罗斯蒙特5400雷达液位计
罗斯蒙特PRO型雷达液位计操作维护规程

罗斯蒙特PRO型雷达液位计操作维护规程西部管道新疆输油分公司2010年5月签字职务日期编制人:审核人:批准人:目录1范围错误!未定义书签。
2规范性引用文件错误!未定义书签。
3术语和定义错误!未定义书签。
4操作维护内容错误!未定义书签。
5风险提示错误!未定义书签。
6应急处置错误!未定义书签。
7附件错误!未定义书签。
范围本规程适应于西部管道所有罗斯蒙特PRO型雷达液位计。
规范性引用文件本规程根据技术规格书和设备技术资料,对罗斯蒙特PRO系列雷达液位计的安装环境、设备技术指标、操作和维护进行了说明。
术语和定义操作维护内容概述罗斯蒙特PRO系列雷达液位变送器是一种功能强大的雷达液位变送器,适用于过程中间储罐、物料储罐和其他类型储罐的非接触液位测量。
该变送器的设计可实现轻松安装和免维护运行。
它可以通过特殊设计的Radar Master(雷达主机)软件包进行组态、维护和测量数据显示功能,或采用HART技术,通过手持通讯器或微机对测量数据进行组态和监控。
对于独立系统或作为微机或控制系统的补充部分,可根据特殊的硬件组态采用一个或两个模拟输出对液位数据进行监控。
罗斯蒙特PRO雷达液位变送器可配备易于使用的罗斯蒙特2210显示板。
2210显示板所提供的功能与Radar Master(雷达主机)软件包的功能基本相同。
四个功能强大的软键可向您提供组态程序访问、维护功能和液位监控。
测量原理PRO系列雷达液位计通过从储罐顶部天线发射的雷达信号对储罐内产品的液位进行测量;变送器向产品表面发送频率连续变化的微波信号,在雷达信号被产品表面反射后,回波被天线接收。
由于信号频率不断变化,与此时发射的信号相比,回波的频率稍微有所不同,从而产生与产品表面距离成比例的低频信号。
变送器使用快速傅立叶变换(FFT)技术从而得到储罐内所有回波的频谱,从该频谱可求出表面液位,从而实现对储罐液位的的快速、可靠和精确测量。
基于频率连续变化的雷达扫描调频连续波图该种测量方法被称为FMCW(调频连续波)并应用于所有高性能雷达变送器。
罗斯蒙特5400说明书

1. 确保按照危险场所认证标准、国家和当地电气规范把外壳接地(包括端子隔室内部的本质 安全接地)。
2. 确保断开电源。 3. 卸下接线端子护盖 (见图)。 4. 把电缆穿过电缆压盖 / 配管。对于隔爆 / 防燃安装,应使用经过检定具有隔爆或防燃性能
的电缆压盖或配管进线装置。安装接线时打一个滴水环,滴水环的底部低于电缆 / 配管入 口。
合于工艺。 2. 把带天线和法兰的液位计降到储罐的喷嘴中。 3. 根据选择的法兰和垫片以足够的扭矩拧紧螺栓和螺母。
卡套 夹
夹持式储罐连接 1. 在储罐法兰上放置一个垫片。 2. 把液位计和天线降到储罐中。 3. 使用夹子把卡套紧固到储罐上。 4. 松开螺母,以转动液位计外壳。 5. 转动液位计外壳,使电缆入口 / 显示板面向所需方向。 6. 拧紧螺母。
*00825-0106-4026*
罗斯蒙特 5400 系列
© 2011 罗斯蒙特有限公司。保留所有权力。所有标识均为其所有者的财产。
快速安装指南
00825-0106-4026, EA 版 2011 年 8 月
艾默生过程控制 罗斯蒙特测量有限公司 美国明尼苏达州 Chanhassen 市 市场大道 8200 号, 55317 电话 (美国):1 800 999 9307 电话 (国际):+1 952 906 8888 传真:+1 952 949 7001
5. 按下列页面所示接线。 6. 卸下用于运输的橙色保护塑料塞。使用随附的金属塞将不用的端口密封。 7. 安装护盖,紧固电缆压盖,确保保护盖安全接合以符合隔爆要求(若使用 M20 电缆压盖,
则需要转接器)。 对于 ATEX、 IECEx、 NEPSI、 INMETRO 和 TIIS 安装,应使用锁紧螺钉锁紧护盖。 8. 连接电源。
雷达液位计如何标定零点.PPT

