5

第十六页,编辑于星期六:二十二点 二十三分。
[解析]
(1)
原
式
=23
1 3
×1
+
2
3 4
×2
1 4
+
4×27=110.
(2)
a3 3 ·
53
b 4 3 3
32
5
=a ·b =a =a a. 2 12
15 10
4
5 b2
4 a3
-
2 3
1 3
=
2
+
第十七页,编辑于星期六:二十二点 二十三分。
——[悟·技法]—— 指数幂的运算规律
(2)两个重要公式
⑥ a
(ⅰ)n
an=|a|=⑦⑧
a -a
a≥0 a<0
n为奇数 n为偶数 ;
(ⅱ)(n a)n=⑨____a____(注意 a 必须使n a有意义).
第十页,编辑于星期六:二十二点 二十三分。
2.分数指数幂 (1)正数的正分数指数幂是:
a
m n
=
⑩
__n__a_m___(a>0,m,
第二十二页,编辑于星期六:二十二点 二十三 分。
——[悟·技法]—— 指数函数图象可解决的两类热点问题
(1)求解指数型函数的图象与性质问题 对指数型函数的图象与性质问题(单调性、最值、大小比较、 零点等)的求解往往利用相应指数函数的图象,通过平移、对称 变换得到其图象,然后数形结合使问题得解. (2)求解指数型方程、不等式问题 一些指数型方程、不等式问题的求解,往往利用相应指数型 函数图象数形结合求解.
第十八页,编辑于星期六:二十二点 二十三分。
——[通·一类]——
1.求值与化简:
(全国通用版)高考数学一轮复习 第二章 函数、导数及其应用 课时分层作业四 2.1 函数及其表示 理

课时分层作业四函数及其表示一、选择题(每小题5分,共35分)1.下列所给图象是函数图象的个数为( )A.1B.2C.3D.4【解析】选B.①中当x>0时,每一个x的值对应两个不同的y值,因此不是函数图象,②中当x=x0时,y的值有两个,因此不是函数图象,③④中每一个x的值对应唯一的y值,因此是函数图象.2.(2018·滨州模拟)函数y=的定义域为( )A.(1,+∞)B.[1,+∞)C.(1,2)∪(2,+∞)D.(1,2)∪[3,+∞)【解析】选C.由ln(x-1)≠0,得x-1>0且x-1≠1.由此解得x>1且x≠2,即函数y=的定义域是(1,2)∪(2,+∞).3.给出下列命题:①函数是其定义域到值域的映射;②f(x)=+是一个函数;③函数y=2x(x∈N)的图象是一条直线;④f(x)=lgx2与g(x)=2lgx是同一函数.其中正确的有( )A.1个B.2个C.3个D.4个【解析】选A.由函数的定义知①正确.因为满足f(x)=+的x不存在,所以②不正确.又因为y=2x(x∈N)的图象是位于直线y=2x上的一群孤立的点,所以③不正确.又因为f(x)与g(x)的定义域不同,所以④也不正确.4.(2018·某某模拟)已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于( )A.-3B.-1C.1D.3【解析】选A.当a>0时,由f(a)+f(1)=0得2a+2=0,可见不存在实数a满足条件,当a<0时,由f(a)+f(1)=0得a+1+2=0,解得a=-3,满足条件.【一题多解】本题还可以采用如下解法:方法一:选A.由指数函数的性质可知:2x>0,又因为f(1)=2,所以a<0,所以f(a)=a+1,即a+1+2=0,解得:a=-3. 方法二:选A.验证法,把a=-3代入f(a)=a+1=-2,又因为f(1)=2,所以f(a)+f(1)=0,满足条件,从而选A.【变式备选】已知函数f(x)=且f(0)=2,f(-1)=3,则f(f(-3))= ( )A.-2B.2C.3D.-3【解析】选B.f(0)=a0+b=1+b=2,解得b=1;f(-1)=a-1+b=a-1+1=3,解得a=.故f(-3)=+1=9,f(f(-3))=f(9)=log39=2.【方法技巧】求函数值的四种常考类型及解法(1)f(g(x))型:遵循先内后外的原则.(2)分段函数型:根据自变量值所在区间对应求值,不确定时要分类讨论.(3)已知函数性质型:对具有奇偶性、周期性、对称性的函数求值,要用好其函数性质,将待求值调节到已知区间上求解.(4)抽象函数型:对于抽象函数求函数值,要用好抽象的函数关系,适当赋值,从而求得待求函数值.5.