13动量守恒定律在碰撞中的应用几种常见模型分析解析
多次碰撞模型(解析版)-动量守恒的十种模型

动量守恒的十种模型多次碰撞模型模型解读所谓多次碰撞模型是指,两个物体或多个物体发生多次碰撞,且这些碰撞满足某种规律。
【典例精析】1(2024湖南长沙高三适应性考试)如图,将火车停在足够长的平直铁轨上。
(1)若整列火车质量为M,所受阻力恒为F0,当整列火车速度为v时,发动机的功率为P0,求此时火车的加速度;(2)若整列火车所受阻力恒为F0,某次测试时整列火车的运动分为两个阶段。
第一阶段火车受到大小为kF0的恒定牵引力由静止启动,位移为x时,发动机的实际功率正好等于额定功率,然后进入第二阶段;第二阶段发动机保持额定功率继续前进,已知两个阶段用时相等,第二阶段的末速度为初速度2倍。
求第二阶段火车的位移;(3)若整列火车由1节动力车头和23节无动力车厢组成,动力车头质量为2m,每节无动力车厢质量均为m。
火车在启动前,车头会先向后退一段距离,使得各相邻车厢之间的连接挂钩松弛,车厢无间距紧挨着,然后车头从静止开始启动,逐节带动各节车厢直至最后一节车厢启动。
启动过程中车头牵引力恒为F,忽略一切阻力。
为了研究方便,将车头及相邻车厢之间的连接挂钩简化为不可伸长的长度为l的轻绳,绳子绷直的瞬间相连的物体间可看做发生完全非弹性碰撞,碰撞时间忽略不计。
整个启动过程中,带动第几节无动力车厢前,车头的速度达到最大?【参考答案】(1)P0-F0vMv;(2)(k+1)x;(3)3【名师解析】(1)根据P0=F1v 可知F1=P0 v根据牛顿第二定律F1-F0=Ma 解得a=P0-F0v Mv(2)设火车第一阶段运动时间为t,末速度为v2,第二阶段的位移为x2由动能定理得k-1F0x=12Mv22再由动量定理得(k-1)F0t=Mv2发动机的额定功率P m=kF0v2由上可知,第二阶段的初速度为v2,末速度为2v2,由动能定理得P m t-F0x2=12M2v22-v22解得x2=(k+1)x(3)设拖动第n节车厢前,车头的速度为u n,绳子绷直后车头的速度为u′n,拖动第一节车厢前,对车头由动能定理得12⋅2mu21=Fl绳子绷直,对车头和第一节车厢由动量守恒定律得2mu1=(2m+m)u′1同理,拖动第n节车厢前,对于车头和前(n-1)节车厢由动能定理得1 22m+n-1mu2n=122m+n-1mu 2n-1+Fl绳子绷直,对于车头和前n节车厢由动量守恒定律得[2m+(n-1)m]u n=(2m+nm)u′n 由上式得u n=n+1n+2u n可推出u n-1=nn+1u n-1联立有n+12u2n=n2u2n-1+2n+1Fl m令a n=(n+1)2u n2,得到a n=a n-1+n+12Fl ma n-1=a n-2+n2Flm a n-2=a n-3+n-12Fl m⋯⋯a2=a1+32Flm 其中a1=4Flm上几式相加得到a n=a1+n+4n-1Fl m则n +122u n =n 2+3nFl m解得u 2n=n 2+3nn +1 2⋅Fl m =n +1 2+n +1 -2n +1 2⋅Fl m =1+1n +1-2(n +1)2 ⋅Fl m 当1n +1=14,即n =3时有最大值。
动量守恒定律在板块模型中的应用例析

动量守恒定律在板块模型中的应用例析动量守恒定律在板块模型中的应用例析作为一个地球科学爱好者,我对地球板块模型和其运动规律一直充满了兴趣。
在这篇文章中,我将详细探讨动量守恒定律在板块模型中的应用,并分享一些个人观点和理解。
一、什么是动量守恒定律?在讨论动量守恒定律在板块模型中的应用之前,我们需要先了解一下什么是动量守恒定律。
动量守恒定律是物理学中一个重要的基本定律,它描述了一个封闭系统中的物体动量的守恒。
动量是物体的质量乘以速度,可以简单理解为物体在运动中的惯性。
按照动量守恒定律,在封闭系统中,物体相互作用导致的动量变化之和为零,即动量守恒。