• 罗斯蒙特雷达液位计讲解
1
导波雷达液位计
导波雷达液位计是依据时域反射原理为基础的雷 达液位计,导波雷达物位计发出高频脉冲沿着导 波组件传播,当雷达波遇到被测介质时,由于介 电常数发生突变,引起部分脉冲波的反射,并沿 着导波组件还回。由于雷达波的传输速度是恒定 的,所以雷达物位计只要计算出发射与接收雷达 波的时间间隔,就可以计算出液位空高,量程减
去空高就是实际液位高度。2主要参数设置3
雷达液位计的标定
由于雷达液位计发送、接受雷达波受障碍物的影响。因此,为了避免由 于设备缺陷或雷达筒体毛刺等的影响而导致测量失准,需要在空罐时 进行mapping,即消除毛刺等的影响。步骤如下:
1.保证筒体内无介质; 2.依据操作步骤进入mapping菜单,在标定区间(range of mapping)
内选择全量程标定,具体标定过程如下:Group Selection→Extended Calibration→Range of mapping→Start mapping→on,如图3所示
4
雷达液位计作业的注意事项
1.是否有检修作业票。 2.是否有五单一卡。 3.是否有监护人。 4.拆卸法兰时位于上风向,并且不能正对法兰口。 5.检修完成后“工完、料净、场地清”。
5
罗斯蒙特雷达5400使用说明

扭矩 (Nm) 40 40 60 60 50 50 40 60 50 50 40 60 50 50
扭矩 (Lbft) 30 30 44 44 37 37 30 44 37 37 30 44 37 37
1. 该安装信息适用于 2012 年 2 月发布的最新过程密封天线设计。 该日期之前制造的天线使用湿式 O 形圈并需要采用不同的安装程序。
用于垂直管安装,也可以用于水平管安装。 2. 把夹装托架放置到 U 型螺栓上,围绕管道。 3. 使用随带的四个螺母把托架固定到管道上。 4. 把带天线的液位计安装到托架上,并使用随带
的三个螺钉固定。
更多详细安装信息请参见 《罗斯蒙特 5400 系列参 考手册》(文档号 00809-0100-4026)。
快速安装指南
00825-0106-4026, FB 版 2013 年 3 月
罗斯蒙特 5400 系列 超高性能两线制非接触雷达液位计
京制 01010009 号 2013L191-11
*00825-0106-4026*
快速安装指南
2013 年 3 月
关于本指南
本安装指南提供了罗斯蒙特 5400 系列液位计的基本安装指导。本指南不提供组态、 诊断、维护、检修、故障排查、隔爆、防燃或本质安全 (I.S.) 安装的说明。有关详细 说明,请参见 《罗斯蒙特 5400 系列参考手册》(文档编号 00809-0100-4026)。该 手册和本快速安装指南 (QIG) 的电子版也可从 获得。
有关更改液位计 HART 版本的说明,请参见第 4 页上的 “ 切换 HART 版本模 式 ”。
确认设备驱动程序是否正确
检查系统中是否已装载最新的设备驱动程序 (DD/DTM),以确保正确通讯。 最新的设备驱动程序可从 /LevelSoftware 下载。
罗斯蒙特产品综合简介-2008

雷达的精度与飘移
扫描的线性是最重要的 精度影响因素
REX具有真正的数字式 石英校验
气候保护罩和温控电子 加热板确保电子头部分 不受温度影响
大多数低精度雷达没有 校验功能和气候保护罩!
SAAB REX 雷达种类
RTG 3920
RTG 3930
RTG 3950
RTG 3960
喇叭型天线雷达-RTG3920
完全非接触式测量 无可动部件 无需维护 高可靠性 长使用寿命 采用FMCW原理 高精确度
micro wave TankRadar
第三代计量雷达产品: REX-3900系列
SAAB ROSEMOUNT是雷达 液位计生产者中拥有最 长历史
拥有最多的安装量
适于非液氨介质和所有 储罐类型
拥有最多数量的计量精 度认证
适用于压力容器 4” or 100 mm 导波管 可选一体化的压力传感器 可选配安全球阀 可在正常操作条件下验证
测量精度(利用参考钢针) 贸易交接计量级精度 无需维护 只有锥形天线部分伸入罐
内
LPG/LNG雷达-RTG3960
所有带压力的储罐 球罐,小型卧罐 LPG: 丙烷,丁烷 etc LNG @ -160°C 150 - 600 Psi 60 m (200 ft) range
Saab TankMaster - 独有的特色
已经得到验证的性能 100% Saab 制造 100% Saab 支持 Windows 平台 所有语言种类 开放的界面 OPC - 易于集成到其它系统下 有多种通讯协议可选 提供便捷的用户自有界面 可以在线“热插拔”
例如:客户化的视图
管 所有介质
导波管安装
导波管内的雷达波形
RTG 3950
EMERSON雷达 5400 系列 QIG(中文)