已知函数f(x)满足f(x)+2f(3-x)=x2,则f(x)的解析式为 ( )A.f(x)=x2-12x+18B.f(x)=x2-4x+6C.f(x)=6x+9D.f(x)=2x+3【解析】选B.由f(x)+2f(3-x)=x2可得f(3-x)+2f(x)=(3-x)2,由以上两式解得f(x)=x2-4x+6.6.现向一个半径为R的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h随时间t变化的函数关系的是( )【解析】选C.从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.7.已知[x]表示不超过实数x的最大整数(x∈R),如:[-1.3]=-2,[0.8]=0,[3.4]=3.定义{x}=x-[x],则++…+= ( )A.2017B.C.1008D.2016【解析】选B.=,=,…,=,=0,所以原式=++…+=.【题目溯源】本考题源于教材人教A版必修1P25习题B组T3,“函数f(x)=[x]的函数值表示不超过x的最大整数,例如,[-3.5]=-4,[2.1]=2.当x∈(-2.5,3]时,写出函数f(x)的解析式,并作出函数的图象”的变式.【变式备选】设[x]表示不大于x的最大整数,则对任意实数x,有( )A.[-x]=-[x]B.=[x]C.[2x]=2[x]D.[x]+=[2x]【解析】选D.选项A,取x=1.5,则[-x]=[-1.5]=-2,-[x]=-[1.5]=-1,显然[-x]≠-[x].选项B,取x=1.5,则=[2]=2≠[1.5]=1.选项C,取x=1.5,则[2x]=[3]=3,2[x]=2[1.5]=2,显然[2x]≠2[x].二、填空题(每小题5分,共15分)8.(2018·某某模拟)函数y=ln+的定义域为______________.【解析】由⇒⇒0<x≤1.所以该函数的定义域为(0,1].答案:(0,1]9.已知函数f(x)=则f(f(-3))=________,f(x)的最小值是________.【解析】f(f(-3))=f(1)=0,当x≥1时,f(x)≥2-3,当且仅当x=时,等号成立;当x<1时,f(x)≥0,当且仅当x=0时,等号成立,所以f(x)的最小值为2-3.答案:0 2-310.已知函数f(x)的定义域是[-1,1],则f(log2x)的定义域为______________.【解析】因为函数f(x)的定义域是[-1,1],所以-1≤log2x≤1,所以≤x≤2.故f(log2x)的定义域为.答案:1.(5分)下列函数中,不满足f(2x)=2f(x)的是( )A.f(x)=|x|B.f(x)=x-|x|C.f(x)=x+1D.f(x)=-x【解析】选C.对于选项A,f(2x)=|2x|=2|x|=2f(x);对于选项B,f(x)=x-|x|=当x≥0时,f(2x)=0=2f(x),当x<0时,f(2x)=4x=2·2x=2f(x),恒有f(2x)=2f(x);对于选项D,f(2x)=-2x=2(-x)=2f(x);对于选项C,f(2x)=2x+1=2f(x)-1.2.(5分)(2018·某某模拟)若一系列函数的解析式相同,值域相同,但定义域不同,则称这些函数为“同族函数”,则函数解析式为y=x2+1,值域为{1,3}的同族函数有( )A.1个B.2个C.3个D.4个【解析】选C.由x2+1=1得x=0,由x2+1=3得x=±,所以函数的定义域可以是{0,},{0,-},{0,,-},故值域为{1,3}的同族函数共有3个.3.(5分)若函数f(x)=(a>0且a≠1)的值域是[4,+∞),则实数a的取值X围是__________. 导学号12560407【解析】当x≤2,故-x+6≥4,要使得函数f(x)的值域为[4,+∞),只需f1(x)=3+log a x(x>2)的值域包含于[4,+∞),故a>1,所以f1(x)>3+log a2,所以3+log a2≥4,解得1<a≤2,所以实数a的取值X围是(1,2].答案:(1,2]4.(12分)已知f(x)=x2-1,g(x)=(1)求f(g(2))与g(f(2)).(2)求f(g(x))与g(f(x))的表达式.【解析】(1)g(2)=1,f(g(2))=f(1)=0;f(2)=3,g(f(2))=g(3)=2.