二、动量守恒定律在板块模型中的应用2.1 地球板块运动地球板块模型是地壳的一种表达方式,描述了地球表面的外壳以数个大块或小块来划分。
这些板块在地球内部的流动和碰撞是地质活动和地震的主要原因。
在板块运动中,动量守恒定律发挥着重要的作用。
当两个板块相互碰撞或滑动时,它们之间会存在动量的交换。
根据动量守恒定律,两个板块所受的动力的大小和方向必须相等且相反,以使总动量保持不变。
2.2 板块边界类型根据板块间相对运动的不同方式,我们可以将板块边界分为三种类型:边界滑移、边界聚合和边界分离。
在边界滑移型板块边界中,两个板块相互滑动,沿着边界线发生水平位移。
这种情况下,动量守恒定律保证了两个板块之间的动力平衡,并且没有产生垂直方向的位移。
在边界聚合型板块边界中,两个板块相互碰撞,在碰撞的过程中动量守恒定律确保了总动量守恒,并导致了新的地形的形成。
在边界分离型板块边界中,两个板块相互远离,动量守恒定律确保了两个板块之间的动力平衡,并且没有产生额外的动力。
三、个人观点和理解对于我来说,动量守恒定律在板块模型中的应用是非常有意思的。
它帮助我们理解了地球上发生的地质活动,包括地震、火山喷发和山脉的形成。
通过运用动量守恒定律,我们可以更好地解释和预测板块之间的相对运动,并理解地表形态的演化。
动量守恒定律的典型模型

M
m
四.子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔE = f 滑d相对
由功能关系得
mg
(s
x)
1 2
mV
2
1 2
mv02
mgx
1 2
(m
2M
)V
2
1 2
mv
2 0
相加得 mgs 1 2MV 2
②
2
解①、②两式得 x
Mv02
③
(2M m)g
代入数值得
v0
C
B
A
x 1.6m ④
xC
S
B
VA
x 比B 板的长度l 大.这说明小物块C不会停在B板上,而要
滑到A 板上.设C 刚滑到A 板上的速度为v1,此时A、B板的
多大的速度做匀速运动.取重力加速度g=10m/s2.
m=1.0kg
C
v0 =2.0m/s
B
A
M=2.0kg M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这
时A、B、C 三者的速度相等,设为V.
由动量守恒得 mv0 (m 2M )V
①
在此过程中,木板B 的位移为S,小木块C 的位移为S+x.
M=16 kg,木块与小车间的动摩擦因数为μ=0.5,木
块没有滑离小车,地面光滑,g取10 m/s2,求: (1)木块相对小车静止时小车的速度; (2)从木块滑上小车到木块相对于小车刚静止时, 小车移动的距离. (3)要保证木块不滑下平板车,平板车至少要有多 长?
碰撞及类碰撞模型归类例析

碰撞及类碰撞模型归类例析“碰撞”是高中物理中的一个重要模型,它涉及动量定理、动量守恒定律、机械能守恒定律、能量守恒定律等诸多知识。
处理碰撞问题,需要先根据题意选取恰当的研究对象,合理选取研究过程,并把握该过程的核心要素,再判断研究对象的动量是否守恒、机械能是否守恒,然后根据相应物理规律列方程求解。
一、碰撞的特点:(1)作用时间极短,内力远大于外力,因为极短相互作用时间内可以忽略外力的影响,对系统而言动量保持不变,即总动量总是守恒的;(2)系统能量不能凭空增加,在碰撞过程中,因为没有其他形式的能量转化为动能,所以总动能一定不会增加,在完全弹性碰撞过程中动能守恒,然而在非弹性碰撞中,系统动能减小,总之碰撞不会导致系统动能增加;(3)在碰撞过程中,当两物体碰后速度相等,即发生完全非弹性碰撞时,系统动能损失最大; (4)在碰撞过程中,两物体产生的位移可以忽略不计。
二、常见的碰撞模型: 1.弹性碰撞弹性碰撞是高中物理碰撞问题中最常见的模型,对该碰撞问题的处理所依据的物理原理也相对容易理解。
所谓的弹性碰撞是指研究对象之间在碰撞的瞬间动能没有损失。