R: 最大负载电阻 U: 外部电源电压
快速安装指南
00825-0106-4026,版本 CA 2007 年 11 月
罗斯蒙特 5400 系列
第二步 (续) ......
基金会 (FOUNDATIONTM) 现场总线
FoundationTM 现场总线型 5400 系列变送器的运行电源范围为 9-32 V dc (在本质安全应用中,电源范围为 9-30 V dc ;在隔爆 / 防燃应用中, 电源范围为 16-32 V dc ;在 FISCO 本质安全应用中,电源范围为 9-17.5 V dc)。
锁紧螺钉 (ATEX) 法兰
法兰连接的锥形天线 1. 将垫片放置于储罐法兰顶部。 2. 从上向下降低变送器,使天线
和法兰在喷嘴内就位。 3. 对于选择的法兰和垫片,请使
用足够的扭矩将螺栓和螺母拧 紧。
法兰连接的过程密封天线 1. 将 O 型环置于天线过程密封窗
口下侧的凹槽内。欲了解温度 与压力限制,请参阅参考手册 (00809-0106-4026)。 2. 将天线放置于喷嘴顶部。 3. 安装法兰并按交叉方式拧紧螺 栓。欲了解扭矩信息,请参阅 参考手册。
电缆引入装置 内部接地螺钉
外部接地螺钉
HART
5400 系列变送器的运行电源范围为 16-42.4 V dc (在本质安全应用 中,电源范围为 16-30 V dc,在隔爆 / 防燃应用中,电源范围为 20-42.4 V dc)。
罗斯蒙特 275/375 通信手操器正常运行所需的最小负载电阻 (RL) 为 250 Ohm,见下图。
注释
在电缆引入装置中,在 NPT 螺纹处应采用特氟隆 (Teflon) 绝缘胶带或 其它密封剂进行密封。
雷达液位计故障分析及维护策略

雷达液位计故障分析及维护策略摘要:本文简单介绍了雷达液位计常见问题及干扰回波的处理方法,主要阐述了罗斯蒙特雷达液位计在庆阳石化公司罐区及硫磺污水池应用中典型的故障,通过分析故障产生的原因提出相应的解决方法。
针对雷达液位计在罐区及硫磺污水池应用过程中出现的故障,采取不同的解决策略及防护措施,从而大大降低了雷达仪表故障率降。
关键字:雷达液位计组态信号门限值故障处理雷达液位计是一种非接触式、可靠性较高的液位测量仪表。
非接触式测量是近年来测量物位的主要方法,综合解决了大多数标准插入式仪表检测元件易被介质污染和腐蚀等诸多难题。
此外雷达液位计因雷达波能穿透许多泡沫、烟雾及蒸汽等介质,不受变化的环境影响可靠地测量出精确的液位值。
罗斯蒙特雷达液位计采用非接触测量方式受测量介质特性影响小、测量精确可靠,不需要重新标定,因而可增加正常运行时间护等优点,在石油化工行业得到广泛应用。
1、罗斯蒙特雷达液位计原理罗斯蒙特雷达液位计采用储罐中产品的液位由罐顶天线发送的雷达信号测量。
在雷达信号被产品表面反射后,天线会检取回波。
由于信号频率是变化的,回波的频率与此时发送的信号的频率稍有不同。
频率差与距产品表面的距离成正比,因此可以精确计算液位。
这种方法称为调频连续波 (FMCW)。
2、罗斯蒙特雷达液位计使用情况庆阳石化公司罐区雷达液位计主要用总线输出至FCU(现场通讯单元)用于连接现场设备和控制室的上位机,输出MODBUS协议信号一台现场通讯单元最多可连接32台现场雷达输出信号给系统数据通讯设备,提供6路(FB及GB)通信口用于信号输入及输出提供4路FB信号输入口, 每一路FB口(即一根电缆) 最大允许连接8台设备(雷达液位计)。
2.1 罐区雷达液位计使用情况:储运罐区使用罗斯蒙特雷达液位计共计48台,投用以来测量数据准确、运行稳定、维护工作量相对较小。
但也出现过故障,2013年12月份,302、303两个单元雷达夜位计测量均出现过通讯中断的情况,经检查由于气温降低原因,现场阻抗过大,因每一路通讯端口FB口最多允许连接8台雷达液位计,阻抗过大超出了FB口自身承载台数,所以会出现通讯中断的情况。
罗斯蒙特5300雷达液位计中 PEP功能设置部分