(2)当x>0时,f(g(x))=f(x-1)=(x-1)2-1=x2-2x;当x<0时,f(g(x))=f(2-x)=(2-x)2-1=x2-4x+3.所以f(g(x))=同理可得g(f(x))=5.(13分)某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨为3.00元.某月甲、乙两户共交水费y元,已知甲、乙两用户该月用水量分别为5x、3x(吨).(1)求y关于x的函数.(2)若甲、乙两用户该月共交水费26.40元,分别求出甲、乙两户该月的用水量和水费.【解析】(1)当甲的用水量不超过4吨时,即5x≤4,乙的用水量也不超过4吨,y=(5x+3x)×1.8=14.4x;当甲的用水量超过4吨,乙的用水量不超过4吨,即3x≤4且5x>4时,y=4×1.8+3(5x-4)+3x×1.8=20.4x-4.8;当乙的用水量超过4吨时,即3x>4,y=24x-9.6,所以y=.(2)由于y=f(x)在各段区间上均为单调递增,当x∈时,y≤f<26.4;当x∈时,y≤f<26.4;当x∈时,令24x-9.6=26.4,解得x=1.5.所以甲户用水量为5x=7.5吨,付费S1=4×1.80+3.5×3.00=17.70(元); 乙户用水量为3x=4.5吨,付费S2=4×1.80+0.5×3.00=8.70(元).。
高考数学一轮复习全套课时作业2-4二次函数

2.4二次函数一、单项选择题1.若函数y =(x +4)2在某区间上是减函数,则这区间可以是( )A .[-4,0]B .(-∞,0]C .(-∞,-5]D .(-∞,4]2.若二次函数f(x)满足f(x +1)-f(x)=2x ,且f(0)=1,则f(x)的表达式为( )A .f(x)=-x 2-x -1B .f(x)=-x 2+x -1C .f(x)=x 2-x -1D .f(x)=x 2-x +13.已知m>2,点(m -1,y 1),(m ,y 2),(m +1,y 3)都在二次函数y =x 2-2x 的图象上,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 1<y 3<y 2D .y 2<y 1<y 34.(2020·杭州学军中学月考)已知函数f(x)=x 2-2x +m ,若f(x 1)=f(x 2)(x 1≠x 2),则f ⎝⎛⎭⎫x 1+x 22的值为( ) A .1B .2C .m -1D .m5.已知函数f(x)=-x 2+4x ,x ∈[m ,5]的值域是[-5,4],则实数m 的取值范围是( )A .(-∞,-1)B .(-1,2]C .[-1,2]D .[2,5)6.设abc >0,则二次函数f(x)=ax 2+bx +c 的图象可能是( )7.(2021·郑州质检)若二次函数y =x 2+ax +1对于一切x ∈⎝⎛⎦⎤0,12恒有y ≥0成立,则a 的最小值是( ) A .0B .2C .-52D .-3二、填空题与解答题8.若二次函数y =8x 2-(m -1)x +m -7的值域为[0,+∞),则m =________.9.(1)已知函数f(x)=4x 2+kx -8在[-1,2]上具有单调性,则实数k 的取值范围是________.10.已知y =(cosx -a)2-1,当cosx =-1时,y 取最大值,当cosx =a 时,y 取最小值,则a 的取值范围是________.11.函数f(x)=x 2+2x ,若f(x)>a 在区间[1,3]上满足:①恒有解,则a 的取值范围为________; ②恒成立,则a 的取值范围为________.12.如果函数f(x)=x 2-ax -a 在区间[0,2]上的最大值为1,那么实数a =________.13.(2020·邯郸一中月考)已知函数f(x)=x 2-6x +5,x ∈[1,a],并且函数f(x)的最大值为f(a),则实数a 的取值范围是________.14.已知函数f(x)=mx 2+mx +1的定义域是实数集R ,则实数m 的取值范围是________.15.已知二次函数f(x)=ax 2+bx +1(a ,b ∈R ),x ∈R .(1)若函数f(x)的最小值为f(-1)=0,求f(x)的解析式,并写出单调区间;(2)在(1)的条件下,f(x)>x +k 在区间[-3,-1]上恒成立,试求实数k 的取值范围.16.