(1)动静碰撞模型如图所示,在光滑的水平面上质量为m 1的小球以速度v 1与质量为m 2的静止小球发生弹性碰撞.小球发生的是弹性碰撞,由动量守恒和能量守恒,得111122m v m v m v ''=+ ,222111122111222m v m v m v ''=+ 由上两式解得:121112m m v v m m -'=+ ,121122m v v m m '=+ 推论:① 若m 1 = m 2,可得v'1 = 0、v'2 = v 1,相当于两球交换速度。
② 若m 1 > m 2,则v'1>0 且v'2>0,即v'1和v'2均为正值,表示碰撞后两球的运动方向与v 1相同. ③ 若m 1>>m 2,则m 1-m 2≈m 1,m 1 + m 2≈m 1,可得v'1 = v1,v'2 = 2v 1。
动量守恒定律的经典模型总结

碰撞后: 两物体的总动能E后 ≤ E前
被追物体速度不小于追赶物体的速度
习题:质量相等的A、B两物块在光滑水平面上沿一直线 向同一方向运动,A物块的动量为PA=9kg· m/s,B物块的动 量为PB =3kg· m/s,当A物块追上B物块发生碰撞,则碰撞后A、 B两物块的动量可能为( )
A. p A ' 6kgm/s B. p A ' 3kgm/ s
p B ' 6kgm/s
pB ' 9kgm/ s
pB ' 14kgm/' 2kgm/ s
D. pA ' 4kgm/ s
子弹打木块模型
[题1]设质量为m的子弹以初速度v0射向静止在光滑水平面上 的质量为M的木块并留在其中,设木块对子弹的阻力恒为f。
动量守恒定律的典型应用 几个模型:
(一)碰撞中动量守恒 (二)子弹打木块类的问题:
(三)人船模型:平均动量守恒 (四)反冲运动、爆炸模型
碰撞问题须同时遵守的三个原则:
一. 系统动量守恒原则 二. 能量不增加的原则 三. 物理情景可行性原则 例如:追赶碰撞(弹性碰撞或非弹性碰撞): 碰撞前:
V追赶 V被追
m
M L
物理过程分析
S1
S2
条件: 系统动量守衡且系统初动量为零.
处理方法: 利用系统动量守衡的瞬时性和物体间作用的等时性,求解 每个物体的对地位移.
m v1 = M v2 m s 1 = M s2 m v1 t = M v2 t
---------------- ①
s1 + s2 = L
-----------②
0.4 ,取 g = 10 m/s2.
(1)物块抛到小车上经过多少时间两者相对静止? (2)在此过程中物块相对于小车滑动的距离是多少?
动量守恒定律的应用广义碰撞

fd
M 2m M m
(s d) M 2m d
M m
s M 2m d d md
s d图
M m
M m
• 因M+m>m,因此sd,木块的位移较小 。
在此过程中转变成的内能为多少?
f
s d
fs 1
1 mv2 2
Mv2
1 2
mv02
2
M mv, v mv0 /M m
fd
1 2
mv02
模型:碰撞
碰撞过程实际上是一种相互接近、发生
相互作用、然后分离的过程。
v10 v20
vv
压缩过程
恢复过程
v1 v2
弹性碰撞
v1 v2
非弹性碰撞
v
完全非弹 性碰撞
总结:“碰撞过程”的制约
①动量制约(系统动量守恒的原则):即碰撞过程必须
受到“动量守恒定律的制约”:
mv1 mv2 mv1 mv2
对于A
f L1=
1m 2
v
2 0
由上述二式联立求得
L1
=
m +M 4M
L
扩展:在相对滑动的过程中,求: (1)相对滑动的时间 (2)木板和木块的位移 (3)摩擦力对木块做的功 (4)摩擦力对木板做的功 (5)整个过程产生的热量
B
V0 A V0
二、类弹性碰撞
基本特征:基本特征:相互作用的两物体所构成的 系统动量守恒或水平方向动量守恒,从开始发生作
②动能制约:即在碰撞过程,碰撞双方的总动能不会
增加:
1 2
mv12
1 2
mv22
1 2
mv12
1 2
mv22
③运动制约:即碰撞过程还将受到运动的合理性要求
动量守恒定律在碰撞中的应用几种常见模型分析PPT25页

谢谢!