Advanced Configuration May 2016Reference Manual00809-0100-4530, Rev DD C.5Probe End Projection Probe End Projection is used for two purposes:⏹Use the probe end echo as reference, in case the surface echo is lost, to calculate the surface echo position.⏹Use the probe end echo as reference when the surface echo is close to the probe end to enhance accuracy of the surface echo position.By using the Probe End Projection function, the device is capable of measuring the product level even if the surface echo is lost. The Probe End Projection is suited for challenging applications with very poor reflectivity (low dielectric constant). Due to the poor reflectivity of the product, situations may occur where the surface pulse is invisible to the transmitter at long measuring ranges.If the surface becomes invisible, the device will revert to use the probe end, and the most recently estimated value of the dielectric constant to calculate the surface. Once the surface reappears, the device will immediately use direct measurement on the surface again. The calculated surface value is less accurate than the value with direct measurement.When the microwaves emitted by the Rosemount 5300 Transmitter propagate through the product in the tank, the probe end echo appears to be located below the actual probe end. The apparent displacement of the probe end echo peak is a consequence of the reduced propagation speed of the measurement signal through the product compared to the speed through air. The displacement of the probe end pulse can be observed by using the Echo Curve Analyzer in the Rosemount Radar Master (see “Using the echo curve analyzer” on page 153).For products with very low dielectric constants the product surface level can be determined by comparing the actual probe end position as given by the Probe Length value, with the apparent position of the probe end echo peak. The difference is related to the properties of the product, i.e. the Dielectric Constant , and the distance D travelled by the measurement signal through the product, see Figure C-10.Advanced ConfigurationMay 2016Reference Manual 00809-0100-4530, Rev DDFigure C-10. The Probe End Projection FunctionNote It is important that the Probe Length and product Dielectric Constant are given with high accuracy.NoteThis function is only available for Liquid/solid product level measurement modes (i.e. not available for interface or fully submerged interface measurement modes) and a well defined probe end echo (i.e. ensure that the probe end/centering disc/weight is either always in contact with the tank wall or never in contact with the tank wall).C.5.1Guided Probe End Projection setupNote Assure that the Mounting Type, Probe Type, and Probe Length have been assigned correct values before configuring the Probe End Projection.Probe End Projection can be configured using a guide. When the tank is empty, the guided setup will be able to accurately calibrate probe end offset and probe end pulse polarity. You will be asked to insert an initial value for the Product DC. This is the value for the product dielectric constant that the device uses as a start point for estimation. This value must be as accurate to the actual value of the dielectric constant as possible.When the tank is filled, the guided setup will be able to estimate the Product DC. This valueis used as an initial value for future estimation of the Product DC.Apparent Probe End positionActual Probe End position∆, theAdvanced Configuration May 2016Reference Manual 00809-0100-4530, Rev DD For best performance, complete the guided setup with an empty tank and then a second time with a filled tank, but do not overwrite the empty tank calibration.Probe End Projection can be configured in RRM. This function can be reached from the Device Specific Configuration in the Guided Setup (if the configuration is recommended) or from the Advanced Configuration window, Probe End Projection tab. Click Guided Probe End Projection Setup to start the configuration.Figure C-11. Probe End Projection SetupIn a Field Communicator, the Device Specific Configuration is reached with sequence [2, 1, 7, 2] (if the configuration is recommended) or from the sequence: [2, 7, 2].Optional configurations DC Estimation Limit: This is a limit for the product dielectric constant estimation. The limit is a percentage, saying how much the estimated product DC is allowed to differ from the initial product DC value. If the estimation goes outside this limit, a warning will be ed Product DC: This is the estimated product dielectric constant that the device will use for Probe End Projection.Reset DC Estimation: Resets DC estimation to the configured initial value, forcing the device to start over estimating the product e Static Product DC: Check this setting if you do not want the device to estimate the product DC. This will force the device to use the configured initial product DC.。