(2021·山东济宁模拟)设函数f(x)=⎩⎪⎨⎪⎧x 2+bx +c (x ≤0),2(x>0),若f(-4)=f(0),f(-2)=-2,则关于x 的方程f(x)=x 的解的个数为( )A .4B .2C .1D .317.二次函数f(x)=ax 2+bx +1(a>0),设f(x)=x 的两个实根为x 1,x 2.(1)如果b =2且|x 2-x 1|=2,求a 的值;(2)如果x 1<2<x 2<4,设函数f(x)的对称轴为x =x 0,求证:x 0>-1.2.4二次函数 参考答案1.答案 C2.答案 D解析 设f(x)=ax 2+bx +c(a ≠0),由题意得⎩⎪⎨⎪⎧c =1,a (x +1)2+b (x +1)+c -(ax 2+bx +c )=2x. 故⎩⎪⎨⎪⎧2a =2,a +b =0,c =1,解得⎩⎪⎨⎪⎧a =1,b =-1,c =1,则f(x)=x 2-x +1.故选D.3.答案 A解析 ∵m >2,∴m -1>1.∴三点均在对称轴的右边.∵函数在[1,+∞)上是增函数,∴y 1<y 2<y 3.4.答案 C解析 由题意知,函数图象的对称轴为直线x =x 1+x 22=1,所以f ⎝⎛⎭⎫x 1+x 22=f(1)=m -1.故选C.5.答案 C解析 二次函数f(x)=-x 2+4x 的图象是开口向下的抛物线,最大值为4,且在x =2时取得,而当x =5或-1时,f(x)=-5,结合图象可知m 的取值范围是[-1,2].6.答案 D解析 若a >0,b <0,c <0,则对称轴x =-b 2a>0,函数f(x)的图象与y 轴的交点(0,c)在x 轴下方.故选D.7.答案 C解析 设g(x)=ax +x 2+1,x ∈⎝⎛⎦⎤0,12,则g(x)≥0在x ∈⎝⎛⎦⎤0,12上恒成立,即a ≥-⎝⎛⎭⎫x +1x 在x ∈⎝⎛⎦⎤0,12上恒成立.又h(x)=-⎝⎛⎭⎫x +1x 在x ∈⎝⎛⎦⎤0,12上为单调递增函数,故h(x)max =h ⎝⎛⎭⎫12,所以a ≥-⎝⎛⎭⎫12+2即a ≥-52. 8.答案 9或25解析 y =8⎝⎛⎭⎫x -m -1162+m -7-8·⎝⎛⎭⎫m -1162,∵值域为[0,+∞),∴m -7-8·⎝⎛⎭⎫m -1162=0, ∴m =9或25.9.(1)答案 (-∞,-16]∪[8,+∞)解析 函数f(x)=4x 2+kx -8的对称轴为x =-k 8,则-k 8≤-1或-k 8≥2,解得k ≥8或k ≤-16. (2)答案 (-4,+∞)解析 函数y =x 2+bx +2b -5的图象是开口向上,以x =-b 2为对称轴的抛物线,所以此函数在⎝⎛⎭⎫-∞,-b 2上单调递减.若此函数在(-∞,2)上不是单调函数,只需-b 2<2,解得b>-4.所以实数b 的取值范围为(-4,+∞).10.答案 [0,1]解析 由题意知⎩⎪⎨⎪⎧-a ≤0,-1≤a ≤1,∴0≤a ≤1. 11.答案 ①(-∞,15) ②(-∞,3)解析 ①f(x)>a 在区间[1,3]上恒有解,等价于a<f(x)max ,又f(x)=x 2+2x 且x ∈[1,3],故当x =3时,f(x)max =15,故a 的取值范围为a<15.②f(x)>a 在区间[1,3]上恒成立,等价于a<f(x)min ,又f(x)=x 2+2x 且x ∈[1,3],故当x =1时,f(x)min =3,故a 的取值范围为a<3.12.答案 1解析 因为函数f(x)=x 2-ax -a 的图象为开口向上的抛物线,所以函数的最大值在区间的端点取得.因为f(0)=-a ,f(2)=4-3a ,所以⎩⎪⎨⎪⎧-a ≥4-3a ,-a =1或⎩⎪⎨⎪⎧-a ≤4-3a ,4-3a =1,解得a =1. 13.答案 [5,+∞)解析 ∵f(x)的对称轴为x =3,要使f(x)在[1,a]上的最大值为f(a),由图象对称性知a ≥5.14.答案 [0,4]解析 因为函数f(x)=mx 2+mx +1的定义域是实数集R ,所以m ≥0,当m =0时,函数f(x)=1,其定义域是实数集R ;当m>0时,则Δ=m 2-4m ≤0,解得0<m ≤4.综上所述,实数m 的取值范围是[0,4].15.