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
动量守恒定律在碰撞中的应用几种常 见模型分析
6
、
露
凝
无
游
氛
,
天ቤተ መጻሕፍቲ ባይዱ
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
弹性碰撞模型-动量守恒的十种模型(解析版)

动量守恒的八种模型弹性碰撞模型模型解读1.碰撞过程的四个特点(1)时间短:在碰撞现象中,相互作用的时间很短。
(2)相互作用力大:碰撞过程中,相互作用力先急剧增大,后急剧减小,平均作用力很大。
(3)位移小:碰撞过程是在一瞬间发生的,时间极短,在物体发生碰撞的瞬间,可忽略物体的位移,认为物体在碰撞前后仍在同一位置。
(4)满足动量守恒的条件:系统的内力远远大于外力,所以即使系统所受合外力不为零,外力也可以忽略,系统的总动量守恒。
(5).速度要符合实际(i)如果碰前两物体同向运动,则后面物体的速度必大于前面物体的速度,即v后>v前,否则无法实现碰撞。
碰撞后,原来在前的物体的速度一定增大,且原来在前的物体的速度大于或等于原来在后的物体的速度v'前≥v'后。
(ii)如果碰前两物体是相向运动,则碰后两物体的运动方向不可能都不改变,除非两物体碰撞后速度均为零。
若碰后沿同向运动,则前面物体的速度大于或等于后面物体的速度,即v'前≥v'后。
2.动动弹性碰撞已知两个刚性小球质量分别是m1、m2,m1v1+m2v2=m1v1'+m2v2',1 2m1v21+12m2v22=12m2v'22+12m乙v2乙,3.一动一静"弹性碰撞模型如图所示,已知A、B两个刚性小球质量分别是m1、m2,小球B静止在光滑水平面上,A以初速度v0与小球B发生弹性碰撞,取小球A初速度v0的方向为正方向,因发生的是弹性碰撞,碰撞前后系统动量守恒、动能不变,有m1v0=m1v1+m2v21 2m1v20=12m1v21+12m2v22联立解得v1=(m1-m2)v0m1+m2,v2=2m1v0m1+m2讨论:(1)若m1>m2,则0<v1<v0、v2>v0,物理意义:入射小球质量大于被碰小球质量,则入射小球碰后仍沿原方向运动但速度变小,被碰小球的速度大于入射小球碰前的速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s人
M mM
L
s船
m mM
L
练习: 质量为m的人站在质量为M,长为L的静止小船 的右端,小船的左端靠在岸边。当他向左走到船的左端 时,船左端离岸多远?
解:先画出示意图。人、船系统动量守恒,总动
量始终为零,所以人、船动量大小始终相等。从 图中可以看出,人、船的位移大小之和等于L。
设人、船位移大小分别为l1、l2 ,则:mv1=Mv2, 两边同乘时间t,ml1=Ml2, 而l 1+l 2=L,
动量守恒定律在碰撞中的应用
——几种常见模型分析
一、几种常见的动量守恒模型:
1、碰撞类 2、子弹打木块类 3、人船模型类 4、弹簧类
模型2:子弹打击木块
子弹打木块实际上是一种完全非弹性碰撞。作为一个典型, 它的特点是:子弹以水平速度射向原来静止的木块,并留在木 块中跟木块共同运动。
如图所示,质量为 m 的子弹以初速度 v0射向静止在光滑水 平面上的质量为 M 的木块,并留在木块中不再射出,子弹钻入 木块深度为 d.求木块与子弹相对静止时的速度,木块对子弹的
水 (1)何时两物体相距最近,即弹簧最短
平
Nv
N
面 光
F弹
F弹
滑,短,且损失的动能
开
转化为弹性势能
始 (2)何时两物体相距最近,即弹簧最短
时
v
处
于
原
长
两物体速度相等时弹簧最长,且损失的动能
转化为弹性势能
弹簧弹力联系的“两体模型”
注意:状态的把握 由于弹簧的弹力随形变量变化,所以弹 簧弹力联系的“两体模型”一般都是作加速 度变化的复杂运动,所以通常需要用“动量 关系”和“能量关系”分析求解。复杂的运 动过程不容易明确,特殊的状态必须把握: 弹簧最长(短)时两体的速度相同;弹簧自 由时两体的速度最大(小)。
擦生的热的总和 B、木块对子弹做功的绝对值等于子弹对木块做的功 C、木块对子弹的冲量大小等于子弹对木块的冲量 D、系统损失的机械能等于子弹损失的动能和子弹
对木块所做的功的差
总结:子弹打木块的模型
1.运动性质:子弹对地在滑动摩擦力作用下匀减
速直线运动;木块在滑动摩擦力作用下做匀加速 运动。
2.符合的规律:子弹和木块组成的系统动量守恒, 机械能不守恒。
v0
分析:第一问即是在它们有共同速度时的,发生的相对位移d 必须得小于小车的长度 第二问:由动量守恒定律即可求得
模型3:人船模型
例:静止在水面上的小船长为L,质量为M,在 船的最右端站有一质量为m的人,不计水的阻力, 当人从最右端走到最左端的过程中,小船移动的 距离是多大?