答案 (1)f(x)=x 2+2x +1,单调递增区间为[-1,+∞),单调递减区间为(-∞,-1](2)(-∞,1)解析 (1)由题意知⎩⎪⎨⎪⎧-b 2a =-1,f (-1)=a -b +1=0,解得⎩⎪⎨⎪⎧a =1,b =2.所以f(x)=x 2+2x +1. 由f(x)=(x +1)2知,函数f(x)的单调递增区间为[-1,+∞),单调递减区间为(-∞,-1].(2)由题意知,x 2+2x +1>x +k 在区间[-3,-1]上恒成立,即k<x 2+x +1在区间[-3,-1]上恒成立.令g(x)=x 2+x +1,x ∈[-3,-1],由g(x)=⎝⎛⎭⎫x +122+34,知g(x)在区间[-3,-1]上是减函数. 则g(x)min =g(-1)=1.所以k<1.即k 的取值范围是(-∞,1).16.答案 D解析 由解析式可得f(-4)=16-4b +c =f(0)=c ,解得b =4.由f(-2)=4-8+c =-2,可求得c =2.∴f(x)=⎩⎪⎨⎪⎧x 2+4x +2(x ≤0),2(x>0).又f(x)=x , 则当x ≤0时,x 2+4x +2=x ,解得x 1=-1,x 2=-2.当x>0时,x =2,综上可知有三解.17.答案 (1)a =-1+22(2)证明见解析 解析 (1)当b =2时,f(x)=ax 2+2x +1(a>0).方程f(x)=x 为ax 2+x +1=0,则Δ=1-4a>0,则0<a<14.由韦达定理,可知x 1+x 2=-1a ,x 1x 2=1a. |x 2-x 1|=2⇒(x 2-x 1)2=4⇒(x 1+x 2)2-4x 1x 2=4.则⎝⎛⎭⎫-1a 2-4a=4,即4a 2+4a -1=0. 解得a =-1+22或a =-1-22(舍去). (2)证明:∵ax 2+(b -1)x +1=0(a>0)的两根满足x 1<2<x 2<4,∴Δ=(b -1)2-4a>0.设g(x)=ax 2+(b -1)x +1(a>0),∴⎩⎪⎨⎪⎧g (2)<0,g (4)>0,即⎩⎪⎨⎪⎧4a +2(b -1)+1<0,16a +4(b -1)+1>0⇒⎩⎨⎧2a>14,b<14. ∴2a -b>0.此时,Δ=(b -1)2-4a.又∵函数f(x)的对称轴为x =x 0,∴x 0=-b 2a>-1.。
最新-2018高三数学一轮复习 第2章 函数、导数及其应用

)
3.下列各组函数中表示同一函数的是( A.f(x)=x与g(x)=( x)2 B.f(x)=|x|与g(x)= x3
x2 C.f(x)=x|x|与g(x)= 2 -x
)
3
x>0 x<0
x 2- 1 D.f(x)= 与g(t)=t+1(t≠1) x-1
• 解析: A中定义域不同,B中解析式不同,C中定义域不同. • 答案: D
• 【思考探究】 1.映射与函数有什么区别? • 提示: 函数是特殊的映射,二者区别在于映射定义中的两个集合是 非空集合,可以不是数集,而函数中的两个集合必须是非空数集.
• 2.函数的定义域、值域 集合A • 在函数y=f(x),x∈A中,x叫做自变量, 叫做函数的定 函数值的集合{f(x)|x∈A}0 义域;与x的值相对应的y值叫做函数值, 叫做函数的值域. 定义域 • 3.函数的构成要素为: 、 对应关系 和 值域 . 由 于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域 相 同,并且 对应关系 完全一致,我们就称这两个函数 相等 .
奇偶性
结合具体函数,了解函数奇偶性的含义.
知识点
考纲下载
1.了解指数函数模型的实际背景. 2.理解有理数指数幂的含义,了解实数指数幂的意义,掌握幂的运 指数与指 算. 数函 3.理解指数函数的概念,理解指数函数的单调性与指数函数图象通 数 过的特殊点. 4.知道指数函数是一类重要的函数模型.
1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转 化成自然对数或常用对数;了解对数在简化运算中的运用. 对数与对 2.理解对数函数的概念,理解对数函数的单调性,掌握对数函数图 象通过的特殊点. 数函 数 3.知道对数函数是一类重要的函数模型. 4.了解指数函数y=ax与对数函数y=logax互为反函数(a>0,且a≠1) .
2018年高考数学人教A版一轮复习课时分层提升练 二 1-2命题及其关系、充分条件与必要条件 含解析 精品

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。
关闭Word文档返回原板块。
课时分层提升练二命题及其关系、充分条件与必要条件(25分钟60分)一、选择题(每小题5分,共35分)1.(2017·聊城模拟)命题“若a>b,则a-5>b-5”的逆否命题是( )A.若a<b,则a-5<b-5B.若a-5>b-5,则a>bC.若a≤b,则a-5≤b-5D.若a-5≤b-5,则a≤b【解析】选D.否定结论得a-5≤b-5,否定条件得a≤b,所以逆否命题为“若a-5≤b-5,则a≤b”.2.(2017·韶关模拟)命题“若a2+b2=0,a,b∈R,则a=b=0”的逆否命题是( )A.若a≠b≠0,a,b∈R,则a2+b2=0B.若a=b≠0,a,b∈R,则a2+b2≠0C.若a≠0且b≠0,a,b∈R,则a2+b2≠0D.若a≠0或b≠0,a,b∈R,则a2+b2≠0【解析】选D.“a2+b2=0”的否定为“a2+b2≠0”,“a=b=0”的否定为“a≠0或b≠0”,故选D.【误区警示】解答本题易误选C,出错的原因是对a=b=0的否定出错,a=b=0是a=0且b=0的意思,其否定应为a≠0或b≠0.3.若p:错误!未找到引用源。
=x,q:x2≥0,则q是p的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解题提示】先化简p,q再进行判断.【解析】选B.因为p:x≥0,q:x∈R,所以p⇒q,反之q p,所以q是p成立的必要不充分条件.【加固训练】(2017·长沙模拟)“1<x<2”是“x<2”成立的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选A.若1<x<2,则x<2显然成立,反之不成立.4.(2017·南昌模拟)设0<x<π,则“xsin2x<1”是“xsinx<1”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为0<x<π,所以0<sinx≤1,所以xsinx<1⇒xsin2x<1,而当x=错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时分层训练(四)函数及其表示
A组基础达标
(建议用时:30分钟)
一、选择题
1.下列各组函数中,表示同一函数的是()
A.f(x)=x,g(x)=(x)2
B.f(x)=x2,g(x)=(x+1)2
C.f(x)=x2,g(x)=|x|
D.f(x)=0,g(x)=x-1+1-x
C[在A中,定义域不同,在B中,解析式不同,在D中,定义域不同.] 2.(2017·福建南安期末)设M={x|-2≤x≤2},N={y|0≤y≤2},函数f(x)的定义域为M,值域为N,则f(x)的图象可以是()
【导学号:01772021】
A B C D
B[A项,定义域为[-2,0],D项,值域不是[0,2],C项,当x=0时有两个y值与之对应.故选B.]
3.(2017·安徽黄山质检)已知f(x)是一次函数,且f[f(x)]=x+2,则f(x)=() A.x+1 B.2x-1
C.-x+1 D.x+1或-x-1
A[设f(x)=kx+b,则由f[f(x)]=x+2,可得k(kx+b)+b=x+2,即k2x+kb+b=x+2,∴k2=1,kb+b=2,解得k=1,b=1,则f(x)=x+1.故选A.] 4.(2016·全国卷Ⅱ)下列函数中,其定义域和值域分别与函数y=10lg x的定义域和值域相同的是()
A.y=x B.y=lg x
C .y =2x
D.y =1x
D [函数y =10lg x 的定义域与值域均为(0,+∞). 函数y =x 的定义域与值域均为(-∞,+∞).
函数y =lg x 的定义域为(0,+∞),值域为(-∞,+∞). 函数y =2x 的定义域为(-∞,+∞),值域为(0,+∞). 函数y =
1
x
的定义域与值域均为(0,+∞).故选D.] 5.(2015·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧
2x -1
-2,x ≤1,
-log 2(x +1),x >1,
且f (a )=-3,则
f (6-a )=( )
A .-74 B.-54 C .-34
D.-14
A [由于f (a )=-3,
①若a ≤1,则2a -1-2=-3,整理得2a -1=-1. 由于2x >0,所以2a -1=-1无解; ②若a >1,则-log 2(a +1)=-3, 解得a +1=8,a =7,
所以f (6-a )=f (-1)=2-1-1-2=-7
4. 综上所述,f (6-a )=-7
4.故选A.] 二、填空题
6.(2017·合肥二次质检)若函数f (x )=⎩⎨⎧
f (x -2),x ≥2,
|x 2-2|,x <2,则f (5)=________.