S2
S1
m M
S2
S1
3.共性特征:一物体在另一物体上,在恒定的阻 力作用下相对运动,系统动量守恒,机械能不守
恒,ΔEK=Q = f 滑d相对
类似题型
如图所示,把质量m=20kg的物体以水平速度v0=5m/s抛上 静止在水平地面的平板小车的左端。小车质量M=80kg,已知 物体与平板间的动摩擦因数μ=0.8,小车与地面间的摩擦可忽略 不计,g取10m/s2,求:(1)要物块不从小车上掉下,小车至 少多长?(2)物体相对小车静止时,物体和小车相对地面的 加速度各是多大?
条件: 系统动量守衡且系统初动量为零.
处理方法: 利用系统动量守衡的瞬时性和物体间作用的
等时性,求解每个物体的对地位移.
m v1 = M v2
m v1 t = M v2 t
m s1 = M s2
---------------- ①
s1 + s2 = L
-----------②
结论: 人船对地位移为将二者相对位移按质量反比分配关系
(1)光滑水平面上的A物体以速度V0去撞 击静止的B物体,A、B物体相距最近时,两 物体速度必相等(此时弹簧最短,其压缩量最 大)。
课堂练习
质量均为2kg的物体A、B,在B物体上固定 一轻弹簧,则A以速度6m/s碰上弹簧并和速度为 3m/s的B相碰,则碰撞中AB相距最近时AB的速度 为多少?弹簧获得的最大弹性势能为多少?
m ∴ l2 M m L
l2 l1
应该注意到:此结论与人在船上行走的速度大小无关。不
论是匀速行走还是变速行走,甚至往返行走,只要人最终 到达船的左端,那么结论都是相同的。
总结:人船模型
1、“人船模型”是动量守恒定律的拓展应用, 它把速度和质量的关系推广到质量和位移 的关系。即:
m1v1=m2v2 则:m1s1= m2s2 2、此结论与人在船上行走的速度大小无关。不论
①、②相减得:
fd=12mv20-12(M+m)v2=2MM+mmv20③
即 f=2dMMm+v20m s2=12Mv2/f=Mm+dm.
从能量角度分析:损失 的动能转化为内能
所以:Q=f阻力d相对
练习:子弹以一定的初速度射入放在光滑水平面上的 木块中,并共同运动下列说法中正确的是:(ACD) A、子弹克服阻力做的功等于木块动能的增加与摩
平均阻力的大小和该过程中木块前进的距离.
解析:子弹和木块最后共同运动,相当于完全非弹性碰撞. 从动量的角度看,子弹射入木块过程中系统动量守恒: mv0=(M+m)v 从能量的角度看,该过程系统损失的动能全部转化为系统 的内能.设平均阻力大小为 f,设子弹、木块的位移大小分别为 s1、s2,如图 1-3-5 所示,显然有 s1-s2=d 对子弹用动能定理:fs1=12mv20-12mv2① 对木块用动能定理:fs2=12Mv2②
是匀速行走还是变速行走,甚至往返行走,只要 人最终到达船的左端,那么结论都是相同的。
3、人船模型的适用条件是:两个物体组成的 系统动量守恒,系统的合动量为零。
类似题型
练习:载人气球原静止在高度为H的高空,气球的质 量为M,人的质量为m,现人要沿气球上的软绳梯滑 至地面,则绳梯至少要多长?
S
H
H
模型4:弹簧模型 思考
练习:如图所示,质量为m的小物体B连着轻弹 簧静止于光滑水平面上,质量为2m的小物体A 以速度v0向右运动,则 当弹簧被压缩到最短时,弹性势能Ep为多大?
A V0
B
二、碰撞问题的典型应用总结
相互作用的两个物体在很多情况下,皆可 当作碰撞处理,那么对相互作用中两个物 体相距恰“最近”、相距恰“最远”或恰 上升到“最高点”等一类临界问题,求解 的关键都是“速度相等”。