【导学号:01772022】
1 [由题意得f (5)=f (3)=f (1)=|12-2|=1.]
7.已知函数y =f (x 2-1)的定义域为[-3,3],则函数y =f (x )的定义域为________.
[-1,2] [∵y =f (x 2-1)的定义域为[-3,3], ∴x ∈[-3,3],x 2-1∈[-1,2], ∴y =f (x )的定义域为[-1,2].]
8.设函数f (x )=⎩
⎨⎧
x 2
+x ,x <0,
-x 2,x ≥0.若f (f (a ))≤2,则实数a 的取值范围是
________.
(-∞,2] [由题意得⎩⎨⎧ f (a )<0,f 2(a )+f (a )≤2或⎩⎨⎧
f (a )≥0,
-f 2(a )≤2,解得f (a )≥-2.
由⎩⎨⎧ a <0,a 2+a ≥-2或⎩⎨⎧
a ≥0,
-a 2≥-2, 解得a ≤ 2.] 三、解答题
9.已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x )的解析式.
【导学号:01772023】
[解] 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,2分
即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎨⎧
a =2,
b +5a =17,8分 解得⎩⎨⎧
a =2,
b =7,
∴f (x )=2x +7.12分
10.已知f (x )=x 2
-1,g (x )=⎩⎨⎧
x -1,x >0,2-x ,x <0.
(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))的解析式.
[解] (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2.4分
(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ;8分 当x <0时,g (x )=2-x , 故f (g (x ))=(2-x )2-1=x 2-4x +3.
∴f (g (x ))=⎩⎨⎧
x 2
-2x ,x >0,
x 2-4x +3,x <0.
12分
B 组 能力提升 (建议用时:15分钟)
1.具有性质:f ⎝ ⎛⎭⎪⎫
1x =-f (x )的函数,我们称为满足“倒负”变换的函数,下
列函数:
【导学号:01772024】
①f (x )=x -1x ;②f (x )=x +1
x ;③f (x )=⎩⎪⎨
⎪⎧
x ,0<x <1,0,x =1,-1x ,x >1.其中满足“倒负”变
换的函数是( )
A .①② B.①③ C .②③
D.①
B [对于①,f (x )=x -1x ,f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x ),满足;对于②,f ⎝ ⎛⎭⎪⎫1x =1
x +x =
f (x ),不满足;对于③,
f ⎝ ⎛⎭
⎪⎫
1x =⎩⎪⎨⎪⎧
1x ,0<1x <1,
0,1
x =1,-x ,1x >1,
即f ⎝ ⎛⎭
⎪⎫
1x =⎩⎪⎨⎪⎧
1x ,x >1,0,x =1,
-x ,0<x <1,
故f ⎝ ⎛⎭
⎪⎫
1x =-f (x ),满足.
综上可知,满足“倒负”变换的函数是①③.]
2.(2015·山东高考改编)设函数f (x )=⎩⎨⎧
3x -1,x <1,
2x ,x ≥1,则满足f (f (a ))=2f (a )的
a 的取值范围是________.
⎣⎢⎡⎭⎪⎫
23,+∞ [由f (f (a ))=2f (a ),得f (a )≥1.当a <1时,有3a -1≥1,∴a ≥23,
∴2
3≤a <1.
当a ≥1时,有2a ≥1,∴a ≥0,∴a ≥1. 综上,a ≥2
3.]
3.根据如图2-1-1所示的函数y =f (x )的图象,写出函数的解析式.
图2-1-1
[解] 当-3≤x <-1时,函数y =f (x )的图象是一条线段(右端点除外),设f (x )=ax +b (a ≠0),将点(-3,1),(-1,-2)代入,可得f (x )=-32x -7
2;3分
当-1≤x <1时,同理可设f (x )=cx +d (c ≠0), 将点(-1,-2),(1,1)代入,可得f (x )=32x -1
2;6分 当1≤x <2时,f (x )=1.10分
所以f (x )=⎩⎪⎨
⎪⎧
-32x -7
2,-3≤x <-1,
32x -1
2,-1≤x <1,1,1≤x <2.
12分。